
OCTOBER 12, 2022

Let’s begin with an example related to logarithms.

Example 2.31. Find the slope of the line tangent to the graph of f (x) = xx at x = 1.
Does this graph have any horizontal tangent lines?

We move onto derivatives of inverse trigonometric functions. Recall that two
functions f (x), g(x) are said to be inverses of one another if

(82) f (g(x)) = x, and g( f (x)) = x.

Thus, the defining properties of the the inverse sine function arcsin is, for instance,
is

(83) sin(arcsin x) = x, and arcsin(sin x) = x.

An important caveat here is that the inverse of a function is strictly only define
when the function is one-to-one. This means that the original function must pass
the horizontal line test. Clearly, the sine function fails this as for any fixed y0 the
equation y0 = sin x has infinitely many solutions. One way around this is to restrict
the domain of sin x so that it does pass the horizontal line test. A standard choice
is the interval [−π/2, π/2]. The range of sin x in this domain is [−1, 1].

Therefore, the domain of arcsin x is [−1, 1], and its range is [−π/2, π/2].

Example 2.32. What is arcsin(±1)? What is arcsin(1/
√

2)?

Just the knowledge of the properties in (83) will allow us to nail down the deriv-
ative of arcsin x using the rules that we know. First, introduce a dependent variable
y = ln x into the first expression above:

(84) sin y = x.

Next, we take the implicit derivative with respect to x to get

(85) y′ cos y = 1.

In other words,

(86) y′ =
1

cos y
.

This last expression is not so satisfying since the right hand side involves the vari-
able y. We would like to go back to the original equation sin y = x to solve for y,
but this is also not in an immediately useful form.
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The problem boils down to the following: if y is an angle such that sin y = x.
What is the value of cos y? Draw a right triangle with one angle given by y and
whose hypotenuos is unit length. Then, since sin y = x = x/1, we know that the
length of the side opposite to the angle y is x. The value of cos y is simply the length
of the last side, which by the Pythagorian theorem we know to satisfy

(87) cos2 y + x2 = 1

In other words.

(88) cos y =
1√

1− x2
.

Remember, this is only defined on the interval (−1, 1). We arrive at.

Proposition 2.33. The derivative of arcsin x on the interval (−1, 1) is

(89) (arcsin x)′ =
1√

1− x2
.

Example 2.34. Consider the function f (x) = arcsin
(

x2

4

)
. Describe all horizontal

and vertical tangent lines.
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