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Abstract: We show that a family of topological twists of a supersymmetric mechanics
with a Kéhler target exhibits a Batalin—Vilkovisky quantization. Using this observation
we make a general proposal for the Hilbert space of states after a topological twist
in terms of the cohomology of a certain perverse sheaf. We give several examples of
the resulting Hilbert spaces including the categorified Donaldson-Thomas invariants,
Haydys—Witten theory and the 3-dimensional A-model.

Introduction

2d A-model and deformation quantization. Given a symplectic manifold (M, ) we may
consider its deformation quantization, i.e. a deformation of the commutative algebra of
functions C*°(M) to a noncommutative algebra. The existence of such deformation
quantizations was shown by De Wilde—Lecomte [DL83] and Fedosov [Fed94] in the
smooth context, Nest-Tsygan [NTO01] and Polesello-Schapira [PS04] in the complex-
analytic context and Bezrukavnikov—Kaledin [BK04] in the algebraic context. Let us
also mention the work of Kontsevich [Kon03] who proves the existence of a deformation
quantization of Poisson manifolds.

For the symplectic manifold (M, w) we may also consider a two-dimensional TQFT
known as the 2d A-model. Its category of boundary conditions is the Fukaya category of
M and the relationship between the Fukaya category and the category of modules over
the deformation quantization algebra has a long history [BS04,Tsy09].

Let us suppose M is a hyperKiahler manifold with complex structures /, J, K, Kéhler
structures wy, wy, wg and holomorphic symplectic structures 27, 27, Qg . Consider the
real symplectic structure w; = Re Q27 and the B-field B = wg . In this case the relation-
ship between the Fukaya category and the category of complex-analytic deformation
quantization (DQ) modules on (M, 2;) is expected to be even more tight. Namely,
there are no instanton corrections in the Lagrangian Floer homology with boundary on
I-holomorphic Lagrangians [SV19].
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A physical explanation of the relationship between the Fukaya category of (M, w;, B =
wg ) and the deformation quantization of the complex symplectic manifold (M, €2;) has
the following two ingredients:

e Consider a2d N/ = (4, 4) o-model into M. It has a CP! x CP! family of topologi-
cal twists corresponding to the CP' x CP! family of generalized complex structures
obtained from the hyperKéhler structure on M. One of the topological twists is the 2d
B-model into (M, ) while another topological twist is the 2d A-model into (M, w;)
(see [Guall, Section 4.6] for the formula for the family of generalized complex
structures). The interpolating family of 2d TQFTSs provides a noncommutative defor-
mation of the derived category of coherent sheaves of (M, I) along the holomorphic
Poisson bivector Q;l [Kap04,Kap0O5a].

e There is a canonical coisotropic brane B, . in the A-model which is supported
everywhere. As explained in [KWO07, Section 11] and [GWO09, Section 2.2] the en-
domorphism algebra of 5. .. provides a deformation quantization of the algebra of
holomorphic functions on (M, I). In particular, any other brane 5 gives rise to a DQ
module Hom (B, .., B) over Hom(B, .., B...).

The above perspective on the 2d A-model of a holomorphic symplectic manifold in
terms of the deformation quantization allows us to make sense of categories of boundary
conditions even when the 2d A-model itself is ill-defined. For example, consider a
topological twist of the 4d N = 4 super Yang-Mills theory known as the GL twist (we
consider the case t = 1, W = 0 in the notation of [KWO07]). Let G ¢ be the complexified
gauge group. The compactification of the theory on a Riemann surface X gives the 2d
A-model into the Hitchin moduli space of ¥ with respect to symplectic structure wg .
In the complex structure / the Hitchin moduli space is given by the cotangent bundle
of the moduli space Bung (%) of G¢-bundles on 3. In particular, the category of DQ
modules is the category of D-modules D(Bung.(X)). Even though the 2d A-model into
the Hitchin moduli space is ill-defined (as the space is stacky and singular), the category
of D-modules is well-defined.

As another example, one may consider a topological twist of the 6d N' = (1, 1) super
Yang-Mills theory. The compactification of the theory on a hyperKéhler 4-manifold X
gives the 2d A-model into the moduli space Bung.(X) of G¢-bundles on X which is
a holomorphic symplectic stack. As before, the ill-defined 2d A-model may be defined
rigorously in terms of DQ modules on Bung. (X).

1d A-model and BV quantization. The goal of the present paper is to develop an analo-
gous picture by replacing the 2d A-model into a hyperKéhler manifold by the 1d A-model
(atopological twist of supersymmetric mechanics) into a Kihler manifold equipped with
a holomorphic superpotential. The procedure of deformation quantization of a symplec-
tic manifold gets replaced with the procedure of Batalin—Vilkovisky quantization of a
(—1)-shifted symplectic manifold which we briefly recall now.

Let A be a graded commutative Poisson algebra with the Poisson bracket of degree
1 (a Py algebra). A BV operator is a second order differential operator A on A with
symbol the Poisson bracket and which is square-zero. A BV operator allows one to
deform the differential d on A to a square-zero differential d + ZA. This is parallel
to the fact that in the usual deformation quantization the Poisson bracket controls the
first-order deformation of the multiplication. We refer to Sect. 1 for more details on BV
quantization.
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Qp(h=0)

Fig. 1. The cp! family of twists Q. At the special point i = 0 is the B-twist Q g. Generically we obtain an
A twist Q4

Consider a Kihler manifold M equipped with a closed (1, 0) form 8. For instance,
B = W for a holomorphic superpotential W: M — C. In this case the supersymmetric
mechanics into M admits A/ = 4 supersymmetry. As in the 2-dimensional case, there
is a CP!' x CP!-family of topological twists. In particular, there is a CP' family Qp, of
supersymmetric twists interpolating between a “B twist” for &z = 0 and an “A twist” for
h =1 (see Fig. 1).

The Hilbert space in the B twist admits an explicit description in terms of (derived)
functions on the zero locus =1 (0) of B (more precisely, one has to consider half-densities
on the zero locus). This algebra can be explicitly presented via a Koszul complex. From
this presentation it is easy to see that it admits a Poisson bracket of degree 1 given by
the Schouten bracket. Our main observation (see Theorem 2.22) is that the family Qp
provides a BV quantization of the zero locus 8~1(0).

This observation is useful to provide a mathematically rigorous definition of the
Hilbert space in the A twist. For instance, it is often the case that one is forced to work with
a potential on an infinite-dimensional manifold, so making sense of a Morse—Novikov
complex requires hard analysis (for instance, to show that the differential squares to
zero). In contrast, the critical locus is often finite-dimensional.

BV quantization and critical cohomology. Our next observation is that one can in
fact provide a topological model of the BV quantization. Namely, the works [Bra+15,
Ben+15] have defined for any (—1)-shifted symplectic stack X equipped with an orien-

tation data, i.e. the choice of a square root of the canonical bundle det(ILx) 2, a perverse
sheaf Py on the underlying classical stack 7 (X). It is expected (see Conjecture 1.18) that
the cohomology of this perverse sheaf gives a model of the BV quantization. Note that
the (twisted) BV quantization of (—1)-shifted symplectic stacks has been constructed
in [Pril9].

Let us give an example of the above. Consider a function f: U — A! on a smooth
affine variety and let X = dCrit( f) be the derived critical locus of f. It carries a (—1)-
shifted symplectic scheme. It has a canonical twisted BV quantization given by the
twisted de Rham complex, i.e. the complex of differential forms DR(U) (k) equipped
with the differential Ad + (df) A (—). As explained in [SS14] it is isomorphic to the
cohomology of the sheaf of vanishing cycles of f which is exactly what the perverse
sheaf Py is in this case.
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The cohomology of the perverse sheaf Px has been used to define cohomological Hall
algebras of quivers with potentials [KS11], categorified Donaldson—Thomas invariants
[Ben+15] and complexified Floer homology [AM20].

As another example, consider a quasi-smooth derived scheme X, so that its underlying
scheme X = 1y(X) is a local complete intersection. If X is not smooth, the shifted
dualizing complex wx[— dim X] is not perverse. However, one can define the scheme of
singularities Sing(X) = o (T*[—1]X) I X andthe perverse sheaf Pr«[_11x on Sing(X)
is such that 7y Pr«[_1jx = wx[— dim X] (see [Kin21]).

Examples. We provide many examples where the above ideas give a mathematically
rigorous proposal for the space of states in a physical TQFT. In each case we perform
the following:

(1) Compute a compactification of a d-dimensional TQFT on a (d — 1)-manifold and
rewrite it in terms of (gauged) supersymmetric mechanics for some closed (1, 0)-
form g on an infinite-dimensional K&hler manifold M (equipped with a Hamiltonian
action).

(2) Present ~1(0) as a finite-dimensional (—1)-shifted symplectic stack X.

(3) Define the space of states to be the cohomology of the perverse sheaf Py.

We observe that in several examples there is a natural grading operator on the space
of states manifested in an extra term in the action which is responsible for a “categori-
fication” of the corresponding dimensionally reduced theory:

e The grading in the space of states of the 3d A-model categorifying the Novikov
parameter g of the 2d A-model.

e The grading in the space of states in the Haydys—Witten TQFT categorifying the
instanton counting parameter g of the GL twisted 4d N = 4 super Yang—Mills theory.

Let us list the examples of how these proposals work:

e 2d A-model. Consider a hyperKihler manifold M together with two /-holomorphic
Lagrangians L, L. The derived intersection L X 7 L1 admits a natural (—1)-shifted
symplectic structure [Pan+13]. The space of states in the 2d A-model into (M, wy)
compactified on the interval with boundary conditions specified by the Lagrangians
Ly, L is proposed to be the cohomology

RF(LO N Ll» PLOXMLI)‘

This complex was proposed in [Bra+15,Bus14] as an algebraic model for the Hom
spaces in the Fukaya category of a holomorphic symplectic manifold.

e 3d A-model. Consider a hyperKéhler manifold X equipped with an isometric U(1)-
action rotating the complex structures with fixed points =/ and acting on 2; with
weight n # 0. The 3d NV = 4 supersymmetric o-model into X admits a topological
twist which gives rise to a 3d TQFT known as the 3d A-model. In the case X is a
quaternionic vector space (possibly with an action of a group), this theory has been
studied recently in [KV10,BDG17,Dim+20,Nak16] in relation to Coulomb branches.
Also, in [BFK21] a similar result for the Hilbert space of states was found with an
additional discussion of mixed Hodge structures, which we do not address here.
For a Riemann surface ¥, the space of sections Sect(X, Xx) of the bundle of hy-

perKihler manifolds Xy, = K g " %€ X over T admits a (—1)-shifted symplectic
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structure [GR18]. The space of states in the 3d A-model on X is proposed to be the
cohomology

RI'(Sect(Z, Xx), Pseci(s,%5))-

It admits a grading given by the symplectic volume of the section with respect to wy.
In the case X = T*Y, we simply get the Borel-Moore homology

HEM(Map(Z, 1))

of the moduli space of I-holomorphic maps, an answer proposed in [Nak16].

e GL twist of the 4d A/ = 4 super Yang-Mills theory. The 4d A = 4 super Yang—
Mills theory admits a topological twist, the GL twist, studied in [KWO7]. It gives rise
to a family of 4d TQFTSs parametrized by ¥ € CP!. Let G¢ be the complexified
gauge group. The derived moduli space RLocg (M) of G¢ local systems on a 3-
manifold M is a (—1)-shifted symplectic stack. The space of states in the GL twist
on M for generic W is proposed to be the cohomology

RI'(LocGe (M), PRLocg. (M)

of the perverse sheaf. This may be viewed as a complexified analog of the instanton
Floer homology (which gives the space of states in the topologically twisted 4d
N = 2 super Yang-Mills theory) and was introduced in [AM20].

o Haydys—Witten twist of the Sd \ = 2 super Yang-Mills theory. The 5d N = 2
super Yang—Mills theory admits a topological twist, the Haydys—Witten twist, studied
in [Witl2]. Consider the moduli stack Bung.(M) of principal G¢-bundles on a
complex projective surface M. The space of states in the Haydys—Witten twist on M
is proposed to be the Borel-Moore homology

HEM(Bung,. (M))

of the moduli stack of G¢-bundles. It admits a grading given by the second Chern
character f y Ch2(P) of the G¢-bundle.

e Topological twist of the 7d \/ = 1 super Yang—Mills theory. The 7d A/ = 1 super
Yang-Mills theory admits a topological twist on G, manifolds [AOS97]. Consider
the derived moduli stack RBung(X) of G¢-bundles on a projective Calabi-Yau
3-fold X. It admits a natural (—1)-shifted symplectic structure [Pan+13]. The space
of states in the topological twist on X is proposed to be the cohomology

RI'(Bung¢ (X), PRBung. (X))

of the perverse sheaf on the moduli stack of G¢-bundles. It admits a natural grading
by the second Chern character f x €h2(P) A w of the G¢-bundle.

We remark on a ‘chiralization’ of the model for BV quantization that we have just
proposed. From the point of view of 2d A = (2, 2) supersymmetry, the A-model sits in
a CP'-family of twists which at the special point 0 € CP! is not a topological twist but
a holomorphic one—this is the so-called half-twist [Kap05b]. To the data of a Kédhler
manifold M equipped with a closed (1, 0)-form 8 one can consider the 2d A = (2, 2)
supersymmetric o-model into M. The half-twist produces the holomorphic o-model
into the derived zero locus 87! (0). The Hilbert space is equipped with a chiral version
of a shifted Poisson bracket and the CP!-family exhibits a chiral BV quantization. Upon
applying the Zhu algebra construction this recovers the situation above.
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Organization of the paper. The paper is organized as follows. In Sect. 1 we recall the
notion of Batalin—Vilkovisky quantization. We present the BV quantization of odd sym-
plectic manifolds and (—1)-shifted symplectic stacks in parallel to emphasize the simi-
larities and differences. For instance, for odd symplectic manifolds there is a canonical
line of semidensities which admits a canonical BV operator. In the case of (—1)-shifted
symplectic stacks the square root of the canonical bundle might not exist and, even if
it exists, is not canonical: it is the orientation data. We also conjecture a relationship
between the BV quantization and the sheaf of vanishing cycles (Conjecture 1.18) and
describe the latter sheaf in some examples.

In Sect. 2 we describe N = 2 supersymmetric mechanics into a Riemannian manifold
equipped with a potential (or a closed one-form «). In this section we work on the level
of phase spaces and explicitly write down the Hamiltonians for the supersymmetry
action. We also show that if the target is Kihler and the one-form « is the real part
of a closed (1, 0) form B, the supersymmetry is enhanced to A/ = 4. By considering a
geometric quantization of the phase space we arrive at a description of the Hilbert space of
supersymmetric mechanics. In the AV = 4 case we describe a family of supercharges Qp,
interpolating between the B and the A twist and show that it provides a BV quantization
of the B twist (see Theorem 2.22). This allows us to formulate a precise proposal for
the space of states in the A twist in terms of the cohomology of the perverse sheaf (see
Proposal 2.24).

In Sect. 3 we describe a gauged version of supersymmetric mechanics and we write
down the bosonic actions for both the A" = 2 and A/ = 4 versions. We also formulate a
precise proposal for the space of states in the A twist in the presence of gauge symmetries
(see Proposal 3.4).

In Sect. 4 we present several results about principal bundles on product manifolds
and principal bundles for groups Map(N, G). These are used in the future sections
when we describe compactifications of G-gauge theories and rewrite them in terms of
Map(N, G)-gauged mechanics.

Finally, in Sects. 5 to 9 we present the main applications of these ideas which allow
us to give a mathematically rigorous definition of the spaces of states in 2d A-model, 3d
A-model, the GL twist of the 4d A/ = 4 super Yang-Mills theory, the Haydys—Witten
twist of the 5d N' = 2 super Yang-Mills theory and the topological twist of the 7d
N = 1 super Yang-Mills theory.

1. Batalin—Vilkovisky Quantization

Throughout we fix a field k. In this section we recall some results on Batalin—Vilkovisky
quantization for odd symplectic supermanifolds and (—1)-shifted symplectic schemes.

1.1. Supermanifolds. Let V be a super k-vector space equipped with an odd symplectic
structure w. Consider the Z/2-graded complex A®(V*) with the differential v A (—).
As shown in [Man97, Section 3.7] and [Sev06], the cohomology of A®(V*) is one-
dimensional and concentrated in a single degree.

Definition 1.1. Let (V, w) be an odd symplectic super vector space. The line of semi-
densities of 'V is Ber%(V) =H*(A*(VH), 0w A (—)).

The following is a reformulation of [Man97, Proposition 3.7].
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Definition 1.2. Let W be a super vector space. The Berezinian line of W is Ber(W) =
Ber? (IIT*W).
The following is shown in [Sev06].

Lemma 1.3. Let (V, w) be an odd symplectic super vector space. Then there is a canon-
ical isomorphism of lines (Ber% (V))®2 = Ber(V).

The above definitions translate to the global context. Recall the notion of a real or
complex supermanifold as in [Man97, Chapter 4]. For any supermanifold X the super-
manifold ITT*X admits a canonical odd symplectic structure. We may thus define the
Berezinian line bundle Bery — X. If (X, w) itself is an odd symplectic supermanifold,

1

the Berezinian admits a canonical square root Ber; — X given by the line bundle of
semidensities.

1.2. BV operators.

Definition 1.4. Let A be a commutative k-algebra and M an A-module. The subspace
D=K(M) c Endi(M) of differential operators of order k is defined inductively by
declaring D=0(M) = End 4 (M) and D € D=¥(M) if, and only if, [D, f] € D=*=D (M)
for every f € A. The algebra D(M) of differential operators is the union D(M) =
U, D=k (m).

Given a differential operator D € D=K(M) of order k, we may define its symbol
o(D): Sym’;(fzk) @4 M — M. We will not need a general definition and will only
use the case of second order differential operators.

Definition 1.5. Let A be a Z-graded commutative algebra with a Poisson bracket {—, —}
of degree 1 and M is a graded A-module. A Batalin-Vilkovisky (BV) operator on M is
a degree 1 square-zero k-linear endomorphism A: M — M satisfying

A(fgm) = A(fgm + (=D fA(gIm — (=)™l fe Am) + (£, g}m.

In other words, a BV operator on M is adegree 1 square-zero second-order differential
operator on M whose symbol is given by the Poisson bracket. The same definition works
for Z,/2-graded algebras and modules.

For an odd symplectic supermanifold (X, ), the algebra of smooth functions C*°(X)
carries a canonical odd Poisson bracket. The following is shown in [Khu04,§eV06].

Proposition 1.6. Let (X, w) be an odd symplectic supermanifold. There is a canonical
1
BV operator A on C*(X; Bery).

1.3. BV quantization. Thefollowing definitionis a version of [CG18, Definition2.4.1.1].

Definition 1.7. Let (A, d4) be adifferential graded commutative algebra equipped equipped
with a d-closed Poisson bracket of degree 1 and (M, dys) a differential graded A-module.

A Batalin-Vilkovisky (BV) quantization of M is a degree 1 square-zero k[[/]-linear
differential operator Ay = dy + > ooy AMRY on MR satisfying the following con-
ditions:

e A has order 2 and symbol the Poisson bracket on A.
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e A™ for n > 2 has order n.

The following example explains a relationship between BV quantizations and BV
operators.

Example 1.8. Let A be a graded commutative algebra equipped with a degree 1 Poisson
bracket and M a graded A-module equipped with a BV operator A. Then Ay = hA is
a BV quantization of M.

Definition 1.7 can be generalized to the homotopical context where we consider
commutative dg algebras equipped with a homotopy Py-structure (i.e. a degree 1 Poisson
bracket satisfying the Jacobi identity up to coherent homotopy), see [Pril9, Definition
1.12]. In this definition we require A to have order n + 1 such that the total symbol of
Ap, recovers the homotopy Py-structure on A.

Let us describe two examples relevant for the future sections.

Example 1.9. Let X be a smooth manifold and consider the graded commutative algebra
A =T(X, Sym(Tx[1]))

of polyvector fields. The Schouten bracket endows it with a degree 1 Poisson bracket.
There is a natural A-module structure on the space of differential forms

M = T'(X, Sym(T%[—1]))

given by contraction. Then the de Rham differential on M is a second-order differential
operator with symbol the Schouten bracket [Wit90]. In other words, it provides a BV
quantization of the A-module M.

Example 1.10. Let X be a complex manifold and consider the graded commutative al-
gebra

A =T (X, Sym(Q%'[~1]) ® Sym(T}°[1]))

equipped with the differential 3. As before, the Schouten bracket gives a degree 1 Poisson
bracket on A. Consider the A-module

M =T(X, Sym(Q%'[-1]) ® Sym(Q}°[—11))

of differential forms. Then 9 + 13 provides a BV quantization of M.

1.4. BV quantization of shifted symplectic stacks. Let us now explain the notion of
BV quantization of shifted symplectic stacks. Recall that [Pan+13] have introduced the
notion of a (—1)-shifted symplectic stack, i.e. a derived Artin stack X equipped with a
(homotopy) symplectic structure w of degree (—1). The following is [Cal+17, Theorem
3.2.4] and [Pril7, Theorem 3.33].

Proposition 1.11. Let X be a (—1)-shifted symplectic stack. Then there is a canonical
homotopy Py structure on the commutative dg algebra of global functions RT (X, O).

In particular, for any line bundle £ on a (—1)-shifted symplectic stack X we may
define a BV quantization of £ using Definition 1.7 applied to the RI"(X, O)-module
RI'(X, £).

Letusrecall thatany (—1)-shifted symplectic scheme X is quasi-smooth; in particular,
Gorenstein. In other words, the dualizing sheaf wy is a line bundle. The following result
follows from [Pril9, Proposition 4.6].
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Proposition 1.12. Let X be a (—1)-shifted symplectic scheme equipped with a square
1 1
root wy, of the dualizing sheaf. Then there is a canonical BV quantization of wy.
Remark 1.13. As opposed to the case of odd symplectic supermanifolds, (—1)-shifted
1

symplectic schemes do not have a canonical choice of the square root a)f( Apart from
this difference, Proposition 1.12 is an analog of Proposition 1.6 in the setting of shifted
symplectic schemes.

1.5. Perverse sheaf on shifted symplectic stacks. Recall that for a (—1)-shifted sym-
plectic scheme X the dualizing sheaf wy is a line bundle. In fact, by [Hal15, Lemma 3.7]
one has wyx = det(Ly), the determinant of the cotangent complex of X. A (—1)-shifted
symplectic Artin stack X is no longer quasi-smooth. Nevertheless, it turns out the correct
replacement for the dualizing complex wy is the canonical bundle, i.e. the determinant
of the cotangent complex det(Lx). The following notion was introduced in [Ben+15].

Definition 1.14. Let (X, w) be a (—1)-shifted symplectic Artin stack. An orientation
data on X is the choice of a square root det(]Lx)%.

The orientation data was used in [Ben+15, Theorem 1.3] to construct a canonical
perverse sheaf associated to a (—1)-shifted symplectic stack.

Proposition 1.15. Let (X, w) be a (—1)-shifted symplectic Artin stack equipped with an
orientation data. Then there is a canonical perverse sheaf Py of k-vector spaces on the
underlying classical stack to(X).

Example 1.16. Let M be a smooth complex algebraic symplectic variety and Lo, L1 C
M two smooth algebraic Lagrangains. Then the derived intersection X = Ly X L
carries a natural (—1)-shifted symplectic structure [Pan+13]. Square roots of canonical
bundles on L; give rise to an orientation data on X. In this case the perverse sheaf on
t0(X) = Lo N L has been constructed in [Bus14] without an appeal to derived algebraic
geometry. Moreover, it was constructed for complex analytic varieties, i.e. the choice of
the algebraic structure in this case is irrelevant.

Example 1.17. Let X be a quasi-smooth derived Artin stack. Then T*[—1]X is a (—1)-
shifted symplectic stack equipped with a canonical orientation data. The underlying
classical stack 7o(T*[—1]X) is known as the stack of singularities of X (see [AG15,
Section 8]). By [Kin21, Theorem 4.14] we have

H® (5o (T*[—11X), Pre(—11x) = Hgim ) (10(X)),
where on the right we consider the (shifted) Borel-Moore homology of the underlying
classical stack 7o (X).

We may now formulate a conjecture relating the perverse sheaf Px and BV quanti-
zation.

Conjecture 1.18. Let (X, w) be a (—1)-shifted symplectic Artin stack equipped with an

1 1
orientation data det(ILx)2. There is a canonical BV quantization Ay of det(Lx)? and
a quasi-isomorphism

RT (10(X), Px)(7) = (RT (X, det(Lx)?) (1), Ap)

of chain complexes of k(h))-vector spaces.
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Example 1.19. Let U be a smooth affine variety and f: U — A a function. Consider
the derived critical locus X = dCrit(f) of the function f (see [Vez20] for what this
means). It carries a natural (—1)-shifted symplectic structure. Let 7: X — U be the
natural projection. We have a fiber sequence

7T, — Lx —> Lyyy = 7" Tyl1].

Taking the determinant, we obtain an isomorphism det(Lx) = 7 * det(T"f])@z. In partic-
ular, 7* det(T7;) provides an orientation data on X. We may identify

RI'(X, 7* det(T}))) = (U, Sym(Ty [— 1) [dim U], d f A (—)).
In this case
Ap=df A(—)+hd

provides a BV quantization known as the twisted de Rham complex of (U, f). The
above conjecture in this case has been proven in [Pril9, Proposition 4.9].

Remark 1.20. In the future sections we will encounter situations where the space is
obtained as a critical locus of a function on an infinite-dimensional space. In this case
there is no canonical orientation data. The cohomology RI"(zp(X), Px) will then be a
replacement for the ill-defined BV quantization.

2. Supersymmetric Mechanics

2.1. Supersymmetry algebras. Inthis section we recall some facts about supersymmetry
algebras that we will use. We refer to [DF99] for more details.

Definition 2.1. Let W be a real vector space equipped with a nondegenerate symmetric
bilinear pairing (—, —). The 1d supertranslation algebra gyy is the real super Lie algebra
g =TIIW @ R - H with the relations

[H,Q0]=0
[01, 021 = (01, Q2)H

forevery Q1, 02, Q € W.

We will be interested in the following two examples.

Example 2.2. Consider W the two-dimensional real vector space with a metric of signa-
ture (1, 1). The corresponding super Lie algebra is known as the 1d N = 2 supertrans-
lation algebra. 1t has odd generators Q1, Q2 and an even central generator H with the
relations

[01,01l=H
[02, 02]=—-H
[O1, 02] =0.
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Example 2.3. Consider W the four-dimensional real vector space with a metric of sig-

nature (2, 2). The corresponding super Lie algebra is known as the Id N' = 4 super-
‘ P + At

translation algebra. Its complexification has odd generators Q7, Q5 and a central even

generator H with the nontrivial brackets

1
(07, 071= SH
1
[03.051= —5H

The real structure is given on the generators by (ng)* =Qf(@=1,2)and H* = H.

Remark 2.4. In both cases A refers to the dimension of the odd part. Since we are talking
about the real supertranslation algebras, one needs in addition to fix the signature of the
metric on W, which is implicit in the notation.

Remark 2.5. There is an embedding of the 1d A/ = 2 supertranslation aglebra into
the 1d V' = 4 supertranslation algebra given by the formulas Q; = Q7 + Q] and

0>=05+0,.
Observe that O(W) acts on the 1d supertranslation algebra gw by outer automor-
phisms.

Definition 2.6. Let V be a (real or complex) Z/2-graded representation of the 1d su-
pertranslation algebra gw. In addition, suppose V carries an action of a subgroup
Gr C O(W) compatible with the action of gy . We say Gg is the R-symmetry group
of the representation. When V is a complex gy -representation, we assume that the
G gr-action extends to an action of the complexification Gg c.

Definition 2.7. A real (complex) twisting supercharge Q < gw (Q € gw Qr C) is a
nonzero odd square-zero element. Given a real (complex) gw-representation V with R-
symmetry group G g, the grading of Q isachoice of asubgroupR* € Gg (C* C Gg.c)
satisfying the following properties:

e The induced Z/2-grading on gy coincides with the original Z/2-grading.
e With respect to the induced Z-grading Q has weight 1.

We are now ready to define the notion of twisting of gy -representations.

Definition 2.8. Let V be a real (complex) gy -representation with R-symmetry group
Gr. Suppose Q is a real (complex) twisting supercharge equipped with a grading. The
twist of V is the Z-graded complex whose underlying graded vector space is V and
differential is Q.

As we will only discuss the N/ = 2 and N' = 4 supertranslation algebras, let us
explicitly describe the collection of square-zero supercharges in these algebras.

Proposition 2.9. The set of equivalence classes of square-zero supercharges up to scale
in the 1d supertranslation algebra gy is the set of null lines in W.

o The set of real square-zero supercharges up to scale in the 1d N = 2 supertransla-
tion algebra consists of two points Q1+ Q2 and Q1 — Q».

o The set of complex square-zero supercharges up to scale in the Id N' = 4 super-
translation algebra is CP! xCP'. Using the homogeneous coordinates [a : b], [c : d]
of CP! x CP! they are given by

bd Q7 +acQ| +ad Q3 +cbQ5 .
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Proof. The first two claims are obvious. For the last claim, the square-zero supercharges
up to scale are given by a smooth quadric in CP3. But it is well-known that it is given
by the Segre embedding CP' x CP' ¢ CP? described above. O

Definition 2.10. The element Q4 = Q1 + Q> of the 1d A/ = 2 supertranslation algebra
is the A twisting supercharge. The embedding R* € Gg = O(1, 1) endows it with a
grading. Given a representation of the 1d A/ = 2 supertranslation algebra, its A twist is
the twist with respect to Q 4.

Definition 2.11. The element Q3 = Q] +Q; of the 1d NV = 4 supertranslation algebra
is the B twisting supercharge. The embedding R* C O(1, 1) C Gg = O(2, 2) endows
it with a grading. Given a representation of the 1d N' = 4 supertranslation algebra, its
B twist is the twist with respect to O p.

Using the embedding of the 1d N = 2 supertranslation algebra into the 1d N = 4
supertranslation algebra provided by Remark 2.5 we will also talk about the A twist of
a representation of a 1d ' = 4 supertranslation algebra.

2.2. Symplectic supermanifolds. The phase space of a supersymmetric mechanical sys-
temis described by a symplectic supermanifold (here we are considering even symplectic
structures on supermanifolds). It turns out that there is a down-to-earth description of
symplectic supermanifolds in terms of ordinary (non-super) geometry that we briefly
recollect. For more details we refer to [Rot91].

Recall that every supermanifold is (non-canonically) equivalent to the total space
of a Z/2-graded vector bundle over an ordinary manifold. Similarly, any symplectic
supermanifold is equivalent to one which is in a certain standardized form.

To describe this standardized form, fix a tuple of data (X, wp, V, g, V) where

e X is an ordinary symplectic manifold with symplectic form wy € Q%(X), and
e V is a vector bundle on X equipped with a metric g and a connection V which
preserves g.

This data determines a symplectic structure @ on the supermanifold given by the total
space of the bundle ITV over X

X = Tot(I1V)
which we can describe as follows. Let
R € Q*(X; End(V))
the curvature of the connection V and define
R € Q*(X; APV

to be the contraction of R with the metric g. Inlocal coordinates one has R;jap = gpe Rl.cja
where {Rl-cja} are the components of the curvature R.
There is a short exact sequence of C%°-modules

00— (A VH®V — Vect(X) — (A®V*) ® Vect(X) — 0

The connection on V defines a splitting of this short exact sequence and hence determines
an isomorphism of C%°-modules Vect(X) =v (AV*) ® (V @ Vect(X)).
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Using this splitting, one defines the following two-form w on the supermanifold X
by the formulas:

w(@, v) = wo(u, v) + sR(u, v) for u, v € Vect(X)
o (@, ¥) =g, V) for ¢,y eV (1
o(p,pn) =0.

The main result of [Rot91] can be summarized in the following way.

Theorem 2.12. Let (X, wo, V, g, V) be the tuple of data as defined above. The two-
form w defined in (1) is an even symplectic form on the supermanifold X = Tot(ITV).
Moreover, any symplectic supermanifold is equivalent to one of this form.

2.3. Supersymmetric mechanics. In this section we introduce the phase space of super-
symmetric classical mechanics as in [Wit82].
We fix the following data:

e A Riemannian manifold (M, g).
e A pair of closed one-forms «, a € Q! (M).

Notation 2.13. In this section V denotes the Levi—Civita connection with respect to the
metric g and R denotes the curvature tensor.

Definition 2.14. The phase space of supersymmetric mechanics is the supermanifold

X € Tot (M(x* Ty & 7*Ti)) )

where 77 : T*M — M is the projection.

The graded ring of functions on X is
C®(X) =T (M, Sym(Ty) ® A* (T} & Ty)).
Corollary 2.15. By Theorem 2.12 the tuple of data
(X, w0, V,8, V) = (T"M, wsd, 7 (Tn & Tm), (g ® —8), (VB V).

defines a symplectic structure » € Q*(X) on X.

On the supermanifold X there exists a tautological one-form p € I'(X, 7*T},)
(the Liouville one-form on T*M) and two tautological odd vector fields ¥, ¥, €
T (X, 7*Tyy) corresponding to the two copies of the tangent bundle in the definition
of X.

By Corollary 2.15 the phase space of the supersymmetric mechanics is equipped with
a symplectic form w. Using these tautological sections, one can write this symplectic
form as

o =dp+ (R, 91) — (RU2, D2) + (VU1, VI) — (Vo Vi) .
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Proposition 2.16. Consider the pair of odd functions

Ql = (p’ 791) + <Ol, 192)
Q2 = (p, P2) + (o, ).

and the even function
1 1 . 1
H= E(p, p) + ge”be‘d(ﬁa, R(Wp, 90)04) + € (Va, 9, @ ) — z(a, o)

These satisfy the following Poisson brackets
{le Ql} = Hv {st QZ} = _Ha {le QZ} =0.

In other words, the functions Qu, H determine a Hamiltonian action on X by the 1d
N = 2 supertranslation algebra.

Additionally, the even function R = %(19] + U, U1 + ¥2) is a Hamiltonian for the
R-symmetry group G g = SO(1, 1) acting by rotations on T}, ® T},.
Proof. Choose local coordinates {g'} for M and denote by {p;} the corresponding frame
of the cotangent bundle. Then we have p = p;dg’. Let {6 f} and {sz } be the corresponding
frames of the tangent bundles in (2). Then 9, = Gélaiq,- for « = 1, 2. Note that the
coordinates qi, pj are even and the coordinates 6{, sz are odd. In these local coordinates
the symplectic form w on X reads

w =dp;dq’ + ER,-jkg(G{‘Of — 050%)dq'dq’ + g:j(VOIVO, — VOIVE)).

Here V6, = df), — T’} (64dqk denotes the covariant derivative fora = 1, 2.
We record the Poisson brackets read off from the above formula of the symplectic
form:

{a'.q’} =0 . {pi. pj} = —Rijie (616 — 6563)
{pina’}y =8 . (65, pj} = T304
047} =0 . {60, 6) = 3(=D"Sapg”
In coordinates the supercharges Q, read
Q; = pief +Ol,'9£
Qz = pl'@é + (X,’@{
where we have written the one-form « as «;dg’.
The proof proceeds with a direct calculation of {Q,, Qp} using these local coordinate

descriptions. First, consider the bracket {Q;, Q1 }. This commutator splits up into a sum
of four commutators:

o (pi0f. p0f) = Rijuc (—0f0{ + 050%) 010]+ (11,0161 p; + 71, 046] p; ) +387 pip;.
o (pif]. @03} = (3i2))016; — T},;0{65.
o (i), p;6]} = (9;0)6] 65 — T, ;6] 65.

X F L
o {00y, a0} = —5g" aja;.
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The term R; ,-kw{@{ 0{‘9f is identically zero by symmetries of the Riemann tensor
R;[jke; = 0. The third and fourth terms in the first item cancel with one another due to
the antisymmetry of the connection one-form.

Combining the remaining terms we obtain

1 .. Lo L 1 ..
{Q], Q]} = Egl"pipj +Rijk[9i91j9§92z +2 (ai()lj — Flkjak) 9{92] — Eg’j(xiaj.

Using symmetries of the Riemann tensor again again one can show that the second term
is equal to

R N

We conclude that {Q, Q;} = H as desired. The relation {Q;, Q;} = —H is proved
similarly.

Finally, we show {Q;, Q;} = 0. Again, there are four terms in the expansion of this
bracket.

o (pi0l, ;0] = Rijue (—0L0f +056%) 0i0] + (F{ke;'e)gpj + r;'.kefe)sz,») :
o (pib,a;6]) = —8;0;0i0] + T} a;6160F + g picr;.
o {06}, p;63} = —0;0;0905 + T ;005 — g pjai;.
o (06l, —a;6]} =0.
The first two terms in the first item are individually zero by using R;(jx¢) = 0. The first
terms in the second and third items are individually zero since « is closed da = 0. The

second terms in the second and third items are individually zero since the connection
is torsion-free I'y = F;k - T ;= 0. The remaining terms clearly cancel. Thus,

{Qq, Q2} = 0 as desired. |

2.4. Kdhler case. In this section we specialize to the case where M is equipped with
a Kihler structure. We show that in this case the supersymmetric mechanics from the
previous section has an enhanced supersymmetry.

Let us fix the following data:

e A Kihler manifold (M, g, J).
e A pair of closed one-forms «, a € Q' (M) whose (1, 0) parts 8 = "% and a !0 are
closed.

Let X be the phase space of supersymmetric mechanics from Definition 2.14 defined

using the Riemannian structure on M. Let Ty @ C = T,lv’,O @ T(/:,’,l be the decomposition
of the tangent bundle using the complex structure J, and similarly for the complexified
cotangent bundle. The graded ring of complex-valued functions on X is

®2
C®X;C) =T (M, sym(TL) @ Sym(T9)) ® (A'(TI}’O) ® A'(TX}“)) ) :

It carries a natural real structure whose real subspace is C*°(X; R).

Notation 2.17. Let p = p"? + p®! be the decomposition of the tautological one-form
on X according to type and, similarly, ¢, = 1901/0 + 193'1.
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Proposition 2.18. Consider the tuple of odd functions

Qr = (", 9% + (B, ﬂgﬂ ,Qr = (pOL o) + (8,0,

Q= (M0, 9,% + (B, 0V, Q; = (p®!, o) + (8, ﬁ%o

and the even function H as in Proposition 2.16. These satisfy the Poisson brackets

. o (_1)a+l _
{Qa,Qﬂ} = TSD,ﬂH, for o,B=1,2

(Qy. Q51 =0.
In other words, the functions QX , H determine a Hamiltonian action on X by the 1d
N = 4 supertranslation algebra.

The proof is similar to that of Proposition 2.16, so we omit it.

2.5. Quantization. Letus return to the phase space of supersymmetric mechanics (X, )
which is defined for any Riemannian manifold (M, g).

Lemma 2.19. The symplectic supermanifold (X, ) is exact with primitive one-form
A=p+ia+g@, Vi) — g, Vih). 3)

In fact, there is a symplectomorphism X = T*(IITM), where the odd coordinates on
the base are given by the components of V1 + 1.

We will now apply the procedure of geometric quantization to the symplectic su-
permanifold X. Choose a flat real line bundle (L, V., g) on M equipped with a metric
parallel with respect to V. Equivalently, (L, V, g) can be encoded in the principal
Z./2-bundle of its unit frames. Define a connection on 77*L, a line bundle on X, by the
formula

V=V, +A

where 2 is the primitive (3) for the symplectic form » on X. Notice that since V[, is flat,
the curvature of Vy is automatically . Then (7*L, v, g) defines a prequantization of
X. We also have a polarization on X given by the fibers of X — TITM.

Lemma 2.20. The geometric quantization of X is the Z./2-graded vector space
H=T{TM,7*L) ZT (M, °T}; ® L).

The supersymmetry action on the phase space quantizes to an action of the Id A/ = 2
supertranslation algebra on H with

Q1 +Qy = V+ (a+ia) A (—). “)

In addition, it admits an R-symmetry group G g = SO(1, 1) = R* acting as the grading
operator on A®T7,. From (4) we obtain the following.

Proposition 2.21. The A twist of H is given by the twisted de Rham complex
(C'(M, Sym(T),[-1]) ® L), V + (a +ia) A (—)).
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Let us now assume that M has a Kihler structure and the (1, 0) parts of « and a are
closed.

By Proposition 2.18 the phase space X carries an action of the 1d N = 4 supertrans-
lation algebra which gives rise to an action on H given by

QI +Qi=09+B+ia"H A (-)
Q +Q, =3+ (B+ia" A ()

We are now ready to state the main observation of this paper.

Theorem 2.22. Consider the family of twisting supercharges Qn = Q; +Q; +h(Q} +
Q%) parametrized by h € CP'. Then:

e The B twist (h =0) of H is
(Q‘(M; L), 3+ (B+ia"%) A (—)).
o The A twist (h = 1) of H is
(Q°M; L), V+(a+ia)A(-)).
o Let
A =T(M, Sym(Qy;'[-1]) ® Sym(T,;’[1]))

be the dg algebra equipped with the differential 3+ B A (=). The family Qp, provides a
BV quantization of the A-module 'H, where the Poisson bracket on A is the Schouten
bracket.

Proof. The first two claims are clear. Let us now prove the last claim. The family of
twisting supercharges is

Qr=0+B+ia" YA (=) +hO+B+ia"H) A (-)).

As explained in Examples 1.9 and 1.10, 8 viewed as a differential operator on the A-
module H has order 2 with symbol the Schouten bracket. At the same time (8 +ia®!) A
(—) has order 1, so it does not contribute to the symbol. |

Remark 2.23. The BV quantization referenced in the last item of this theorem agrees
with the BV quantization of Example 1.19.

Consider the derived zero locus X = RA™!(0) of the one-form 8. Its derived algebra
of functions is

A =RI(X,0) = T'(M, Sym(Q);'[~1]) ® Sym(T,;’[1]))

equipped with the differential 8 + 8 A (—). As explained in Sect. 1.3, the algebra A
carries a degree 1 Poisson structure given by the Schouten bracket. Define the de Rham
local system £, = (Ox, d +ia'?) on X. The space X admits a canonical square root

det (Lx)% of the canonical bundle given by the canonical bundle of M. Consider the dg
A-module

M = RT(X, det(Ly)? ® L ® Lo)[— dim M] = Q*(M; L)
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equipped with the differential 3 + (8 +ia'"?) A (—)). The main claim of Theorem 2.22
is that the deformation from the B twist to the A twist corresponds to a BV quantization
of the former.

The above observation allows us to give a model of the A twist even when the
base manifold M is infinite-dimensional (for instance, an infinite-dimensional Fréchet
manifold). Indeed, according to Conjecture 1.18 we may model a BV quantization of
X via the cohomology of the perverse sheaf Px on the zero locus f~1(0) = #9(X). The
choice of the orientation data is manifested in the finite-dimensional situation in the
freedom of choosing L.

Proposal 2.24. Let M be an (infinite-dimensional) Kdhler manifold and «, a one-forms
whose (1,0) parts B = a0, a0 are closed. Suppose the zero locus ' (0) = X admits
the structure of a (—1)-shifted symplectic algebraic scheme X (so that to(X) = X)

equipped with an orientation data det(Lx)2. Consider the supersymmetric quantum
mechanics into M twisted by a + ia. Then the space of states in the A twist, for generic
parameters, is

H=RI'(X, Px® L,).

Remark 2.25. Let us explain the caveat regarding generic parameters in the above pro-
posal. By Theorem 2.22 the twist with respect to Qp considered over k[#] is a BV
quantization. By Conjecture 1.18 if we work over k(7)) the BV quantization is isomor-
phic to the cohomology of the perverse sheaf Pyx. But if the BV quantization is defined
over k[h], the vector space for generic 7 (i.e. over k(/)) will have the same dimension
as the k((h))-vector space.

Remark 2.26. We expect that the definition of the perverse sheaf Px may be extended to
the setting of derived complex-analytic geometry, so the choice of the algebraic structure
on X will not matter.

3. Gauged Supersymmetric Mechanics

In this section we recall the coupling of supersymmetric mechanics to gauge theory. We
also write down the action functionals of the corresponding theories.

3.1. N =2 case. Let S be a one-dimensional oriented Riemannian manifold. Let dz be
a positive normalized frame of the cotangent bundle. Consider the following additional
data:

e G is a Lie group equipped with a nondegenerate symmetric bilinear pairing on its
Lie algebra g.

e M is a Riemannian manifold equipped with a G-action by isometries.

e ¢ and a are one-forms on M, which are G-invariant and equivariantly closed: do = 0
and 1z, = O for every x € g, where &, is the vector field given by the infinitesimal
G-action.

e his alocally constant G-invariant function on M.

The G-gauged A/ = 2 supersymmetric mechanics has the following fields:

e A principal G-bundle P — S.
e A connection A on P.
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An odd section n € TIT'(S, ad P).

An odd one-form A € T1Q'(S, ad P).

Sections ¢, & € I'(S, ad P).

A section ¢ of P x9 M — §.

An odd section x of ¢*(P x¢ TM) — S.

An odd section ¥ of ¢*(P x¢ TM) @ T*S — S.

Remark 3.1. For the physically minded reader, the fields (A, n, A, &, ¢) belong to the
N = 2 gauge multiplet and (¢, x, ¥) to the A/ = 2 matter multiplet.

If o is a section of ad P ® A, where A is some bundle on §, then we denote by &
the induced A-valued vector field on P xS M. For instance, when M is a vector space
equipped with a linear orthogonal G-action, then 6 = o - ¢.

The variation of the fields with respect to the A supercharge Q 4 is given by

5¢i =iXi

Sx=¢

86 =1in

on=lg, &1 o . 5)
Syl = —dy¢’ —ir;kxupk —aldr

SA =i\

SA = —dagp

Sp =0

The bosonic part of the action is given by (see e.g. [DF99, Theorems 3.46 and 6.33])
1 1 1 ~
Shosonic = / dvolg (5|dA¢|2+ Sl + [@dag, dad) = S llo, €117 +<¢,s>+¢*h) +i/¢*a (6)
N S

Remark 3.2. Let us explain the meaning of the term |, gdvols ¢*h in the action. The

function h gives a grading operator P, on the Hilbert space of the theory. Let H be
the Hamiltonian operator. Then the addition of the term | gdvols ¢*h to the action

corresponds to deforming the partition function tr (exp(— H )) to tr(exp(— H ) exp(—Pp)).

3.2. N = 4 case. Asin Sect. 2.4, in the case the target manifold is Kihler, the super-
symmetry is enhanced. Consider the following data:

e G is a Lie group equipped with a nondegenerate symmetric bilinear pairing on its

Lie algebra.
e M is a Kihler manifold equipped with a G-action by Kihler isometries with the
moment map p: M — g*, so that du(x) = —iz o for every x € g.

e «, a are real one-forms on M whose (1, 0) parts are G-invariant and equivariantly
closed.
e & is alocally constant G-invariant function on M.

The G-gauged N = 4 supersymmetric mechanics S — M has the following fields:

A principal G-bundle P — S.

A connection A on P.

Odd sections 1, ¢, v € TIT'(S, ad P).
An odd one-form A € TIQ! (S,ad P).
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Table 1. 1d N = 4 fields in a N/ = 2 description

N =2target M x g N = 4 target M
¢ ¢,0

X X,V

14 v, c

An A 9. 8 An A 9. 8

Sections ¢, &, 0 € I'(S, ad P).

A section ¢ of P x6 M — S.

An odd section x of *(P x¢ TM) — S.

An odd section ¥ of ¢*(P x¢ TM) @ T*S — S.

The variation of the fields with respect to the A supercharge Q4 is given by

Sl =iyl

Sx=¢

86 =1in

én =g, §]

8! = —dag’ — il ) Y* — (@ +070ipu(e;))de
SA=1iA @)
do =1iv

SA = —dae

v = [p, o]

6c=—xdpo —

8¢ = 0.

The bosonic part of the action is (see [Bap08, Section 3] for the case @ = 0)
Stosonic = [ avols( 51da0 + 3167+ JIaBP + SIWP + Slal + @ag.dat)
bosomc—SVSzAU 20 2A ZM Za AQ,dA
1 .2 .
_EW’ EIP+(@.6) + (g, o], [S,G])+¢*h) +1/¢*a 3)
N

Remark 3.3. Given the data as above, consider the Riemannian manifold M =M x g.
Given a basis {¢;} of g we denote the corresponding coordinates on the second factor by
o' Then the action (8) of V' = 4 gauged supersymmetric mechanics coincides with the
action (6) of the N' = 2 gauged supersymmetric mechanics into M with the one-form

G=a+)y (uendo’ +o'due)

if we match the fields as in Table 1.

Suppose G acts freely and properly on 1 ~'(0) € M, so that M//G = n~'(0)/G
is a Kihler manifold equipped with a closed (1, 0) form [B]. It is shown in [Hit+87,
Section 6B] that the low-energy approximation to the G-gauged ' = 4 supersymmetric
mechanics S — M described by the action (8) is described by the supersymmetric
mechanics S — M//G.
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Let G¢ D G be a complex Lie group whose Lie algebra is the complexification of
the Lie algebra of G. Moreover, suppose the G-action on M extends to a holomorphic
G c-action on M. We may then identify the Kihler quotient M // G with the GIT quotient
(M/Gc)s, where the stable locus (M /G¢)s C M/ Gc consists of G c-orbits intersecting
" 1(0). Using the previous two observations we introduce the following version of
Proposal 2.24 in the presence of gauge symmetries.

Proposal 3.4. Let G be a Lie group with complexification G¢, M be a Kdhler mani-
fold equipped with a G-structure preserving the Kdihler structure with a moment map
w: M — g* o and a one-forms whose (1, 0) parts B = a"° and a'-° are equivariantly
closed and. Consider the induced one-form [ 8] on the quotient stack M/ G ¢c. Consider a
locally constant function h on M/ G c. Suppose the zero locus [B]~1(0) = X admits the
structure of a (—1)-shifted symplectic algebraic stack X equipped with an orientation

1
data det(ILx)2. Consider the G-gauged N' = 4 supersymmetric quantum mechanics
into M twisted by a +1a. Then the space of states in the A twist, for generic parameters,
is

H=RI'(X, Px® Ly,).

The locally constant function h on X defines a grading on H.

4. Compactification of Principal Bundles

In this short section we collect some results that will be useful for describing compacti-
fications of gauge theories.

4.1. Principal bundles. Let G be a finite-dimensional Lie group, S, N closed manifolds
and consider a principal G-bundle P — S x N.

Definition 4.1. A principal G-bundle P — S x N is trivializable along the fibers of
S x N — Sifitadmits a trivializing cover {U; x N}, where {U;} is an open cover of S.

The space of smooth maps Map(N, G) forms a Fréchet Lie group under pointwise
multiplication. Its Lie algebra is C°°(N; g). One has the following description of prin-
cipal Map(N, G)-bundles.

Proposition 4.2. There is a 1:1 correspondence between isomorphism classes of prin-
cipal G-bundles P — S x N trivializable along the fibers of 1: S x N — S and
isomorphism classes of principal Map(N, G)-bundles Py — S.

Proof. Given a principal Map(N, G)-bundle Py — § consider its pullback 7* Py —
S x N. There is a natural evaluation map Map(N, G) x N — G, so we can induce
the principal Map(N, G)-bundle 7 * Py to a principal G-bundle. If {U;} is a trivializing
cover for Py — S, then {U; x N} is a trivializing cover for P — S x N.

Conversely, suppose P — § x N is a principal G-bundle that is trivializable along
the fibers of 7. Let {U; x N} be the trivializing cover. Then . (P|y,xn) defines a
Map(N, G)-torsor on U;. Gluing these defines a principal Map(N, G)-bundle Py — S.

O

Under the above correspondence we may identify the adjoint bundle ad Py with the
pushforward 7, ad P of the adjoint bundle on S x N.
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4.2. Connections. Let us now discuss connections on principal Map(N, G)-bundles.

Proposition 4.3. Under the correspondence given by Proposition 4.2 a connection on
a principal Map(N, G)-bundle Py — S corresponds to a connection on P — S X N
in the S direction.

Proof. Let {U;} be a trivializing cover for Py — Sand g;;: U;NU; — Map(N, G) the
transition functions. Then a connection on Py is specified by a collection of one-forms
A; € Q! (U;; Map(N, g)) satisfying Adgl,j (d+Aj;) =d+ A;. This data is obviously the
same as a connection on P in the § direction. |

Let Conn‘(‘;iV (N) be the affine space of connections on the trivial G-bundle on N. It
carries an action of Map(N, G) given by gauge transformations.

Proposition 4.4. Under the correspondence given by Proposition 4.2 a Map(N, G)-
equivariant map ¢: Py — ConnltV(N), i.e. a section of Py xM®N-G) ConnIV(N) —
S, is the same as a connection on P — S x N in the N direction.

Proof. Let{U;} be atrivializing cover for Py — Sand g;;: U;NU; — Map(N, G) the
transition functions. A Map(N, G)-equivariant map ¢: Py — Conn‘GUV(N ) is the same
as a collection of maps ¢; : U; — ConntGriV(N) such that g;j¢; = ¢;. Amap ¢;: U; —

Conn‘éiV (N) is the same as a g-valued one-form along the fibers of U; x N — Uj;. This

data is the same as a connection on P — § x N in the N direction. m]
The following statement is proven analogously.

Proposition 4.5. Suppose Ag is a connection on a principal Map(N, G)-bundle Py —
S and ¢ a section of Py xMaPWN.G) ConntGr‘V(N ) corresponding to a connection Ay
on P — S x N in the N direction by Proposition 4.4. Then da¢¢ coincides with the

I'(N x S, Q}V ® Q}g ® ad P) component of the curvature of the connection Ay + Ag on
P— S xN.

5. 2d A-Model

In this section consider the 2d A-model into a hyperKéhler manifold on the interval
with supersymmetric boundary conditions and its compactification to supersymmetric
mechanics.

5.1. 2d o-model. Let (M, g, w, I') be a Kidhler manifold and (X, /4, j) a Riemann sur-
face. We say a one-form ¢ € Q' (, ¢*Ty) is self-dual if

(DY =1v.
A self-dual one-form has components ¢ = v, + ¥_, where
vy € @Yz, ¢ TOY), v e @0z, o T,
The 2d A-model into M has the following fields [Wit88]:

e Amap¢: ¥ — M.
e An odd section y € TIII'(X, ¢*Ty).
e A self-dual odd one-form ¥ € TIQ'(Z, ¢*Ty).
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The supersymmetry transformation is
(S(bi — iXi
Sx'=0 ©
[ a4l i ji
SYT = —9¢" —ixTE v
SY' = —d¢' — IX"F}mW"-

The bosonic part of the action is

1
Shosonic = 3 [ dvols (dg, dg).
X

5.2. Supersymmetric mechanics on the path space. Let Lo, L1 C M be two Lagrangian
submanifolds. Consider the path space

P(Lo, L) ={¢: [0,1] > M | ¢(0) € Lo, ¢(1) € L1},

where the coordinate along [0, 1] will be denoted by s. It has a natural structure of a
Fréchet manifold (see e.g. [Sta05]) such that the tangent space at ¢ € P(Lg, L1) can be
identified with the space

TyP(Lo, L1) = {v € ([0, 11, "Tn1) | v(0) € Ty(0)Lo, v(1) € Ty)Li}-

It has a natural (weak) Riemannian metric defined by

1
(v, w) = / (v(s), w(s))ds.
0

We will also be interested in the closed submanifold ﬁ(Lo, L1) C P(Lg, L1) defined as
P(Lo. L1) = {¢ € P(Lo. L1) | ¢'(0) L Lo, ¢'(1) L Ly},
where the orthogonality is defined with respect to the metric on M. We have T¢§(Lo, L) C

TyP(Lo, L1) defined by the conditions v(0) = v(1) = 0.
The path space P(Lq, L) carries a natural one-form o € QY(P(Lo, L)) defined by

1
LU(X:/ w(v(s), ¢'(s))ds. (10)
0

Itis easy to see thatitis closed. Its primitive, whenever defined, is known as the symplectic
action functional.

Let S be an oriented Riemannian 1-manifold. Let ¥ = S x [0, 1]. Consider the 2d
A-model on ¥ with the boundary conditions

¢(s,0) € Lo

3 (5,0) L Lo

x(s,0) € *Ty,

Vlsxioy € RS, ¢*TL,).

Similar boundary conditions are imposed at the other end of the interval [0, 1].
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Theorem 5.1. The 2d A-model of maps S x [0, 1] — M with the above boundary
conditions is equivalent to the supersymmetric mechanics of maps S — P(Lo, L1),
where P(Lg, L1) is equipped with its natural Riemannian structure and one-form o given
by (10). Under this correspondence the supersymmetry transformation (9) corresponds
to the transformation induced by the A supercharge Q 4 (5).

Proof. Amap ¢: S x [0, 1] — M satisfying the above boundary conditions is the same
asamap ¢: S — P(Lo, L1). A self-dual one-form ¢ € QI(S x [0, 1], *Ty) can be
written as Y = ,dr + I, ds. Therefore, we can match the fields of the 2d A-model on
S x [0, 1] and the supersymmetric mechanics as shown in Table 2.

We have

1
Lo :/ w(s), ¢'(s))ds
0

1
= /0 (W(s), 1/ (s))ds
= — (v, 1959). (1)

Therefore,

1 1
= [ 1100 = [ 16/

since [ is orthogonal. In particular,

1
Shosonic = Ef dV012|d¢|2
b))

1 2 2
=3 dvolg(]3;¢|” + |a|?)
S

which coincides with the bosonic part of the action of the supersymmetric mechanics.
The supersymmetry transformation induced by Q 4 is

(S(Pi — iXi

Syl = —0,¢" — il Yt — o
Syl = —0¢" — i Yt — o
Sx'=0.

Using (11) we get o =i 3S¢’T and o = —i d;¢'. Observing that

B(b? = 8t¢)’T +1i 83-4)7, 5(]51 = 3t¢i —i as¢i

we see that the above supersymmetry transformation coincides with (9). O
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Table 2. Fields in the supersymmetric mechanics and in the 2d A-model

Supersymmetric mechanics 2d A-model
¢ ¢

X X

14 143

5.3. HyperKdhler case. Let us now assume that M has a hyperKéihler structure. We
denote by I, J, K the three complex structures, wy, @y, wg the three Kéhler structures
and Qj, 27, Qg the three holomorphic symplectic structures. Suppose that Lo, L1 C M
are holomorphic Lagrangians with respect to the €2; holomorphic symplectic structure
(these give examples of (B, A, A) branes).

As before, P(Lo, L1) has an induced (weak) Riemannian structure. The complex
structure / induces pointwise a Kéhler structure on P(Lg, L1). We may also consider
the closed one-form 8 € QLO(P(Lg, L)) defined by

1
B(v) = /0 Qs (u(s). & ())ds.

By construction its real part is

1
a(v) =/0 @y (v(s), ¢'(5))ds.

Therefore, by Proposition 2.18 the supersymmetry of the supersymmetric mechanics of
maps S — P(Lg, L) enhances from N/ = 2 to A/ = 4. Let us now assume that (M, I)
has an algebraic structure and L, L1 C M are algebraic subvarieties. The zero locus of
B is the intersection Ly N Ly. It has a natural enhancement to a (—1)-shifted symplectic
scheme Ly xy L1 [Pan+13, Theorem 2.9]. The Proposal 2.24 suggests the following.

Proposal 5.2. Suppose M is a hyperKdhler manifold, so that (M, I, Q1) is an algebraic
symplectic manifold. Suppose Lo, L1 C M are algebraic Lagrangian subvarieties.
Choose square roots of the canonical bundles on L; which determine an orientation
data on the derived intersection Lo X p L. Then the space of states Hom(Lg, L1) in
the 2d A-model into (M, wy), for generic parameters, is

RF(LO m Ll’ PL()XML|)~

Remark 5.3. The above definition was proposed in [BF09,Bra+15]. We refer to [SV19]
for the discussion of the relationship to the usual definition of the Floer homology group.
Note also that the above definition is independent of the choice of the algebraic structure
if we use the perverse sheaf constructed in [Bus14].

Remark 5.4. One may interpret “generic parameters” in the above statement as follows.
Let us consider the 2d A-model into M with the symplectic structure w = (1 + &)w;
and the B-field B = awg for o a non negative number. Then for o« = 0 we recover the
usual 2d A-model into (M, wy). In the limit « — o0 we obtain the 2d B-model into
(M, I) [Kap04]. So, one expects the proposal to be true for large «.

6. 3d A-model

In this section we describe a 3-dimensional analog of the A-model with target given by
a hyperKéhler manifold.
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6.1. 3d o-model. Fix the following data:

e A Lie group G equipped with a homomorphism p: G — SO(3).

e X ahyperKéhler manifold equipped with a G-action by isometries. In addition, we
assume it acts on the sphere of complex structures on X via p.

e M is an oriented Riemannian 3-manifold equipped with a principal G-bundle QO
together with a connection V and an isometric identification

0 x‘R*z=Ql. (12)
Consider the induced bundle
x=0x°x5 m.

The connection V on Q induces a connection on X — M that we denote by the same
letter. Its vertical tangent bundle is

V=0 x°TX.

Since G acts on X by isometries, X — M admits a fiberwise metric. In addition, since G
acts by permuting the complex structures on X, the bundle X — M carries a fiberwise
hyperKihler structure with the associated sphere bundle of complex structures given by
the unit sphere bundle of M using (12). In particular, the action by complex structures
gives a map

a:7*Ql, @R VX — VX.

The 3d A-model has the following fields:

e A section ¢ of X — M.
e A pair of odd sections x, ¢ € [IT'(M, ¢p*V X%).

The bosonic part of the action functional of the 3d A-model is

1
Sposonic = 5/ dvoly (Vo, V)
M

Remark 6.1. This theory may be obtained by topologically twisting the 3-dimensional
supersymmetric o -model into X. The corresponding 4-dimensional version was consid-
ered in [AF94,FKS98].

The covariant derivative gives a section V¢ € I'(M, Q}M ® ¢*VX). Applying the
action map a by complex structures, we get a(V¢) € I'(M, ¢*V X).

Remark 6.2. In local coordinates (x, y, z) on M we have
a(Vp) =1V, +JVyp+ KV, .

The equation a o V¢p = 0 is known as the 3-dimensional Fueter equation, see e.g.
[Wall7].
The supersymmetry transformation is
8¢' =iy
3x'=0 (13)
8y = (Ia(Ve)y' =il x/v*.
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6.2. Twisted hyperKdhler mapping space. Suppose the homomorphism p: G — SO(3)
factors through G — SO(2) < SO(3). Our convention is that G fixes the complex
structures =/ on X and acts on J, K via p.

Let ¥ be a Riemann surface with a complex structure we denote by j. In addi-
tion, suppose P — X is a principal G-bundle with a connection V and an isometric
identification

Px“R*z=Ql.
Consider the space Xy of smooth sections of the bundle
Xx=pPx’x 5 =
As before, this is a bundle of hyperKihler manifolds and there is an action
ax: TEQL @R VEr — VX5
by complex structures. The tangent space at ¢ € Xy may be identified with
TyXs =ZT(Z, 9" VXyx).

There is a (weak) Riemannian metric on X5, defined by integrating the pointwise metric
along X:

(v, w)xy = / dvoly, (v, w), v,we TyXs.
)

The complex structure I on X induces a complex structure on Xy in a similar way.
Define the one-form « on X5, by

Ly = —/ dvoly (v, a(jVe)), (14)
)

where jVs is obtained by acting by the complex structure j on ¥ on the QIE factor of
V.

If we choose a trivialization of P over a coordinate neighborhood (x, y) in X this
one-form becomes

w:/ (= (v, JVyo) + (v, KVig))dxdy
P

= fz (@) (v, Vy) — wk (v, Vxg))dxdy.
The one-form « is the real part of the following holomorphic (1, 0) form §. Let
9 e N(Z, Q%' @r ¢*VEy)
be the (0, 1) part of the covariant derivative. Define § by the formula
Wwh = Zi/Edvolg (v, a(3¢)). (15)

Finally, define the function 4 on Xy by

h:/ w1 (Veh, Vyp)dxdy. (16)
)

The function / is locally constant and computes the symplectic volume of the section
¢ with respect to wj.



62 P. Safronov, B. R. Williams

6.3. Supersymmetric mechanics on the mapping space. Consider the setting as in the
previous sections and take M = § x X for an oriented Riemannian 1-manifold S. Take
Q = S x P with the trivial connection along the § direction.

Theorem 6.3. The 3d A-model of sections X — X x S is equivalent to the supersym-
metric mechanics of maps S — Xx, where X is equipped with its natural Riemannian
structure, one-form a given by (14), and h as in (16). Under this correspondence the
supersymmetry transformation (13) corresponds to the transformation induced by the A
supercharge Q 4 (6).

Proof. A section ¢ of the bundle X = § x Xy — § x X is the same as a map
¢: S —> Xy = Sect(¥, Xyx). Using the identification

(S, ¢*Tyxy) ZT(S x M, $*VX)

we can identify the fermion fields in the 3d A-model with the fermion fields in the
supersymmetric mechanics.
Next, in local coordinates we have

Lo = / ((v, KV,¢) — (v, Jqub))dxdy
=
=, KVid)xy — (v, JVy@)xs.

Therefore, we can expand

1 1
E|o¢|§z = 5/2 (|KVX¢|2+|JVy¢|2)dxdy—/-Z(Jqub, K Vy¢)dxdy
1

= E/E (|Vx¢|2 + |Vy¢|2)dxdy — /z wr(Vxp, Vyp)dxdy,

where in the last line we have used the fact that JK = 1.
This shows that

1
Sbosonic = _/ |d¢|2dV01
2 SxX

1
= E/S(|a,¢|§(Z +|a|§(2)dt+/hdt.

The variation of the field i with respect to the supercharge Q 4 is given by
Sy’ = =o' —iT )y’ — o
=—0,¢' —iTi /Y — KVip' + V¢’
= (Ia(Ve)) —iThx/v'.
This agrees with the supersymmetry transformation in (13) as desired. O

Since « is the real part of a closed (1, 0) form B, we obtain an A/ = 4 supersymmetric
mechanics into Xyx. The zeros of 8 are solutions to

a(@¢) =0,
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i.e.(J—iK)d¢ = 0. Applying J and rearranging terms we obtain the Cauchy—Riemann
equation

dpoj=10de.

In other words, the zeros of 8 are I-holomorphic sections of Xy — X.

Letus now suppose (X, I, 27) admits the structure of a complex symplectic algebraic
variety. Moreover, suppose the complexification G¢ of G and the bundle Pc = P x©
Gc — X are algebraic. Then Xy = Pc x%C X — X is also algebraic. By the results
of [GR18] we obtain a (—1)-shifted symplectic structure on the space Sect(X, Xy ) of
algebraic sections of Xy — X.

Proposal 6.4. Choose an orientation data on Sect(X, Xy). Then the space of states in
the 3d A-model is the cohomology

RI'(Sect(Z, Xx), Psect(z,x5))

of the perverse sheaf Psecy(s, xy)- It admits a grading by the symplectic volume of the
section with respect to wj.

Example 6.5. Consider the case G = U(l) = SO(2) and X = T*Y for a smooth
complex algebraic variety Y. Equip X with a U(1)-action given by scaling the cotangent
fiber. The isomorphism P xY (1)R? = 5212 uniquely determines P, so that PC is the
C*-bundle corresponding to the canonical bundle Ky, — X. In this case

Sect(X, Xx) = T*[—1]Map(Z, ).

The component of the space Map(Z, Y) containing ¢p: ¥ — Y has virtual dimension
dimpgap = / ¢ c1(Y) +dim(¥)(1 — g).
by

Therefore, using Example 1.17 we get that the space of states in the 3d A-model into
T*Y is the shifted Borel-Moore homology

HEM (Map(Z, Y)).

dimpap —e

This answer was previously proposed in [Nak16].

7. GL Twist of the 4d N = 4 Super Yang—Mills Theory

In this section we describe a compactification of the GL twist [Mar95,KWO07] of the 4d
N = 4 super Yang-Mills theory on a 3-manifold.
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7.1. Twisted super Yang—Mills theory. Consider the following data:

e G is a compact Lie group equipped with nondegenerate symmetric bilinear pairing
(—, —) onits Lie algebra.
e A parameter 6 € R.

We may define the 4d A/ = 4 super Yang—Mills theory given the above data. It admits
a twist (known as the GL twist) which allows us to consider the theory on an arbitrary
Riemannian 4-manifold. Let M be a closed oriented Riemannian 4-manifold. The theory
has the following fields:

A principal G-bundle P — M.

A connection A on P.

A one-form ¢ € Q'(M, ad P).

Sections 0,6 € I'(M, ad P).

Odd one-forms v, ¥ € ne! (M, ad P).

Odd two-forms Xi € HQZ(M ,ad P), where x™ is self-dual and x ~ anti self-dual.
Odd sections n, 1 € T1I"'(M, ad P).

There are two commuting supersymmetry transformations Q;, Q,. We will consider
the supercharge Q = uQ; + vQ,, where u, v € R. The supersymmetry transformation
is [KWO07, Formulas (3.27), (3.28)]

8A, = iuy, +iviy,

8y = vy, — iut,

6o =0

86 = iun+ivy

Sx* = u(F = 5[¢p ApD* +v(dadp)*
Sx~ = v(F = 3lp ApD™ —udad)”
én =vdi¢ +ulc, o]

81 = —udj ¢ +v[G, 0]

8 = udpo +v[p, o]

8Y = vdao —ule, ol.

a7

The bosonic part of the action is (see [KWO07, Section 3.4])

1 1 1 ~ _ i0
Sbosonic = / dvoly <5Il",4|2 + E\d’fm\z - 5[0,0]2 +(dac, dao) + (9, 5], [d),a])) a2 f (Fa A Fa).
M T M

(18)

7.2. Supersymmetric mechanics on the space of connections. Let N be a closed oriented
Riemannian 3-manifold, § a closed oriented Riemannian 1-manifold and set M = N x §
with the product metric and orientation. Consider the affine space ConntGr‘é (N) of C*°
connections 4 = A + i¢ on the trivial principal Gc-bundle over N. It is naturally a
weakly Kihler manifold [Cor88] with the Kihler form

w= f (8¢ A xNSA).
N
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Let Gy = Map(N, G) be the Fréchet Lie group of smooth maps N — G. Its Lie algebra
gy = C°°(N; g) carries an invariant symmetric bilinear form

(v, w)y =f dvoly (v(x), w(x)),
N

where on the right we use the pairing on g. The group Gy acts on Conng (N) preserving
the Kihler structure with the moment map

w=da*y .

A principal Gy-bundle Py — S is the same as a principal G-bundle P — N x S
trivializable along the fibers of N x S — S by Proposition 4.2.
There is a Chern—Simons functional

Scszlf ((.A/\d.A)+l(.A/\[A/\.A]))
2 Jy 3

on Connt(r;i(vj (N) which defines a holomorphic function. Its imaginary part is given by

1
tmses = | <<¢> NER) = 2@ A9 A ¢])) .
N
The differential of Scg defines a closed (1, 0) one-form

8Scs = / BANFQ)
N

=/ (aAA (FA - 1[¢A¢J) —8¢AdA¢>
v 2

+i/ <8A/\dA¢+8¢/\ <FA —l[¢/\¢]))
N 2

on ConntGri(V: (N). Define

u? —v?
o = ma Re SCS — uz n 1)2 (SImSCS (]9)
and
© sRes (20)
a=—=36Re .
872 cs
Note that « is the real part of a closed (1, 0)-form
2 2,
us —v°+iuv
p= 55 05cs
us+v

on Conntgé (N) and similarly for a.

Theorem 7.1. The GL twist of the 4d N' = 4 super Yang—Mills theory on N x S is equiv-
alent to the N' = 4 G y-gauged supersymmetric mechanics of maps S — Connté‘z (N).
Under this correspondence the supersymmetry transformation (17) corresponds to the
transformation induced by the A supercharge Q 4 (7).
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Proof. We decompose the one-form fields under the splitting M = N x § as follows:

A A+ Ay, ¢ — ¢+ ¢y, Y= Y+ Yo,

where the first component is a one-form along N and the second component is a one-
form along S. As before, we denote by A = A + i¢ the component of the complexified
connection on P in the N direction; we denote by Ay = Ag + iy the component of the
complexified connection on P in the S direction.

If x is the Hodge star operator on N x S and % is the Hodge star operator on N,
then we have x(df A y) = xyy for any one-form y along N, where df is a one-form of
norm 1 along §. (Anti) self-dual two-forms on M are identified with one-forms y along
N': (anti) self-dual two-forms on N x S are df A y &+ xyy. Therefore, we may write

xE=dt A xE Eavxi (1)

If we match the fields as in Table 3, then the supersymmetry transformations (17)
coincide with (7).
The action (18) becomes

1 1 1 1
Shosonic = / dvoly (5 1FaP + S1d Ao + dag AP + 5 1d5 812 + 5 [daqbol?
M 2 2 2 2

1
+(d% o, d30¢0)§[5, 01 +(daG, dao) + (da,6, dayo)
+ (9,61, 16,01 + (90, 51. [90. 0] )

+— | FaA(dAg+dsA).
822/, (dAg +dayA)

The norm squared of « with respect to the metric on Conn‘Grié (N) is

|a|2=/ dvoly |F 4>
N

Also, observe that
1
; / dvolys (1d.Ag +d gy A2 + (&, % o)
M

1 . .
=3 / dvolyr (1d Ao + dag A + idag [ + [dacho + i, dol1)-
M

Using these identities it is easy to see that the action (18) is equivalent to (8) substi-
tuting the fields using Table 3. O

The zero locus of o on Conntg(vj(N )/Map(N, G¢) coincides with the moduli space
of flat Gc-connections Loc‘cl’;i(vj(N ) on a trivializable G c-bundle. Let us also consider
nontrivial G¢-bundles. Assuming G ¢ is an algebraic group, there is a (—1)-shifted sym-
plectic stack RLocg. (N) parametrizing Gc-local systems (see e.g. [Pan+13]) whose
classical truncation is Locg (N). It follows from [JTU20, Theorem 4.8] and [JU21a]
that RLocg. (V) carries a canonical orientation data (called a spin structure in those pa-
pers). Note that the restriction of a to Locg . (N) is zero, so the twist by £, in Proposal
3.4 disappears.
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Table 3. Fields in the N = 4 gauged supersymmetric mechanics and in the GL twist of the 4d N = 4 super
Yang—Mills theory

Supersymmetric mechanics GL twist
A Ag
_ un+vi
n uZ+v?
c un—un
uZ+v?
v viho — uo
A ur + v
% —(u2 + vz)o
__1 5
§ W22
o %0
¢ A+i¢g
X (u +iv) (¥ —iy)
" () (g —ixy)

uZ+v?

Proposal 7.2. Suppose G¢ is an algebraic group. Then the space of states in the GL
twist on a closed oriented 3-manifold N, for generic parameters, is

RT (LocGc (N), PRLocg. (N))-

The previous complex was considered in [AM?20] where it was called the complexified
instanton Floer homology of N.

8. Haydys—Witten Theory

In this section we describe a compactification of a topological twist of the 5d N = 2
super Yang—Mills theory considered in [Wit12] on a Kéhler surface.

8.1. Twisted super Yang—Mills theory. Consider a compact Lie group G equipped with
anondegenerate symmetric bilinear pairing (—, —) on its Lie algebra. We may define the
5d N = 2 super Yang—Mills theory with a gauge group G. It admits a topological twist
introduced in [Wit12] which allows us to consider the theory on the product M x S of
an oriented Riemann 4-manifold M and an oriented Riemannian 1-manifold S. We call
it the Haydys—Witten twist of the 5d N' = 2 super Yang-Mills theory. The coordinates
along M will have Greek indices and S will have a coordinate 7.

Notation 8.1. For a vector bundle V — M x S we denote by '}, (M x S, V) the space
of V-valued n-forms on M x S along the M direction.

The theory has the following fields:

A principal G-bundle P — M x S.

A connection A on P in the M direction and A in the S direction.
A self-dual two-form B € Q%(M x S, ad P).

Sections 0,6 € I'(M x §, ad P).

Odd one-forms ¥, ¥ € TIQ}, (M x S, ad P).

0dd self-dual two-forms x, ¥ € T1Q3,(M x S, ad P).

Odd sections 1, 7 € TIT'(M x S, ad P).



68 P. Safronov, B. R. Williams

We denote by Fy € Qﬁ,I(M x S, ad P) the curvature of A and by F; € Q}W(M X
S, ad P) the contraction of the curvature of A + Ag with 9;.

Notation 8.2. Suppose X and Y are self-dual two-forms on an oriented Riemannian
4-manifold. Then one can define their cross product to be (see [Witl12, Formula (5.29)]
and [QZ16, Section 2.2])

X X V) = XY, — XinY 1

In the case X, Y are self-dual two-forms valued in a bundle of Lie algebras, their cross
product is symmetric and is given by

1 i L A
(X x Y)/w = E[X,u)u Y, 1- E[Xv)u YM 1.
Remark 8.3. Let N be an oriented Riemannian 3-manifold and consider the product
metric on N x S'. Identify the self-dual two-forms on N x S! with Q}V(N x 1) using

(21). Then the cross product of the self-dual two-forms on N x S is identified with the
cross product X, Y — *(X A Y) of one-forms on N.

The supersymmetry transformation is written in [And13, Section 4] (we take u = 1
and v = 0). Adjusting the conventions slightly ( [And13] works in the Minkowski
signature, while we work in the Euclidean signature), it is

SA, =i,

§Ag = iff

do = —iﬁn

86 =0

SBMY = i)?lw

8n = [0,5] (22)
87 = —+/2dy,&

8¢ = —F +d\B

8Y = —/2ds6

S = —2(Fa)}, + 3 (B X B) +day By
8)?/«)» = _\/i[BK)w 5—]‘

The bosonic part of the action is (see [And13, Formula 5.40])
1 2 1 2 1 Y ~
Sbosonic = dVOlMXS(_|FA| + B+ _(dAB;/,va dsaB"") + (dao,dao)
MxS 2 2 8
1 -
+ 71dag BI? + (dayo, dag)
1 1 1 23)
+ 1¢|B X B’ + (1B, 0], [B,6]) — Jllo, 511

] 1
+ gR|B|2 _ g1e,w,wBWBW’).

Here R is the scalar curvature and R, is the Riemann curvature tensor.
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Consider the Fréchet manifold ConntGriV’J'(M ) parametrizing pairs of a connection A

on the trivial G-bundle P — M together with a self-dual ad P-valued two-form B. It
carries a metric

1
g(8A+8B,8A+<SB)=/ dvolM(SA,SA)+E/ dvoly (6B, 6B).
M M

triv,+

The group Gy = Map(M, G) acts on Conng; " (M) by gauge transformations on A
and by conjugation on B. This action preserves the metric.

Consider a smooth G ys-invariant function f: ConntGriV’J'(M ) — R given by

1
f(A,B) = / dvolyy (—(FA, B) + E(B X B, B)> . (24)
M
Its differential is

a=38f = / dvoly <—(FA, §B) + %(B x B,8B) + (d% B, 8A)) (25)
M

In addition, consider the G ps-invariant function 4 : ConntGriV’Jr(M ) — R given by the

first Pontryagin class

1
hA.B) =5 /M(FA A Fy). (26)

Note that this function is identically zero since we are restricting to connections
on topologically trivial G-bundles, but it has nontrivial values if we include nontrivial
bundles.

Theorem 8.4. The Haydys—Witten twist of the 5d N = 2 super Yang—Mills theory on
M xS is equivalent to the N = 2 Gy-gauged supersymmetric mechanics of maps
S — ConnthV’J'(M ) with a given by (25) and h given by (26). Under this correspondence
the supersymmetry transformation (22) corresponds to the transformation induced by

the A supercharge Q 4 (5).

Proof. We can match the fields in the super Yang—Mills theory and the gauged super-
symmetric mechanics as shown in Table 4. It is then straightforward to check that the
A supersymmetry transformation in gauged supersymmetric mechanics corresponds to
the supersymmetry transformation (22).

Using integration by parts one may compute that

/ dvoly (|dj;B|2 — (F1, B x B))
M
1 v 1 2 1 vo
= dvoly ( —(daB;wdaB"") + —R|B|” — —=Rype B’ B .
M 4 4 4
Moreover,
) 1 ) 1
|F|~dvoly = 5|FA| dvoly, + E(FA A Fy).

Combining these identities it is easy to see that the action (23) coincides with the action
(6) of gauged supersymmetric mechanics. O
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Table 4. Fields in the N’ = 2 gauged supersymmetric mechanics and in the Haydys—Witten twist of the 5d
N = 2 super Yang-Mills theory

Supersymmetric mechanics Haydys—Witten twist
A Ag
n -n
A 7
@ V26
1
3 7°
¢ A, B
X ¥, X
14 ¥, —X

8.2. Kdhler case. Suppose now that M is a Kdhler manifold. We will denote by (—, —)¢
the hermitian extension of the metric on differential forms to complexified differential
forms, by (—, —),, the corresponding symplectic structure and by (—, —) the C-linear
extension of the metric.

In this section we are going to show that the supersymmetry of the compactified

model is enhanced. Consider the Fréchet manifold Conn%tcm’(z’o)(M ) parametrizing

(0, 1) connections A 1 on the trivial G¢-bundle over M together with an ad P-valued
(2,0) form By . It will also be convenient to identify Ap ; with the (0, 1) part of a
connection A on the trivial G-bundle over M. This manifold admits a linear Kéhler
structure associated with the Hermitian metric

(8Ap,1 +6B2y, SAZ)’] + SBé,O)C
= 2/ dvoly (8Ap,1, (3A6 e +/ dvoly (8 B2,o, (SBé 0)C-
M ' M '
Conng’giv’(z’o)(M) admits a holomorphic action by Map(M, G¢) given by a gauge

transformation on A 1 and conjugation on B; (. The following lemma is proven by a
straightforward computation.

Lemma 8.5. For X, Y € Q*%(M) we have
w-(X,Y), = —2Re X xReY.

Using this identity we can see that the subgroup Gy = Map(M, G) C Map(M, G¢)
of compact gauge transformations acts by isometries and admits a moment map

1(Ao,1, B2,0) = —(Fa —Re B g x Re By o) A w. 27)

Consider the holomorphic function W' : Conng’mv’(z’o) (M) — C given by
Gc

W (Ao,1, B2yo) = —2/ dvoly (Faq» B2,0) (23)
M
and its differential

B =W = —2/ dvoly ((SA(),], 0%, Boo) + (Fag,s 332,0)) . (29)
y ,
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Theorem 8.6. Suppose M is a Kéihler surface. The Haydys—Witten twist of the 5d N = 2

super Yang—Mills theory on M x S is equivalent to the N = 4 G y-gauged supersym-
metric mechanics of maps S — Conn%gw’(z’o) (M) with B given by (29) and h given by
(26). Under this correspondence the supersymmetry transformation (22) corresponds to

the transformation induced by the A supercharge Q o (7).

Proof. By Theorem 8.4 the compactification is equivalent to the NV = 2 G-gauged

supersymmetric mechanics of maps S — ConntGriV’+(M ). We may identify self-dual
two-forms on a Kahler manifold as

Q) =X @ QM) - o,
where the map Q>+ (M) — Q20(M) is given by taking the (2, 0) component of a self-

dual two-form and the decomposition on the right-hand side is orthogonal. This allows
us to identify

Conn"™* (M) = Connggiv’(z’o)(M) x Map(M, g)
by sending (A, B) to Ag,1 given by the (0, 1) component of A, B> ¢ given by the (2, 0)

component of B and B,, € Map(M, g) given by the w component of B. Under this
decomposition

f(A,B) =Re W(Ay,1, B2,0)+/ w(Ao,1, B2,0)Bo.
M

The claim then follows from Remark 3.3. O
The critical points of W on ConngG’tcriv’(z’O) (M) are given by
Fay, =0, 320‘1 By =0. (30)

Using the Kéhler identities we may rewrite the last equation as 5/10)1 Byo=0.

Let us now assume M is a projective surface and G is an algebraic group. Then we
may consider the derived algebraic stack RBung. (M) of algebraic G¢-bundles on M
which is quasi-smooth. The shifted cotangent stack T*[—1]RBung. (M) parametrizes
principal G¢-bundles P — M together with an algebraic section B € I'(M,ad P ®
Kum), i.e. solutions of (30). Using Example 1.17 we arrive at the following.

Proposal 8.7. Suppose G¢ is an algebraic group and M a projective surface. Then the
space of states in the Haydys—Witten twist on M is the shifted Borel-Moore homology

BM
Him®RBung,, (1)) —e BUNG (M)
of the moduli stack of Gc-bundles on M. It has a natural grading given by the second

Chern character fM chy(P) of the Gc-bundle P.

9. The Twist of the 7d N = 1 Super Yang—Mills Theory

In this section we describe a compactification of the topological twist of 7d A" = 1 super
Yang—Mills theory on a Calabi—Yau three-fold.
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9.1. Twisted super Yang—Mills theory. Consider a compact Lie group G equipped with
a nondegenerate symmetric bilinear pairing (—, —) on its Lie algebra and consider the
7d N = 1 super Yang-Mills theory with a gauge group G. It admits a topological twist
(see e.g. [AOS97]) which allows us to consider the theory on a G, manifold M.

Notation 9.1. Denote the fundamental 3-form on the G, manifold M by ¢ € Q3(M).

The theory has the following fields:

A principal G-bundle P — M.

A connection A on P.

Three sections o, p, p € I'(M, ad P).

Two odd one-forms v/, x € [IQY (M, ad P).
Odd sections v, n € III'(M, ad P).

The supersymmetry transformation is

A =iy
do =1iv
sp=0
8p =2i
p=2in 31)
én = 5[p. Pl
dx =dap
dv = [o, pl
3 =dpao — x(x@ A Fy).
The bosonic part of the action is
1 1 - - 1 -
Sbosonic =f dvoly <5|FA|2 +51dacl? +dap, dap) + ([0, p1. [0, 1) = 5 Ilp, p1|2>
M
(32)

Remark 9.2. The above formulas are obtained by a dimensional reduction from the for-
mulas in [AOS97, Section 3] which describe the topological twist of the 8-dimensional
super Yang—Mills theory on an §8-manifold with Spin(7)-holonomy.

9.2. Calabi-Yau compactification. Suppose that X is a smooth projective Calabi—Yau
3-fold with a holomorphic volume form 2 € Q3*9(X) and Kihler form wy € Q11 (X).
Our convention is that

dvoly = LRe @ A Ime = X
voly = —Re Q2 AImQ = —=.
X7 6

Let S be a one-dimensional Riemannian manifold and consider the product Riemannian
metric on M = X x §. There is a natural G, structure on X x S with the fundamental
three-form

¢ = Re(Q2) —dt A wy

and the fundamental four-form

2
“X
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Consider the Fréchet manifold ConntGriV(X ) parametrizing connections A on the trivial

G-bundle on X. It admits a Riemannian structure
glv,w) = f dvoly (v, w).
X

The group Gx = Map(X, G) acts on Connt(r;i"(X ) by gauge transformations on A. Its
Lie algebra gx = C*®(X; g) carries an invariant symmetric bilinear form

(v, w)gy = /deolx (v(x), w(x)).

This action preserves the metric.
triv

Conn Y (X) is equipped with a Kihler structure with Kihler form defined by

w(v,w):%/xwiA(vAw).

The Gx action is Hamiltonian with respect to this Kéhler structure. The moment map
is

1
W= §w§ A Fq = (AFy)dvoly.

Consider the holomorphic Chern—Simons functional
i 1
Spes = —1/ QA(AAdA+=(AATA A A]
2 Jx 3

which defines a holomorphic function on Conn‘GriV(X ). (Notice that S,cs depends holo-

morphically on the (0, 1) part of the connection A.) Define the one-form & on Conn‘GriV (X)
by

a:BReShcng Im(Q2) ASA A Fy. (33)
X
Finally, define the smooth function

hz_l/(FAAFA)Aw. (34)
2 Jx

Theorem 9.3. Let X be a Calabi—Yau 3-fold. The topological twist of the 7d N = 1
super Yang—Mills theory on X x S is equivalent to the N = 4 G x-gauged supersym-
metric mechanics of maps S — ConntGr‘V(X ) with « given by (33) and h given by (34).
Under this correspondence the supersymmetry transformation (31) corresponds to the
transformation induced by the A supercharge Q 4 (7).

Proof. We decompose the one-form fields under the splitting M = X x S as follows:
A A+ Ao, Y=Y +vo, X = X+ Xo,

where the first component is a one-form along X and the second component is a one-form
along S. For instance, A is a connection on P in the X direction and A is a connection
on P in the S direction. We may then match the fields as in Table 5.
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The action (32) becomes
1 2, 1 2, 1 2, 1 2
Shosonic = dVOlM(*|FA| + = |dAg +da, Al" + s ldao|” + ~|da,0]
" 2 2 2 2

1
+(dap. dap) + (dayp. dag )+ [y day0) + (Lo pL. [0, 5 = Sl 611).

‘We have
oo 1 2
—|a|* == ImQ A Fa|“dvoly
2 2 Jx
_ 2
1/ Q/\F Q/\F dvol
= - — - — VO
2 x|2 7T TR X
=2/ (Fo,2, F2,0)dvoly
X
and

Ljup? 1/|AF|2d 1
— = - voly.
> 2 2 /s A X
By [ESW20, Corollary 4.3] we have
1 ) 1 1 2
§|FA| dVle-i-E(FAAFA)/\a): 2(F2,(), F(),2)+§(AFA) dvoly.

This shows that the bosonic action agrees with that of the A” = 4 SUSY mechanics (8).

We now show that the reduction of the 7d supersymmetry matches that of the su-
persymmetric mechanics. The variation of the field ¢ in supersymmetric mechanics is
obtained from the variation of the 7d field /9. We read this off as

1
8o = da,0 + 5% (0% A Fa).

(The subscript in %7 is to emphasize that we are using the Hodge operator with respect
to the metric on the 7-manifold X x S.) Using ¢ = —ydt we see this matches with
the supersymmetry in (7). The variation of the field ¥ in supersymmetric mechanics is
obtained from the variation of the 7d field 1. We read this off as

2
59 = dao + %7 (dz ATIM(R) A Fi + %X A (dAg +dA0A)> .

This coincides with the variation in (7). O

We may identify connections A on the trivial G-bundle over X with (0, 1) connec-
tions Ap,1 on the trivial G¢-bundle over X. The action of Map(X, G) extends to an
action of Map(X, G¢) by complexified gauge transformations. The zero locus of & on
Connt(‘;“(X )/Map(X, G¢) coincides with the moduli space Bunt(r;“’(X ) of holomorphic
structures on a trivializable G ¢-bundle. Let us also consider nontrivial G ¢-bundles. If G ¢
is an algebraic group, there is a (—1)-shifted symplectic stack RBung (X) parametriz-
ing algebraic G¢-bundles (see e.g. [Pan+13]). It is shown in [JU21b] that RBung (X)

carries a canonical orientation data for G = SU(n).
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Table 5. Fields in the N' = 4 gauged supersymmetric mechanics and in the twist of the 7d N' = 1 super
Yang—Mills theory

SUSY mechanics 7d theory

exX SV Q> < oS o
Q™D T

Proposal 9.4. Suppose G¢ is an algebraic group. Then the space of states in the topolog-
ical twist of the 7d N' = 1 super Yang—Mills theory on a smooth projective Calabi—Yau
3-fold X is

R (Bung (X), PRBung,.(X))-

It carries a natural grading by the second Chern character fx chy(P) A w of the G-
bundle P.

The previous complex gives the categorified Donaldson—Thomas invariants of X
this definition was introduced in the papers [Bra+15,KL12].
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