Let's begin with an example related to logarithms.
Example 2.31. Find the slope of the line tangent to the graph of $f(x)=x^{x}$ at $x=1$. Does this graph have any horizontal tangent lines?

We move onto derivatives of inverse trigonometric functions. Recall that two functions $f(x), g(x)$ are said to be inverses of one another if

$$
\begin{equation*}
f(g(x))=x, \quad \text { and } \quad g(f(x))=x . \tag{82}
\end{equation*}
$$

Thus, the defining properties of the the inverse sine function arcsin is, for instance, is

$$
\begin{equation*}
\sin (\arcsin x)=x, \quad \text { and } \quad \arcsin (\sin x)=x \tag{83}
\end{equation*}
$$

An important caveat here is that the inverse of a function is strictly only define when the function is one-to-one. This means that the original function must pass the horizontal line test. Clearly, the sine function fails this as for any fixed y_{0} the equation $y_{0}=\sin x$ has infinitely many solutions. One way around this is to restrict the domain of $\sin x$ so that it does pass the horizontal line test. A standard choice is the interval $[-\pi / 2, \pi / 2]$. The range of $\sin x$ in this domain is $[-1,1]$.

Therefore, the domain of $\arcsin x$ is $[-1,1]$, and its range is $[-\pi / 2, \pi / 2]$.
Example 2.32. What is $\arcsin (\pm 1)$? What is $\arcsin (1 / \sqrt{2})$?
Just the knowledge of the properties in (83) will allow us to nail down the derivative of $\arcsin x$ using the rules that we know. First, introduce a dependent variable $y=\ln x$ into the first expression above:

$$
\begin{equation*}
\sin y=x \tag{84}
\end{equation*}
$$

Next, we take the implicit derivative with respect to x to get

$$
\begin{equation*}
y^{\prime} \cos y=1 \tag{85}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
y^{\prime}=\frac{1}{\cos y} . \tag{86}
\end{equation*}
$$

This last expression is not so satisfying since the right hand side involves the variable y. We would like to go back to the original equation $\sin y=x$ to solve for y, but this is also not in an immediately useful form.

The problem boils down to the following: if y is an angle such that $\sin y=x$. What is the value of $\cos y$? Draw a right triangle with one angle given by y and whose hypotenuos is unit length. Then, $\operatorname{since} \sin y=x=x / 1$, we know that the length of the side opposite to the angle y is x. The value of $\cos y$ is simply the length of the last side, which by the Pythagorian theorem we know to satisfy

$$
\begin{equation*}
\cos ^{2} y+x^{2}=1 \tag{87}
\end{equation*}
$$

In other words.

$$
\begin{equation*}
\cos y=\frac{1}{\sqrt{1-x^{2}}} \tag{88}
\end{equation*}
$$

Remember, this is only defined on the interval $(-1,1)$. We arrive at.
Proposition 2.33. The derivative of $\arcsin x$ on the interval $(-1,1)$ is

$$
\begin{equation*}
(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \tag{89}
\end{equation*}
$$

Example 2.34. Consider the function $f(x)=\arcsin \left(\frac{x^{2}}{4}\right)$. Describe all horizontal and vertical tangent lines.

