
OCTOBER 11, 2022

Let’s begin with one more example related to implicit derivatives.

Example 2.24. Find equations for lines tangent to the graph

(69) y2 − 3xy = 2

when x = 1/3.

Next, we will move onto derivatives of logarithms. The natural logarithm ln x is,
by definition, the inverse to the exponential function ex. Recall that two functions
f (x), g(x) are said to be inverses of one another if

(70) f (g(x)) = x, and g( f (x)) = x.

Thus, the defining properties of the natural logarithm are

(71) eln x = x, and ln ex = x.

Some key identities to keep in mind when working with logarithms include ln(ab) =
ln a + ln b and ln(ar) = r ln a.

Just the knowledge of the properties in (71) will allow us to nail down the de-
rivative of ln x using the rules that we know. First, introduce a dependent variable
y = ln x into the first expression above:

(72) ey = x.

Next, we take the implicit derivative with respect to x to get

(73) eyy′ = 1.

In other words, y′ = e−y. Substituting y = ln x we then obtain an explicit expres-
sion for the derivative.

Proposition 2.25 (Derivative of natural log).

(74) (ln x)′ = e− ln x =
1
x

.

Example 2.26. Use the second expression in (71) to ‘rederive’ the formula (ex)′ = ex.
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The expression ln x is only defined for x > 0. On the other hand, the expression
ln |x| is defined for any x 6= 0.

Example 2.27. Use the chain rule to show that for all x 6= 0 one has

(75) (ln |x|)′ = 1
x

.

Example 2.28. Compute the derivative of ln
(√

x + 1
)

in two ways.

A simple application of chain rule shows the following.

Proposition 2.29. Suppose that f is differentiable and ln( f (x)) exists. Then

(76) (ln( f (x)))′ =
f ′(x)
f (x)

.

Next, we consider functions which are like exponentials but where we use a
different base. For example, consider the function f (x) = 2x. To compute the
derivative we introduce the dependent variable y = 2x and write this expression
as

(77) y = 2x ↔ ln y = ln(2x) = x ln 2.

Thus, the original equation y = 2x is equivalent to the implicit representation

(78) ln y = x ln 2.

We then apply the derivative to get

(79)
y′

y
= ln 2.

In other words y′ = y ln 2 = 2x ln 2, so that

(80) (2x)′ = 2x ln 2.

Without much more difficulty one can show.

Proposition 2.30. For 0 < b and b 6= 1 one has

(81) (bx)′ = bx ln b.

Example 2.31. Find the slope of the line tangent to the graph of f (x) = xx at x = 1.
Does this graph have any horizontal tangent lines?
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