Exponentials. Today we continue with rules of derivatives, starting with the exponental function.

Definition 1.4. The exponential function e^x is defined by

(18)
$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)$$

This number is defined for all real numbers *x*. Approximately, one has

(19)
$$e \stackrel{\text{def}}{=} e^1 = 2.71828....$$

The exponential function obeys the standard rules of exponentials.¹ For instance, $e^0 = 1$. Another good function to keep in mind is the natural logarithm which is the inverse to the exponential function:

$$\ln(e^x) = e^{\ln x} = x$$

The natural logarithm $\ln x$ is only defined for x > 0. A good limit to keep in mind is:

(21)
$$\lim_{x\to\infty}e^x=\infty.$$

Let's turn to the derivative of the exponential function. First we have the following lemma.

Lemma 1.5. One has

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

Proof. Let's use equation (18) to write

(22)
$$\frac{e^h - 1}{h} = \frac{1}{h} \lim_{n \to \infty} \left(-1 + \left(1 + \frac{h}{n} \right)^n \right).$$

Next, we use the binomial theorem to write

$$-1 + \left(1 + \frac{h}{n}\right)^n = -1 + \left(1 + n\frac{h}{n} + \cdots\right) = h + \cdots$$

where the \cdots stands for terms which are at least quadratic in the parameter *h*. Plugging this back into (22) we obtain

$$\frac{e^h - 1}{h} = 1 + \cdots$$

where now the \cdots stands for terms that are at least linear in *h*. Taking the limit $h \rightarrow 0$ yields the result.

Example 1.6. Show that if $f(x) = e^x$ is the exponential function then

$$(24) f'(x) = e^x$$

In other words the exponential is its own derivative $(e^x)' = e^x$. This fact makes it very useful to model population growth, interest, etc. via the exponential function.

¹Actually proving that $e^x = (e^1)^x$ is a good exercise.

If f = f(x) is a function, define the second derivative to be

(25)
$$f''(x) = (f'(x))'$$

That is, this is the derivative of the derivative. Similarly we can define the third derivative f'''(x), and so on.

Recall that we have introduced the notation

(26)
$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x}$$

We will also use

$$f''(x) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$

and so on.

Example 1.7. Let $f(x) = 3x^3 - 12\sqrt{x}$. Find f''(x).

Example 1.8. Find the twenty-first derivative of the function $f(x) = e^x - 3x^{12}$.

Example 1.9. Compute the limit

(28)
$$\lim_{a \to 1} \frac{\sqrt{3+a}-2}{a-1}$$

(Hint: Don't compute the limit.)