Exponentials. Today we continue with rules of derivatives, starting with the exponental function.

Definition 1.4. The exponential function e^{x} is defined by

$$
\begin{equation*}
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \tag{18}
\end{equation*}
$$

This number is defined for all real numbers x. Approximately, one has

$$
\begin{equation*}
e \stackrel{\text { def }}{=} e^{1}=2.71828 \ldots \tag{19}
\end{equation*}
$$

The exponential function obeys the standard rules of exponentials. ${ }^{1}$ For instance, $e^{0}=1$. Another good function to keep in mind is the natural logarithm which is the inverse to the exponential function:

$$
\begin{equation*}
\ln \left(e^{x}\right)=e^{\ln x}=x \tag{20}
\end{equation*}
$$

The natural logarithm $\ln x$ is only defined for $x>0$. A good limit to keep in mind is:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} e^{x}=\infty \tag{21}
\end{equation*}
$$

Let's turn to the derivative of the exponential function. First we have the following lemma.
Lemma 1.5. One has

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 .
$$

Proof. Let's use equation (18) to write

$$
\begin{equation*}
\frac{e^{h}-1}{h}=\frac{1}{h} \lim _{n \rightarrow \infty}\left(-1+\left(1+\frac{h}{n}\right)^{n}\right) . \tag{22}
\end{equation*}
$$

Next, we use the binomial theorem to write

$$
-1+\left(1+\frac{h}{n}\right)^{n}=-1+\left(1+n \frac{h}{n}+\cdots\right)=h+\cdots
$$

where the \cdots stands for terms which are at least quadratic in the parameter h. Plugging this back into (22) we obtain

$$
\begin{equation*}
\frac{e^{h}-1}{h}=1+\cdots \tag{23}
\end{equation*}
$$

where now the \cdots stands for terms that are at least linear in h. Taking the limit $h \rightarrow 0$ yields the result.
Example 1.6. Show that if $f(x)=e^{x}$ is the exponential function then

$$
\begin{equation*}
f^{\prime}(x)=e^{x} . \tag{24}
\end{equation*}
$$

In other words the exponential is its own derivative $\left(e^{x}\right)^{\prime}=e^{x}$. This fact makes it very useful to model population growth, interest, etc. via the exponential function.

[^0]If $f=f(x)$ is a function, define the second derivative to be

$$
\begin{equation*}
f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime} \tag{25}
\end{equation*}
$$

That is, this is the derivative of the derivative. Similarly we can define the third derivative $f^{\prime \prime \prime}(x)$, and so on.

Recall that we have introduced the notation

$$
\begin{equation*}
f^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} x} \tag{26}
\end{equation*}
$$

We will also use

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}} \tag{27}
\end{equation*}
$$

and so on.
Example 1.7. Let $f(x)=3 x^{3}-12 \sqrt{x}$. Find $f^{\prime \prime}(x)$.

Example 1.8. Find the twenty-first derivative of the function $f(x)=e^{x}-3 x^{12}$.

Example 1.9. Compute the limit

$$
\begin{equation*}
\lim _{a \rightarrow 1} \frac{\sqrt{3+a}-2}{a-1} \tag{28}
\end{equation*}
$$

(Hint: Don't compute the limit.)

[^0]: ${ }^{1}$ Actually proving that $e^{x}=\left(e^{1}\right)^{x}$ is a good exercise.

