Let's begin with one more example related to implicit derivatives.
Example 2.24. Find equations for lines tangent to the graph

$$
\begin{equation*}
y^{2}-3 x y=2 \tag{69}
\end{equation*}
$$

when $x=1 / 3$.

Next, we will move onto derivatives of logarithms. The natural logarithm $\ln x$ is, by definition, the inverse to the exponential function e^{x}. Recall that two functions $f(x), g(x)$ are said to be inverses of one another if

$$
\begin{equation*}
f(g(x))=x, \quad \text { and } \quad g(f(x))=x \tag{70}
\end{equation*}
$$

Thus, the defining properties of the natural logarithm are

$$
\begin{equation*}
e^{\ln x}=x, \quad \text { and } \quad \ln e^{x}=x \tag{71}
\end{equation*}
$$

Some key identities to keep in mind when working with logarithms include $\ln (a b)=$ $\ln a+\ln b$ and $\ln \left(a^{r}\right)=r \ln a$.

Just the knowledge of the properties in (71) will allow us to nail down the derivative of $\ln x$ using the rules that we know. First, introduce a dependent variable $y=\ln x$ into the first expression above:

$$
\begin{equation*}
e^{y}=x \tag{72}
\end{equation*}
$$

Next, we take the implicit derivative with respect to x to get

$$
\begin{equation*}
e^{y} y^{\prime}=1 \tag{73}
\end{equation*}
$$

In other words, $y^{\prime}=e^{-y}$. Substituting $y=\ln x$ we then obtain an explicit expression for the derivative.

Proposition 2.25 (Derivative of natural log).

$$
\begin{equation*}
(\ln x)^{\prime}=e^{-\ln x}=\frac{1}{x} \tag{74}
\end{equation*}
$$

Example 2.26. Use the second expression in (71) to 'rederive' the formula $\left(e^{x}\right)^{\prime}=e^{x}$.

The expression $\ln x$ is only defined for $x>0$. On the other hand, the expression $\ln |x|$ is defined for any $x \neq 0$.
Example 2.27. Use the chain rule to show that for all $x \neq 0$ one has

$$
\begin{equation*}
(\ln |x|)^{\prime}=\frac{1}{x} \tag{75}
\end{equation*}
$$

Example 2.28. Compute the derivative of $\ln (\sqrt{x+1})$ in two ways.
A simple application of chain rule shows the following.
Proposition 2.29. Suppose that f is differentiable and $\ln (f(x))$ exists. Then

$$
\begin{equation*}
(\ln (f(x)))^{\prime}=\frac{f^{\prime}(x)}{f(x)} \tag{76}
\end{equation*}
$$

Next, we consider functions which are like exponentials but where we use a different base. For example, consider the function $f(x)=2^{x}$. To compute the derivative we introduce the dependent variable $y=2^{x}$ and write this expression as

$$
\begin{equation*}
y=2^{x} \leftrightarrow \ln y=\ln \left(2^{x}\right)=x \ln 2 . \tag{77}
\end{equation*}
$$

Thus, the original equation $y=2^{x}$ is equivalent to the implicit representation

$$
\begin{equation*}
\ln y=x \ln 2 \tag{78}
\end{equation*}
$$

We then apply the derivative to get

$$
\begin{equation*}
\frac{y^{\prime}}{y}=\ln 2 . \tag{79}
\end{equation*}
$$

In other words $y^{\prime}=y \ln 2=2^{x} \ln 2$, so that

$$
\begin{equation*}
\left(2^{x}\right)^{\prime}=2^{x} \ln 2 \tag{80}
\end{equation*}
$$

Without much more difficulty one can show.
Proposition 2.30. For $0<b$ and $b \neq 1$ one has

$$
\begin{equation*}
\left(b^{x}\right)^{\prime}=b^{x} \ln b \tag{81}
\end{equation*}
$$

Example 2.31. Find the slope of the line tangent to the graph of $f(x)=x^{x}$ at $x=1$. Does this graph have any horizontal tangent lines?

