Today we will review material in sections 2.4-2.5 of the book.
Recall that we say

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=\infty \tag{1}
\end{equation*}
$$

if we can make the value $f(x)$ be infinitely large by choosing x to be sufficiently close to a. Similarly, we can define

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)= \pm \infty, \quad \lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty \tag{2}
\end{equation*}
$$

In any of these cases we call the line $x=a$ a vertical asymptote of the function f.
0.0.1. Challenge question. If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=-\infty$ then what can we say about $\lim _{x \rightarrow a}(f(x)+g(x))$?

Example 0.1. Compute the following limit (if it exists)

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) \tag{3}
\end{equation*}
$$

Example 0.2. Compute the following limit (if it exists)

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{2 x+1}{x}\right) . \tag{4}
\end{equation*}
$$

Example 0.3. Define the function

$$
\begin{equation*}
f(x)=\frac{x^{2}-x-2}{x-a} \tag{5}
\end{equation*}
$$

where a is some number. For which values of a do the following limits exist.

- $\lim _{x \rightarrow a^{+}} f(x)$.
- $\lim _{x \rightarrow a^{-}} f(x)$.
- $\lim _{x \rightarrow a} f(x)$.
0.0.2. Recall that we say

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f(x)=L \tag{6}
\end{equation*}
$$

if we can make $f(x)$ as close to the value L for x a large enough number. In this case we say that $y=L$ is a horizontal asymptote of the function f.
Example 0.4. Find the limit (if it exists)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{4 x^{2}+5} \tag{7}
\end{equation*}
$$

Example 0.5. Find the limit (if it exists).

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{e^{x} \sin x}{e^{2 x}+1} \tag{8}
\end{equation*}
$$

