1. September 23,2022

Today we'll discuss more examples of derivatives.

Examples.

Example 1.1. Let

$$
\begin{equation*}
f(x)=\sqrt{x+7} \tag{13}
\end{equation*}
$$

(a) Is the function $f(x)$ differentiable? If so, on what domain?
(b) Use the limit definition to compute the derivative of $f(x)$ at $x=2$.
(c) Find the equation of the line tangent to the graph of the function $f(x)$ at $x=2$.

Here is an example of a function which fails to be differentiable at a point.
Example 1.2. Consider the absolute value function $f(x)=|x|$. At which point is $f(x)$ not differentiable. For the values of x that $f(x)$ is differentiable, find $f^{\prime}(x)$.

Properties of derivatives.

- (Constants) The derivative of a constant function $c(x)=c$ is identically zero, $c^{\prime}(x)=0$. If c is any constant and f is a function then

$$
(c f)^{\prime}=c f^{\prime} .
$$

- (Sum) The derivative of a sum is the sum of derivatives:

$$
\begin{equation*}
(f+g)^{\prime}=f^{\prime}+g^{\prime} . \tag{15}
\end{equation*}
$$

- (Power rule) For any integer n the derivative of $f(x)=x^{n}$ is $f^{\prime}(x)=n x^{n-1}$. In fact, if $r=p / q$ is a rational number then we still have

$$
\begin{equation*}
\left(x^{r}\right)^{\prime}=r x^{r-1} . \tag{16}
\end{equation*}
$$

For example, the derivative of the function \sqrt{x} is $1 / \sqrt{x}$.
Warning: The derivative of the product $f \cdot g$ is not the product of the derivatives:

$$
\begin{equation*}
(f \cdot g)^{\prime} \neq f^{\prime} \cdot g^{\prime} . \tag{17}
\end{equation*}
$$

Soon, we will learn rules for computing the derivative of the product of two functions.

Example 1.3. Where is the function $f(x)=x^{2 / 3}+7 x^{4}$ differentiable? For the values of x that f is differentiable, what is $f^{\prime}(x)$?

