We've learned what the derivative tells us about the shape of a graph. What about the second derivative? This controls the feature called concavity.

- A function is concave up on an interval if $f^{\prime}(x)$ is increasing on the interval.
- A function is concave down on an interval if $f^{\prime}(x)$ is decreasing on the interval.
- A point $x=c$ where f changes concavity is called an inflection point.

An easy reformulation of the first two points is the following:

- If $f^{\prime \prime}(x)>0$ on some interval, we say that f is concave up on that interval.
- If $f^{\prime \prime}(x)<0$ on some interval, we say that f is concave down on that interval.
- If $f^{\prime \prime}(c)=0$ and $f^{\prime \prime}(c)$ changes sign as we go through $x=c$ then $x=c$ is an inflection point of the function.

Example 2.41. Describe the concavity and the inflection points of the following functions.
(a) $f(x)=\arctan (x)$.
(b) $f(x)=\sqrt{x} \ln x$ on the domain $x>0$.

Next we move on to the second derivative test.
Suppose that $x=c$ is a critical point of a function f which satisfies $f^{\prime}(c)=0$.

- If $f^{\prime \prime}(c)>0$ then f has a local minimum at $x=c$.
- If $f^{\prime \prime}(c)<0$ then f has a local maximum at $x=c$.

If $f^{\prime \prime}(c)=0$ then the test is inconclusive-the function may have a local min/max or neither.

Example 2.42. Use the second derivative test to locate and characterize the local extrema of the function

$$
\begin{equation*}
f(x)=\frac{e^{x}}{x+1} \tag{91}
\end{equation*}
$$

defined for $x \neq 1$.

