SEPTEMBER 19, 2022

Definition 0.6. Suppose that a function f is defined on an open subset of **R** which contains the point a. We say that f is continuous at a if

(9)
$$f(a) = \lim_{x \to a} f(x).$$

0.0.3. Examples and non-examples of continuous functions .

0.0.4. Checklist for continuity. For a function f to be continuous at a point a, the following three conditions must hold.

- (1) *f* must be defined at *a*.
- (2) the limit $L = \lim_{x \to a} f(x)$ must exist.
- (3) the limit *L* must equal f(a).

Example 0.7. At which points $a \in \mathbf{R}$ is the function f(x) = x/|x| continuous?

0.0.5. Properties of continuous functions. We say a function is continuous if it is continuous at all points in its domain.

- (1) the sum, product, difference, and ratio (when defined) of two continuous functions is again continuous.
- (2) all polynomials are continuous.
- (3) Rational functions (ratios of polynomials) are continuous at every point in their domain.
- (4) the composition of two continuous functions is again continuous.

0.0.6. Continuity on closed intervals. So far we've covered what it means for a function to be continuous on domains which are open intervals, like $(0, \infty)$. What about the function $f(x) = \sqrt{x}$ which is defined on the closed interval $[0, \infty)$? The problem is at the closed point $0 \in [0, \infty)$. In addition to checking continuity on the open interval $(0, \infty)$ we also need to make sure that the right sided limit at 0 agrees with value of the function at that point

(10)
$$\lim_{x \to 0^+} f(x) \stackrel{?}{=} f(0).$$

If this is the case then we say that *f* is continuous on the closed interval $[0, \infty)$.