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Abstract: We show that a family of topological twists of a supersymmetric mechanics
with a Kähler target exhibits a Batalin–Vilkovisky quantization. Using this observation
we make a general proposal for the Hilbert space of states after a topological twist
in terms of the cohomology of a certain perverse sheaf. We give several examples of
the resulting Hilbert spaces including the categorified Donaldson–Thomas invariants,
Haydys–Witten theory and the 3-dimensional A-model.

Introduction

2d A-model and deformation quantization. Given a symplecticmanifold (M, ω)wemay
consider its deformation quantization, i.e. a deformation of the commutative algebra of
functions C∞(M) to a noncommutative algebra. The existence of such deformation
quantizations was shown by De Wilde–Lecomte [DL83] and Fedosov [Fed94] in the
smooth context, Nest–Tsygan [NT01] and Polesello–Schapira [PS04] in the complex-
analytic context and Bezrukavnikov–Kaledin [BK04] in the algebraic context. Let us
also mention the work of Kontsevich [Kon03] who proves the existence of a deformation
quantization of Poisson manifolds.

For the symplectic manifold (M, ω) we may also consider a two-dimensional TQFT
known as the 2d A-model. Its category of boundary conditions is the Fukaya category of
M and the relationship between the Fukaya category and the category of modules over
the deformation quantization algebra has a long history [BS04,Tsy09].

Let us suppose M is a hyperKähler manifold with complex structures I, J, K , Kähler
structuresωI , ωJ , ωK and holomorphic symplectic structures�I ,�J ,�K . Consider the
real symplectic structure ωJ = Re�I and the B-field B = ωK . In this case the relation-
ship between the Fukaya category and the category of complex-analytic deformation
quantization (DQ) modules on (M,�I ) is expected to be even more tight. Namely,
there are no instanton corrections in the Lagrangian Floer homology with boundary on
I -holomorphic Lagrangians [SV19].
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Aphysical explanationof the relationshipbetween theFukaya categoryof (M, ωJ , B =
ωK ) and the deformation quantization of the complex symplectic manifold (M,�I ) has
the following two ingredients:

• Consider a 2dN = (4, 4) σ -model into M . It has a CP1 × CP1 family of topologi-
cal twists corresponding to the CP1 × CP1 family of generalized complex structures
obtained from the hyperKähler structure on M . One of the topological twists is the 2d
B-model into (M, I )while another topological twist is the 2d A-model into (M, ωJ )

(see [Gua11, Section 4.6] for the formula for the family of generalized complex
structures). The interpolating family of 2d TQFTs provides a noncommutative defor-
mation of the derived category of coherent sheaves of (M, I ) along the holomorphic
Poisson bivector �−1

I [Kap04,Kap05a].
• There is a canonical coisotropic brane Bc.c. in the A-model which is supported
everywhere. As explained in [KW07, Section 11] and [GW09, Section 2.2] the en-
domorphism algebra of Bc.c. provides a deformation quantization of the algebra of
holomorphic functions on (M, I ). In particular, any other brane B gives rise to a DQ
module Hom(Bc.c.,B) over Hom(Bc.c.,Bc.c.).

The above perspective on the 2d A-model of a holomorphic symplectic manifold in
terms of the deformation quantization allows us to make sense of categories of boundary
conditions even when the 2d A-model itself is ill-defined. For example, consider a
topological twist of the 4d N = 4 super Yang–Mills theory known as the GL twist (we
consider the case t = 1,� = 0 in the notation of [KW07]). Let GC be the complexified
gauge group. The compactification of the theory on a Riemann surface � gives the 2d
A-model into the Hitchin moduli space of � with respect to symplectic structure ωK .
In the complex structure I the Hitchin moduli space is given by the cotangent bundle
of the moduli space BunGC(�) of GC-bundles on �. In particular, the category of DQ
modules is the category of D-modulesD(BunGC(�)). Even though the 2d A-model into
the Hitchin moduli space is ill-defined (as the space is stacky and singular), the category
of D-modules is well-defined.

As another example, one may consider a topological twist of the 6dN = (1, 1) super
Yang–Mills theory. The compactification of the theory on a hyperKähler 4-manifold X
gives the 2d A-model into the moduli space BunGC(X) of GC-bundles on X which is
a holomorphic symplectic stack. As before, the ill-defined 2d A-model may be defined
rigorously in terms of DQ modules on BunGC(X).

1d A-model and BV quantization. The goal of the present paper is to develop an analo-
gous picture by replacing the 2dA-model into a hyperKählermanifold by the 1dA-model
(a topological twist of supersymmetric mechanics) into a Kähler manifold equippedwith
a holomorphic superpotential. The procedure of deformation quantization of a symplec-
tic manifold gets replaced with the procedure of Batalin–Vilkovisky quantization of a
(−1)-shifted symplectic manifold which we briefly recall now.

Let A be a graded commutative Poisson algebra with the Poisson bracket of degree
1 (a P0 algebra). A BV operator is a second order differential operator � on A with
symbol the Poisson bracket and which is square-zero. A BV operator allows one to
deform the differential d on A to a square-zero differential d + ��. This is parallel
to the fact that in the usual deformation quantization the Poisson bracket controls the
first-order deformation of the multiplication. We refer to Sect. 1 for more details on BV
quantization.
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QB( = 0)

QA

Fig. 1. The CP1 family of twists Q�. At the special point � = 0 is the B-twist Q B . Generically we obtain an
A twist Q A

Consider a Kähler manifold M equipped with a closed (1, 0) form β. For instance,
β = ∂W for a holomorphic superpotential W : M → C. In this case the supersymmetric
mechanics into M admits N = 4 supersymmetry. As in the 2-dimensional case, there
is a CP1 × CP1-family of topological twists. In particular, there is a CP1 family Q� of
supersymmetric twists interpolating between a “B twist” for � = 0 and an “A twist” for
� = 1 (see Fig. 1).

The Hilbert space in the B twist admits an explicit description in terms of (derived)
functions on the zero locusβ−1(0)ofβ (more precisely, one has to consider half-densities
on the zero locus). This algebra can be explicitly presented via a Koszul complex. From
this presentation it is easy to see that it admits a Poisson bracket of degree 1 given by
the Schouten bracket. Our main observation (see Theorem 2.22) is that the family Q�

provides a BV quantization of the zero locus β−1(0).
This observation is useful to provide a mathematically rigorous definition of the

Hilbert space in theA twist. For instance, it is often the case that one is forced toworkwith
a potential on an infinite-dimensional manifold, so making sense of a Morse–Novikov
complex requires hard analysis (for instance, to show that the differential squares to
zero). In contrast, the critical locus is often finite-dimensional.

BV quantization and critical cohomology. Our next observation is that one can in
fact provide a topological model of the BV quantization. Namely, the works [Bra+15,
Ben+15] have defined for any (−1)-shifted symplectic stack X equipped with an orien-

tation data, i.e. the choice of a square root of the canonical bundle det(LX)
1
2 , a perverse

sheaf PX on the underlying classical stack t0(X). It is expected (see Conjecture 1.18) that
the cohomology of this perverse sheaf gives a model of the BV quantization. Note that
the (twisted) BV quantization of (−1)-shifted symplectic stacks has been constructed
in [Pri19].

Let us give an example of the above. Consider a function f : U → A1 on a smooth
affine variety and let X = dCrit( f ) be the derived critical locus of f . It carries a (−1)-
shifted symplectic scheme. It has a canonical twisted BV quantization given by the
twisted de Rham complex, i.e. the complex of differential forms DR(U )((�)) equipped
with the differential �d + (d f ) ∧ (−). As explained in [SS14] it is isomorphic to the
cohomology of the sheaf of vanishing cycles of f which is exactly what the perverse
sheaf PX is in this case.
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The cohomology of the perverse sheaf PX has been used to define cohomological Hall
algebras of quivers with potentials [KS11], categorified Donaldson–Thomas invariants
[Ben+15] and complexified Floer homology [AM20].

As another example, consider a quasi-smooth derived schemeX, so that its underlying
scheme X = t0(X) is a local complete intersection. If X is not smooth, the shifted
dualizing complex ωX [− dimX] is not perverse. However, one can define the scheme of
singularities Sing(X) = t0(T∗[−1]X) π−→ X and the perverse sheaf PT∗[−1]X on Sing(X)

is such that π∗ PT∗[−1]X ∼= ωX [− dimX] (see [Kin21]).

Examples. We provide many examples where the above ideas give a mathematically
rigorous proposal for the space of states in a physical TQFT. In each case we perform
the following:

(1) Compute a compactification of a d-dimensional TQFT on a (d − 1)-manifold and
rewrite it in terms of (gauged) supersymmetric mechanics for some closed (1, 0)-
formβ on an infinite-dimensionalKählermanifold M (equippedwith aHamiltonian
action).

(2) Present β−1(0) as a finite-dimensional (−1)-shifted symplectic stack X.
(3) Define the space of states to be the cohomology of the perverse sheaf PX.

We observe that in several examples there is a natural grading operator on the space
of states manifested in an extra term in the action which is responsible for a “categori-
fication” of the corresponding dimensionally reduced theory:

• The grading in the space of states of the 3d A-model categorifying the Novikov
parameter q of the 2d A-model.

• The grading in the space of states in the Haydys–Witten TQFT categorifying the
instanton counting parameter q of theGL twisted 4dN = 4 super Yang–Mills theory.

Let us list the examples of how these proposals work:

• 2d A-model. Consider a hyperKähler manifold M together with two I -holomorphic
Lagrangians L0, L1. The derived intersection L0×M L1 admits a natural (−1)-shifted
symplectic structure [Pan+13]. The space of states in the 2d A-model into (M, ωJ )

compactified on the interval with boundary conditions specified by the Lagrangians
L0, L1 is proposed to be the cohomology

R�(L0 ∩ L1, PL0×M L1).

This complex was proposed in [Bra+15,Bus14] as an algebraic model for the Hom
spaces in the Fukaya category of a holomorphic symplectic manifold.

• 3d A-model. Consider a hyperKähler manifold X equipped with an isometric U(1)-
action rotating the complex structures with fixed points ±I and acting on �I with
weight n �= 0. The 3d N = 4 supersymmetric σ -model into X admits a topological
twist which gives rise to a 3d TQFT known as the 3d A-model. In the case X is a
quaternionic vector space (possibly with an action of a group), this theory has been
studied recently in [KV10,BDG17,Dim+20,Nak16] in relation toCoulombbranches.
Also, in [BFK21] a similar result for the Hilbert space of states was found with an
additional discussion of mixed Hodge structures, which we do not address here.
For a Riemann surface �, the space of sections Sect(�,X�) of the bundle of hy-
perKähler manifolds X� = K 1/n

� ×C×
X over � admits a (−1)-shifted symplectic
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structure [GR18]. The space of states in the 3d A-model on � is proposed to be the
cohomology

R�(Sect(�,X�), PSect(�,X�)).

It admits a grading given by the symplectic volume of the section with respect to ωI .
In the case X = T∗Y , we simply get the Borel–Moore homology

HBM• (Map(�, Y ))

of the moduli space of I -holomorphic maps, an answer proposed in [Nak16].
• GL twist of the 4d N = 4 super Yang–Mills theory. The 4dN = 4 super Yang–
Mills theory admits a topological twist, the GL twist, studied in [KW07]. It gives rise
to a family of 4d TQFTs parametrized by � ∈ CP1. Let GC be the complexified
gauge group. The derived moduli space RLocGC(M) of GC local systems on a 3-
manifold M is a (−1)-shifted symplectic stack. The space of states in the GL twist
on M for generic � is proposed to be the cohomology

R�(LocGC(M), PRLocGC (M))

of the perverse sheaf. This may be viewed as a complexified analog of the instanton
Floer homology (which gives the space of states in the topologically twisted 4d
N = 2 super Yang–Mills theory) and was introduced in [AM20].

• Haydys–Witten twist of the 5d N = 2 super Yang–Mills theory. The 5dN = 2
super Yang–Mills theory admits a topological twist, the Haydys–Witten twist, studied
in [Wit12]. Consider the moduli stack BunGC(M) of principal GC-bundles on a
complex projective surface M . The space of states in the Haydys–Witten twist on M
is proposed to be the Borel–Moore homology

HBM• (BunGC(M))

of the moduli stack of GC-bundles. It admits a grading given by the second Chern
character

∫
M ch2(P) of the GC-bundle.

• Topological twist of the 7dN = 1 super Yang–Mills theory. The 7dN = 1 super
Yang–Mills theory admits a topological twist on G2 manifolds [AOS97]. Consider
the derived moduli stack RBunGC(X) of GC-bundles on a projective Calabi-Yau
3-fold X . It admits a natural (−1)-shifted symplectic structure [Pan+13]. The space
of states in the topological twist on X is proposed to be the cohomology

R�(BunGC(X), PRBunGC (X))

of the perverse sheaf on the moduli stack of GC-bundles. It admits a natural grading
by the second Chern character

∫
X ch2(P) ∧ ω of the GC-bundle.

We remark on a ‘chiralization’ of the model for BV quantization that we have just
proposed. From the point of view of 2dN = (2, 2) supersymmetry, the A-model sits in
a CP1-family of twists which at the special point 0 ∈ CP1 is not a topological twist but
a holomorphic one—this is the so-called half-twist [Kap05b]. To the data of a Kähler
manifold M equipped with a closed (1, 0)-form β one can consider the 2d N = (2, 2)
supersymmetric σ -model into M . The half-twist produces the holomorphic σ -model
into the derived zero locus β−1(0). The Hilbert space is equipped with a chiral version
of a shifted Poisson bracket and the CP1-family exhibits a chiral BV quantization. Upon
applying the Zhu algebra construction this recovers the situation above.
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Organization of the paper. The paper is organized as follows. In Sect. 1 we recall the
notion of Batalin–Vilkovisky quantization. We present the BV quantization of odd sym-
plectic manifolds and (−1)-shifted symplectic stacks in parallel to emphasize the simi-
larities and differences. For instance, for odd symplectic manifolds there is a canonical
line of semidensities which admits a canonical BV operator. In the case of (−1)-shifted
symplectic stacks the square root of the canonical bundle might not exist and, even if
it exists, is not canonical: it is the orientation data. We also conjecture a relationship
between the BV quantization and the sheaf of vanishing cycles (Conjecture 1.18) and
describe the latter sheaf in some examples.

In Sect. 2we describeN = 2 supersymmetricmechanics into aRiemannianmanifold
equipped with a potential (or a closed one-form α). In this section we work on the level
of phase spaces and explicitly write down the Hamiltonians for the supersymmetry
action. We also show that if the target is Kähler and the one-form α is the real part
of a closed (1, 0) form β, the supersymmetry is enhanced to N = 4. By considering a
geometric quantization of the phase spacewe arrive at a description of theHilbert space of
supersymmetric mechanics. In theN = 4 case we describe a family of superchargesQ�

interpolating between the B and the A twist and show that it provides a BV quantization
of the B twist (see Theorem 2.22). This allows us to formulate a precise proposal for
the space of states in the A twist in terms of the cohomology of the perverse sheaf (see
Proposal 2.24).

In Sect. 3 we describe a gauged version of supersymmetric mechanics and we write
down the bosonic actions for both theN = 2 andN = 4 versions. We also formulate a
precise proposal for the space of states in theA twist in the presence of gauge symmetries
(see Proposal 3.4).

In Sect. 4 we present several results about principal bundles on product manifolds
and principal bundles for groups Map(N ,G). These are used in the future sections
when we describe compactifications of G-gauge theories and rewrite them in terms of
Map(N ,G)-gauged mechanics.

Finally, in Sects. 5 to 9 we present the main applications of these ideas which allow
us to give a mathematically rigorous definition of the spaces of states in 2d A-model, 3d
A-model, the GL twist of the 4d N = 4 super Yang–Mills theory, the Haydys–Witten
twist of the 5d N = 2 super Yang–Mills theory and the topological twist of the 7d
N = 1 super Yang–Mills theory.

1. Batalin–Vilkovisky Quantization

Throughout we fix a field k. In this section we recall some results on Batalin–Vilkovisky
quantization for odd symplectic supermanifolds and (−1)-shifted symplectic schemes.

1.1. Supermanifolds. Let V be a super k-vector space equipped with an odd symplectic
structure ω. Consider the Z/2-graded complex ∧•(V ∗) with the differential ω ∧ (−).
As shown in [Man97, Section 3.7] and [Šev06], the cohomology of ∧•(V ∗) is one-
dimensional and concentrated in a single degree.

Definition 1.1. Let (V, ω) be an odd symplectic super vector space. The line of semi-
densities of V is Ber

1
2 (V ) = H•(∧•(V ∗), ω ∧ (−)).

The following is a reformulation of [Man97, Proposition 3.7].
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Definition 1.2. Let W be a super vector space. The Berezinian line of W is Ber(W ) =
Ber

1
2 (
T∗W ).

The following is shown in [Šev06].

Lemma 1.3. Let (V, ω) be an odd symplectic super vector space. Then there is a canon-

ical isomorphism of lines (Ber
1
2 (V ))⊗2 ∼= Ber(V ).

The above definitions translate to the global context. Recall the notion of a real or
complex supermanifold as in [Man97, Chapter 4]. For any supermanifold X the super-
manifold 
T∗X admits a canonical odd symplectic structure. We may thus define the
Berezinian line bundle BerX → X. If (X, ω) itself is an odd symplectic supermanifold,

the Berezinian admits a canonical square root Ber
1
2
X → X given by the line bundle of

semidensities.

1.2. BV operators.

Definition 1.4. Let A be a commutative k-algebra and M an A-module. The subspace
D≤k(M) ⊂ Endk(M) of differential operators of order k is defined inductively by
declaring D≤0(M) = EndA(M) and D ∈ D≤k(M) if, and only if, [D, f ] ∈ D≤(k−1)(M)

for every f ∈ A. The algebra D(M) of differential operators is the union D(M) =⋃
k D

≤k(M).

Given a differential operator D ∈ D≤k(M) of order k, we may define its symbol
σ(D) : Symk

A(�
1
A) ⊗A M → M . We will not need a general definition and will only

use the case of second order differential operators.

Definition 1.5. Let A be a Z-graded commutative algebra with a Poisson bracket {−,−}
of degree 1 and M is a graded A-module. A Batalin–Vilkovisky (BV) operator on M is
a degree 1 square-zero k-linear endomorphism � : M → M satisfying

�( f gm) = �( f )gm + (−1)| f | f �(g)m − (−1)| f |+|g| f g�(m) + { f, g}m.

In otherwords, aBVoperator on M is a degree 1 square-zero second-order differential
operator on M whose symbol is given by the Poisson bracket. The same definition works
for Z/2-graded algebras and modules.

For an odd symplectic supermanifold (X, ω), the algebra of smooth functionsC∞(X)

carries a canonical odd Poisson bracket. The following is shown in [Khu04,Šev06].

Proposition 1.6. Let (X, ω) be an odd symplectic supermanifold. There is a canonical

BV operator � on C∞(X;Ber
1
2
X).

1.3. BV quantization. The followingdefinition is a versionof [CG18,Definition2.4.1.1].

Definition 1.7. Let (A, dA)be adifferential graded commutative algebra equipped equipped
with a d-closed Poisson bracket of degree 1 and (M, dM ) a differential graded A-module.
A Batalin–Vilkovisky (BV) quantization of M is a degree 1 square-zero k[[�]]-linear
differential operator �� = dM +

∑∞
n=1�

(n)
�

n on M[[�]] satisfying the following con-
ditions:

• �(1) has order 2 and symbol the Poisson bracket on A.
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• �(n) for n ≥ 2 has order n.

The following example explains a relationship between BV quantizations and BV
operators.

Example 1.8. Let A be a graded commutative algebra equipped with a degree 1 Poisson
bracket and M a graded A-module equipped with a BV operator �. Then �� = �� is
a BV quantization of M .

Definition 1.7 can be generalized to the homotopical context where we consider
commutative dg algebras equippedwith a homotopyP0-structure (i.e. a degree 1 Poisson
bracket satisfying the Jacobi identity up to coherent homotopy), see [Pri19, Definition
1.12]. In this definition we require�(n) to have order n + 1 such that the total symbol of
�� recovers the homotopy P0-structure on A.

Let us describe two examples relevant for the future sections.

Example 1.9. Let X be a smoothmanifold and consider the graded commutative algebra

A = �(X,Sym(TX [1]))
of polyvector fields. The Schouten bracket endows it with a degree 1 Poisson bracket.
There is a natural A-module structure on the space of differential forms

M = �(X,Sym(T∗
X [−1]))

given by contraction. Then the de Rham differential on M is a second-order differential
operator with symbol the Schouten bracket [Wit90]. In other words, it provides a BV
quantization of the A-module M .

Example 1.10. Let X be a complex manifold and consider the graded commutative al-
gebra

A = �(X,Sym(�
0,1
X [−1]) ⊗ Sym(T1,0

X [1]))
equippedwith the differential ∂ . As before, the Schouten bracket gives a degree 1 Poisson
bracket on A. Consider the A-module

M = �(X,Sym(�
0,1
X [−1]) ⊗ Sym(�

1,0
X [−1]))

of differential forms. Then ∂ + �∂ provides a BV quantization of M .

1.4. BV quantization of shifted symplectic stacks. Let us now explain the notion of
BV quantization of shifted symplectic stacks. Recall that [Pan+13] have introduced the
notion of a (−1)-shifted symplectic stack, i.e. a derived Artin stack X equipped with a
(homotopy) symplectic structure ω of degree (−1). The following is [Cal+17, Theorem
3.2.4] and [Pri17, Theorem 3.33].

Proposition 1.11. Let X be a (−1)-shifted symplectic stack. Then there is a canonical
homotopy P0 structure on the commutative dg algebra of global functions R�(X,O).

In particular, for any line bundle L on a (−1)-shifted symplectic stack X we may
define a BV quantization of L using Definition 1.7 applied to the R�(X,O)-module
R�(X,L).

Let us recall that any (−1)-shifted symplectic schemeX is quasi-smooth; in particular,
Gorenstein. In other words, the dualizing sheaf ωX is a line bundle. The following result
follows from [Pri19, Proposition 4.6].
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Proposition 1.12. Let X be a (−1)-shifted symplectic scheme equipped with a square

root ω
1
2
X of the dualizing sheaf. Then there is a canonical BV quantization of ω

1
2
X .

Remark 1.13. As opposed to the case of odd symplectic supermanifolds, (−1)-shifted

symplectic schemes do not have a canonical choice of the square root ω
1
2
X . Apart from

this difference, Proposition 1.12 is an analog of Proposition 1.6 in the setting of shifted
symplectic schemes.

1.5. Perverse sheaf on shifted symplectic stacks. Recall that for a (−1)-shifted sym-
plectic scheme X the dualizing sheaf ωX is a line bundle. In fact, by [Hal15, Lemma 3.7]
one has ωX ∼= det(LX), the determinant of the cotangent complex of X. A (−1)-shifted
symplectic Artin stackX is no longer quasi-smooth. Nevertheless, it turns out the correct
replacement for the dualizing complex ωX is the canonical bundle, i.e. the determinant
of the cotangent complex det(LX). The following notion was introduced in [Ben+15].

Definition 1.14. Let (X, ω) be a (−1)-shifted symplectic Artin stack. An orientation
data on X is the choice of a square root det(LX)

1
2 .

The orientation data was used in [Ben+15, Theorem 1.3] to construct a canonical
perverse sheaf associated to a (−1)-shifted symplectic stack.

Proposition 1.15. Let (X, ω) be a (−1)-shifted symplectic Artin stack equipped with an
orientation data. Then there is a canonical perverse sheaf PX of k-vector spaces on the
underlying classical stack t0(X).

Example 1.16. Let M be a smooth complex algebraic symplectic variety and L0, L1 ⊂
M two smooth algebraic Lagrangains. Then the derived intersection X = L0 ×M L1
carries a natural (−1)-shifted symplectic structure [Pan+13]. Square roots of canonical
bundles on Li give rise to an orientation data on X. In this case the perverse sheaf on
t0(X) = L0 ∩ L1 has been constructed in [Bus14] without an appeal to derived algebraic
geometry. Moreover, it was constructed for complex analytic varieties, i.e. the choice of
the algebraic structure in this case is irrelevant.

Example 1.17. Let X be a quasi-smooth derived Artin stack. Then T∗[−1]X is a (−1)-
shifted symplectic stack equipped with a canonical orientation data. The underlying
classical stack t0(T∗[−1]X) is known as the stack of singularities of X (see [AG15,
Section 8]). By [Kin21, Theorem 4.14] we have

H•(t0(T∗[−1]X), PT∗[−1]X) ∼= HBM
dim(X)−•(t0(X)),

where on the right we consider the (shifted) Borel–Moore homology of the underlying
classical stack t0(X).

We may now formulate a conjecture relating the perverse sheaf PX and BV quanti-
zation.

Conjecture 1.18. Let (X, ω) be a (−1)-shifted symplectic Artin stack equipped with an

orientation data det(LX)
1
2 . There is a canonical BV quantization �� of det(LX)

1
2 and

a quasi-isomorphism

R�(t0(X), PX)((�)) ∼= (R�(X, det(LX)
1
2 )((�)),��)

of chain complexes of k((�))-vector spaces.
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Example 1.19. Let U be a smooth affine variety and f : U → A1 a function. Consider
the derived critical locus X = dCrit( f ) of the function f (see [Vez20] for what this
means). It carries a natural (−1)-shifted symplectic structure. Let π : X → U be the
natural projection. We have a fiber sequence

π∗T∗
U −→ LX −→ LX/U

∼= π∗TU [1].

Taking the determinant, we obtain an isomorphism det(LX) ∼= π∗ det(T∗
U )⊗2. In partic-

ular, π∗ det(T∗
U ) provides an orientation data on X. We may identify

R�(X, π∗ det(T∗
U )) ∼= (�(U,Sym(T∗

U [−1]))[dimU ], d f ∧ (−)).

In this case

�� = d f ∧ (−) + �d

provides a BV quantization known as the twisted de Rham complex of (U, f ). The
above conjecture in this case has been proven in [Pri19, Proposition 4.9].

Remark 1.20. In the future sections we will encounter situations where the space is
obtained as a critical locus of a function on an infinite-dimensional space. In this case
there is no canonical orientation data. The cohomology R�(t0(X), PX) will then be a
replacement for the ill-defined BV quantization.

2. Supersymmetric Mechanics

2.1. Supersymmetry algebras. In this sectionwe recall some facts about supersymmetry
algebras that we will use. We refer to [DF99] for more details.

Definition 2.1. Let W be a real vector space equipped with a nondegenerate symmetric
bilinear pairing (−,−). The 1d supertranslation algebra gW is the real super Lie algebra
g = 
W ⊕ R · H with the relations

[H, Q] = 0

[Q1, Q2] = (Q1, Q2)H

for every Q1, Q2, Q ∈ W .

We will be interested in the following two examples.

Example 2.2. Consider W the two-dimensional real vector space with a metric of signa-
ture (1, 1). The corresponding super Lie algebra is known as the 1d N = 2 supertrans-
lation algebra. It has odd generators Q1, Q2 and an even central generator H with the
relations

[Q1, Q1] = H

[Q2, Q2] = −H

[Q1, Q2] = 0.
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Example 2.3. Consider W the four-dimensional real vector space with a metric of sig-
nature (2, 2). The corresponding super Lie algebra is known as the 1d N = 4 super-
translation algebra. Its complexification has odd generators Q±

1 , Q±
2 and a central even

generator H with the nontrivial brackets

[Q+
1, Q−

1 ] = 1

2
H

[Q+
2, Q−

2 ] = −1

2
H

The real structure is given on the generators by (Q±
α )

∗ = Q∓
α (α = 1, 2) and H∗ = H .

Remark 2.4. In both casesN refers to the dimension of the odd part. Since we are talking
about the real supertranslation algebras, one needs in addition to fix the signature of the
metric on W , which is implicit in the notation.

Remark 2.5. There is an embedding of the 1d N = 2 supertranslation aglebra into
the 1d N = 4 supertranslation algebra given by the formulas Q1 = Q+

1 + Q−
1 and

Q2 = Q+
2 + Q−

2 .

Observe that O(W ) acts on the 1d supertranslation algebra gW by outer automor-
phisms.

Definition 2.6. Let V be a (real or complex) Z/2-graded representation of the 1d su-
pertranslation algebra gW . In addition, suppose V carries an action of a subgroup
G R ⊂ O(W ) compatible with the action of gW . We say G R is the R-symmetry group
of the representation. When V is a complex gW -representation, we assume that the
G R-action extends to an action of the complexification G R,C.

Definition 2.7. A real (complex) twisting supercharge Q ∈ gW (Q ∈ gW ⊗R C) is a
nonzero odd square-zero element. Given a real (complex) gW -representation V with R-
symmetry groupG R , the grading of Q is a choice of a subgroupR× ⊂ G R (C× ⊂ G R,C)
satisfying the following properties:

• The induced Z/2-grading on gW coincides with the original Z/2-grading.
• With respect to the induced Z-grading Q has weight 1.

We are now ready to define the notion of twisting of gW -representations.

Definition 2.8. Let V be a real (complex) gW -representation with R-symmetry group
G R . Suppose Q is a real (complex) twisting supercharge equipped with a grading. The
twist of V is the Z-graded complex whose underlying graded vector space is V and
differential is Q.

As we will only discuss the N = 2 and N = 4 supertranslation algebras, let us
explicitly describe the collection of square-zero supercharges in these algebras.

Proposition 2.9. The set of equivalence classes of square-zero supercharges up to scale
in the 1d supertranslation algebra gW is the set of null lines in W .

• The set of real square-zero supercharges up to scale in the 1d N = 2 supertransla-
tion algebra consists of two points Q1 + Q2 and Q1 − Q2.
• The set of complex square-zero supercharges up to scale in the 1d N = 4 super-
translation algebra is CP1×CP1. Using the homogeneous coordinates [a : b], [c : d]
of CP1 × CP1 they are given by

bd Q+
1 + acQ−

1 + ad Q+
2 + cbQ−

2 .
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Proof. The first two claims are obvious. For the last claim, the square-zero supercharges
up to scale are given by a smooth quadric in CP3. But it is well-known that it is given
by the Segre embedding CP1 × CP1 ⊂ CP3 described above. ��
Definition 2.10. The element Q A = Q1 + Q2 of the 1dN = 2 supertranslation algebra
is the A twisting supercharge. The embedding R× ⊂ G R = O(1, 1) endows it with a
grading. Given a representation of the 1d N = 2 supertranslation algebra, its A twist is
the twist with respect to Q A.

Definition 2.11. The element Q B = Q−
1 +Q−

2 of the 1dN = 4 supertranslation algebra
is the B twisting supercharge. The embedding R× ⊂ O(1, 1) ⊂ G R = O(2, 2) endows
it with a grading. Given a representation of the 1d N = 4 supertranslation algebra, its
B twist is the twist with respect to Q B .

Using the embedding of the 1d N = 2 supertranslation algebra into the 1d N = 4
supertranslation algebra provided by Remark 2.5 we will also talk about the A twist of
a representation of a 1d N = 4 supertranslation algebra.

2.2. Symplectic supermanifolds. The phase space of a supersymmetric mechanical sys-
tem is described by a symplectic supermanifold (herewe are considering even symplectic
structures on supermanifolds). It turns out that there is a down-to-earth description of
symplectic supermanifolds in terms of ordinary (non-super) geometry that we briefly
recollect. For more details we refer to [Rot91].

Recall that every supermanifold is (non-canonically) equivalent to the total space
of a Z/2-graded vector bundle over an ordinary manifold. Similarly, any symplectic
supermanifold is equivalent to one which is in a certain standardized form.

To describe this standardized form, fix a tuple of data (X, ω0, V, g,∇) where

• X is an ordinary symplectic manifold with symplectic form ω0 ∈ �2(X), and
• V is a vector bundle on X equipped with a metric g and a connection ∇ which
preserves g.

This data determines a symplectic structureω on the supermanifold given by the total
space of the bundle 
V over X

X = Tot(
V )

which we can describe as follows. Let

R ∈ �2(X;End(V))
the curvature of the connection ∇ and define

R ∈ �2(X; ∧2V∗)

to be the contraction of R with themetric g. In local coordinates one has Ri jab = gbc Rc
i ja

where {Rc
i ja} are the components of the curvature R.

There is a short exact sequence of C∞
X -modules

0 −→ (∧•V∗) ⊗ V −→ Vect(X) −→ (∧•V∗) ⊗ Vect(X) −→ 0

The connection on V defines a splitting of this short exact sequence and hence determines
an isomorphism of C∞

X -modules Vect(X) ∼=∇ (∧V∗) ⊗ (V ⊕ Vect(X)).
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Using this splitting, one defines the following two-form ω on the supermanifold X
by the formulas:

ω(μ, ν) = ω0(μ, ν) + 1
2R(μ, ν) for μ, ν ∈ Vect(X)

ω(φ,ψ) = g(φ,ψ) for φ,ψ ∈ V
ω(φ,μ) = 0.

(1)

The main result of [Rot91] can be summarized in the following way.

Theorem 2.12. Let (X, ω0, V, g,∇) be the tuple of data as defined above. The two-
form ω defined in (1) is an even symplectic form on the supermanifold X = Tot(
V ).
Moreover, any symplectic supermanifold is equivalent to one of this form.

2.3. Supersymmetric mechanics. In this section we introduce the phase space of super-
symmetric classical mechanics as in [Wit82].

We fix the following data:

• A Riemannian manifold (M, g).
• A pair of closed one-forms α, a ∈ �1(M).

Notation 2.13. In this section ∇ denotes the Levi–Civita connection with respect to the
metric g and R denotes the curvature tensor.

Definition 2.14. The phase space of supersymmetric mechanics is the supermanifold

X def= Tot
(

(π∗TM ⊕ π∗TM )

)
(2)

where π : T∗M → M is the projection.

The graded ring of functions on X is

C∞(X) = �(M,Sym(TM ) ⊗ ∧•(T∗
M ⊕ T∗

M )).

Corollary 2.15. By Theorem 2.12 the tuple of data

(X, ω0, V, g,∇) = (T∗M, ωstd, π
∗(TM ⊕ TM ), (g ⊕ −g), (∇ ⊕ ∇)).

defines a symplectic structure ω ∈ �2(X) on X.

On the supermanifold X there exists a tautological one-form p ∈ �(X, π∗T∗
M )

(the Liouville one-form on T∗M) and two tautological odd vector fields ϑ1, ϑ2 ∈

�(X, π∗TM ) corresponding to the two copies of the tangent bundle in the definition
of X.

By Corollary 2.15 the phase space of the supersymmetric mechanics is equipped with
a symplectic form ω. Using these tautological sections, one can write this symplectic
form as

ω = dp + (Rϑ1, ϑ1) − (Rϑ2, ϑ2) + (∇ϑ1,∇ϑ1) − (∇ϑ2,∇ϑ2) .
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Proposition 2.16. Consider the pair of odd functions

Q1 = 〈p, ϑ1〉 + 〈α, ϑ2〉
Q2 = 〈p, ϑ2〉 + 〈α, ϑ1〉.

and the even function

H = 1

2
(p,p) +

1

3
εabεcd(ϑa, R(ϑb, ϑc)ϑd) + εab〈∇α, ϑa ⊗ ϑb〉 − 1

2
(α, α)

These satisfy the following Poisson brackets

{Q1,Q1} = H, {Q2,Q2} = −H, {Q1,Q2} = 0.

In other words, the functions Qα,H determine a Hamiltonian action on X by the 1d
N = 2 supertranslation algebra.

Additionally, the even function R = 1
2 (ϑ1 + ϑ2, ϑ1 + ϑ2) is a Hamiltonian for the

R-symmetry group G R = SO(1, 1) acting by rotations on T∗
M ⊕ T∗

M .

Proof. Choose local coordinates {qi } for M and denote by {pi } the corresponding frame
of the cotangent bundle. Thenwe havep = pidqi . Let {θ i

1} and {θ j
2 } be the corresponding

frames of the tangent bundles in (2). Then ϑα = θ i
α

∂
∂qi for α = 1, 2. Note that the

coordinates qi , p j are even and the coordinates θ i
1, θ

j
2 are odd. In these local coordinates

the symplectic form ω on X reads

ω = dpidqi +
1

2
Ri jk�(θ

k
1 θ

�
1 − θk

2 θ
�
2 )dqidq j + gi j (∇θ i

1∇θ i
2 − ∇θ i

2∇θ
j
2 ).

Here ∇θ i
α = dθ i

α − �i
jkθ

j
αdqk denotes the covariant derivative for a = 1, 2.

We record the Poisson brackets read off from the above formula of the symplectic
form:

{qi , q j } = 0 , {pi , p j } = −Ri jk�
(
θk
1 θ

�
1 − θk

2 θ
�
2

)

{pi , q j } = δ
j
i , {θ i

a, p j } = �i
jkθ

k
a

{θ i
a, q j } = 0 , {θ i

a, θ
j

b } = 1
2 (−1)a+1δabgi j

In coordinates the supercharges Qa read

Q1 = piθ
i
1 + αiθ

i
2

Q2 = piθ
i
2 + αiθ

i
1

where we have written the one-form α as αidqi .
The proof proceeds with a direct calculation of {Qa,Qb} using these local coordinate

descriptions. First, consider the bracket {Q1,Q1}. This commutator splits up into a sum
of four commutators:

• {piθ
i
1, p jθ

j
1 } = Ri jk�

(−θk
1 θ

�
1 + θk

2 θ
�
2

)
θ i
1θ

j
1 +

(
�

j
ikθ

k
1 θ

i
1 p j + �i

jkθ
k
1 θ

j
1 pi

)
+1
2gi j pi p j .

• {piθ
i
1, α jθ

j
2 } = (∂iα j )θ

i
1θ

j
2 − �

j
ikα jθ

i
1θ

k
2 .

• {αiθ
i
2, p jθ

j
1 } = (∂ jαi )θ

j
1 θ

i
2 − �i

jkαiθ
j
1 θ

k
2 .

• {αiθ
i
2, α jθ

j
2 } = − 1

2gi jαiα j .
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The term Ri jk�θ
i
1θ

j
1 θ

k
1 θ

�
1 is identically zero by symmetries of the Riemann tensor

Ri[ jk�] = 0. The third and fourth terms in the first item cancel with one another due to
the antisymmetry of the connection one-form.

Combining the remaining terms we obtain

{Q1,Q1} = 1

2
gi j pi p j + Ri jk�θ

i
1θ

j
1 θ

k
2 θ

�
2 + 2

(
∂iα j − �k

i jαk

)
θ i
1θ

j
2 − 1

2
gi jαiα j .

Using symmetries of the Riemann tensor again again one can show that the second term
is equal to

1

3
εabεcdRi jk�θ

i
aθ

j
b θ

k
c θ

�
d .

We conclude that {Q1,Q2} = H as desired. The relation {Q2,Q2} = −H is proved
similarly.

Finally, we show {Q1,Q2} = 0. Again, there are four terms in the expansion of this
bracket.

• {piθ
i
1, p jθ

j
2 } = Ri jk�

(−θk
1 θ

�
1 + θk

2 θ
�
2

)
θ i
1θ

j
2 +

(
�

j
ikθ

i
1θ

k
2 p j + �i

jkθ
k
1 θ

j
2 pi

)
.

• {piθ
i
1, α jθ

j
1 } = −∂iα jθ

i
1θ

j
1 + �

j
ikα jθ

i
1θ

k
1 + 1

2gi j piα j .

• {αiθ
i
2, p jθ

j
2 } = −∂ jαiθ

j
2 θ

i
2 + �i

jkαiθ
j
2 θ

k
2 − 1

2gi j p jαi .

• {αiθ
i
1,−α jθ

j
2 } = 0.

The first two terms in the first item are individually zero by usingRi[ jk�] = 0. The first
terms in the second and third items are individually zero since α is closed dα = 0. The
second terms in the second and third items are individually zero since the connection
is torsion-free �i

[ jk] = �i
jk − �i

k j = 0. The remaining terms clearly cancel. Thus,
{Q1,Q2} = 0 as desired. ��

2.4. Kähler case. In this section we specialize to the case where M is equipped with
a Kähler structure. We show that in this case the supersymmetric mechanics from the
previous section has an enhanced supersymmetry.

Let us fix the following data:

• A Kähler manifold (M, g, J ).
• A pair of closed one-forms α, a ∈ �1(M) whose (1, 0) parts β = α1,0 and a1,0 are
closed.

Let X be the phase space of supersymmetric mechanics from Definition 2.14 defined
using the Riemannian structure on M . Let TM ⊗R C = T1,0

M ⊕T0,1
M be the decomposition

of the tangent bundle using the complex structure J , and similarly for the complexified
cotangent bundle. The graded ring of complex-valued functions on X is

C∞(X; C) = �

(

M,Sym(T1,0
M ) ⊗ Sym(T0,1

M ) ⊗
(
∧•(T∗1,0

M ) ⊗ ∧•(T∗0,1
M )

)⊗2
)

.

It carries a natural real structure whose real subspace is C∞(X; R).

Notation 2.17. Let p = p1,0 + p0,1 be the decomposition of the tautological one-form
on X according to type and, similarly, ϑα = ϑ1,0

α + ϑ0,1
α .
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Proposition 2.18. Consider the tuple of odd functions

Q+
1 = 〈p1,0, ϑ1,0

1 〉 + 〈β, ϑ0,1
2 〉 , Q−

1 = 〈p0,1, ϑ0,1
1 〉 + 〈β, ϑ1,0

2 〉
Q+

2 = 〈p1,0, ϑ1,0
2 〉 + 〈β, ϑ0,1

1 〉 , Q−
2 = 〈p0,1, ϑ0,1

2 〉 + 〈β, ϑ1,0
1 〉.

and the even function H as in Proposition 2.16. These satisfy the Poisson brackets

{Q+
α,Q

−
β } = (−1)α+1

2
δαβH, for α, β = 1, 2

{Q±
α ,Q

±
β } = 0.

In other words, the functions Q±
α ,H determine a Hamiltonian action on X by the 1d

N = 4 supertranslation algebra.

The proof is similar to that of Proposition 2.16, so we omit it.

2.5. Quantization. Let us return to the phase space of supersymmetricmechanics (X, ω)
which is defined for any Riemannian manifold (M, g).

Lemma 2.19. The symplectic supermanifold (X, ω) is exact with primitive one-form

λ = p + i a + g(ϑ1,∇ϑ1) − g(ϑ2,∇ϑ2). (3)

In fact, there is a symplectomorphism X ∼= T∗(
TM), where the odd coordinates on
the base are given by the components of ϑ1 + ϑ2.

We will now apply the procedure of geometric quantization to the symplectic su-
permanifold X. Choose a flat real line bundle (L ,∇L , g) on M equipped with a metric
parallel with respect to ∇L . Equivalently, (L ,∇L , g) can be encoded in the principal
Z/2-bundle of its unit frames. Define a connection on π∗L , a line bundle on X, by the
formula

∇̃ = ∇L + λ

where λ is the primitive (3) for the symplectic form ω on X. Notice that since ∇L is flat,
the curvature of ∇̃L is automatically ω. Then (π∗L , ∇̃, g) defines a prequantization of
X. We also have a polarization on X given by the fibers of X → 
TM .

Lemma 2.20. The geometric quantization of X is the Z/2-graded vector space

H = �(
TM, π∗L) ∼= �(M,∧•T∗
M ⊗ L).

The supersymmetry action on the phase space quantizes to an action of the 1dN = 2
supertranslation algebra on H with

Q1 +Q2 = ∇ + (α + ia) ∧ (−). (4)

In addition, it admits an R-symmetry group G R = SO(1, 1) = R× acting as the grading
operator on ∧•T∗

M . From (4) we obtain the following.

Proposition 2.21. The A twist of H is given by the twisted de Rham complex

(�(M,Sym(T∗
M [−1]) ⊗ L),∇ + (α + ia) ∧ (−)).
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Let us now assume that M has a Kähler structure and the (1, 0) parts of α and a are
closed.

By Proposition 2.18 the phase space X carries an action of the 1dN = 4 supertrans-
lation algebra which gives rise to an action onH given by

Q+
1 +Q+

2 = ∂ + (β + i a0,1) ∧ (−)

Q−
1 +Q−

2 = ∂ + (β + i a1,0) ∧ (−)

We are now ready to state the main observation of this paper.

Theorem 2.22. Consider the family of twisting supercharges Q� = Q−
1 +Q−

2 + �(Q+
1 +

Q+
2) parametrized by � ∈ CP1. Then:

• The B twist (� = 0) of H is
(
�•(M; L) , ∂ + (β + i a1,0) ∧ (−)

)
.

• The A twist (� = 1) of H is
(
�•(M; L) , ∇ + (α + i a) ∧ (−)

)
.

• Let

A = �(M,Sym(�
0,1
M [−1]) ⊗ Sym(T1,0

M [1]))
be the dg algebra equipped with the differential ∂ +β∧(−). The familyQ� provides a
BV quantization of the A-module H, where the Poisson bracket on A is the Schouten
bracket.

Proof. The first two claims are clear. Let us now prove the last claim. The family of
twisting supercharges is

Q� = ∂ + (β + i a1,0) ∧ (−) + �(∂ + (β + i a0,1) ∧ (−)).

As explained in Examples 1.9 and 1.10, ∂ viewed as a differential operator on the A-
moduleH has order 2 with symbol the Schouten bracket. At the same time (β + ia0,1)∧
(−) has order 1, so it does not contribute to the symbol. ��
Remark 2.23. The BV quantization referenced in the last item of this theorem agrees
with the BV quantization of Example 1.19.

Consider the derived zero locus X = Rβ−1(0) of the one-form β. Its derived algebra
of functions is

A = R�(X,O) ∼= �(M,Sym(�
0,1
M [−1]) ⊗ Sym(T1,0

M [1]))
equipped with the differential ∂ + β ∧ (−). As explained in Sect. 1.3, the algebra A
carries a degree 1 Poisson structure given by the Schouten bracket. Define the de Rham
local system La = (OX, d + ia1,0) on X. The space X admits a canonical square root

det(LX)
1
2 of the canonical bundle given by the canonical bundle of M . Consider the dg

A-module

M = R�(X, det(LX)
1
2 ⊗ L ⊗ La)[− dim M] ∼= �•(M; L)
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equipped with the differential ∂ + (β + ia1,0) ∧ (−)). The main claim of Theorem 2.22
is that the deformation from the B twist to the A twist corresponds to a BV quantization
of the former.

The above observation allows us to give a model of the A twist even when the
base manifold M is infinite-dimensional (for instance, an infinite-dimensional Fréchet
manifold). Indeed, according to Conjecture 1.18 we may model a BV quantization of
X via the cohomology of the perverse sheaf PX on the zero locus β−1(0) = t0(X). The
choice of the orientation data is manifested in the finite-dimensional situation in the
freedom of choosing L .

Proposal 2.24. Let M be an (infinite-dimensional) Kähler manifold and α, a one-forms
whose (1, 0) parts β = α1,0, a1,0 are closed. Suppose the zero locus β−1(0) = X admits
the structure of a (−1)-shifted symplectic algebraic scheme X (so that t0(X) = X)

equipped with an orientation data det(LX)
1
2 . Consider the supersymmetric quantum

mechanics into M twisted by α + ia. Then the space of states in the A twist, for generic
parameters, is

H = R�(X, PX ⊗ La).

Remark 2.25. Let us explain the caveat regarding generic parameters in the above pro-
posal. By Theorem 2.22 the twist with respect to Q� considered over k[�] is a BV
quantization. By Conjecture 1.18 if we work over k((�)) the BV quantization is isomor-
phic to the cohomology of the perverse sheaf PX. But if the BV quantization is defined
over k[�], the vector space for generic � (i.e. over k(�)) will have the same dimension
as the k((�))-vector space.

Remark 2.26. We expect that the definition of the perverse sheaf PX may be extended to
the setting of derived complex-analytic geometry, so the choice of the algebraic structure
on X will not matter.

3. Gauged Supersymmetric Mechanics

In this section we recall the coupling of supersymmetric mechanics to gauge theory. We
also write down the action functionals of the corresponding theories.

3.1. N = 2 case. Let S be a one-dimensional oriented Riemannian manifold. Let dt be
a positive normalized frame of the cotangent bundle. Consider the following additional
data:

• G is a Lie group equipped with a nondegenerate symmetric bilinear pairing on its
Lie algebra g.

• M is a Riemannian manifold equipped with a G-action by isometries.
• α anda are one-forms on M , which areG-invariant and equivariantly closed: dα = 0
and ιξxα = 0 for every x ∈ g, where ξx is the vector field given by the infinitesimal
G-action.

• h is a locally constant G-invariant function on M .

The G-gauged N = 2 supersymmetric mechanics has the following fields:

• A principal G-bundle P → S.
• A connection A on P .
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• An odd section η ∈ 
�(S, ad P).
• An odd one-form λ ∈ 
�1(S, ad P).
• Sections ϕ, ξ ∈ �(S, ad P).
• A section φ of P ×G M → S.
• An odd section χ of φ∗(P ×G TM) → S.
• An odd section ψ of φ∗(P ×G TM) ⊗ T∗S → S.

Remark 3.1. For the physically minded reader, the fields (A, η, λ, ξ, ϕ) belong to the
N = 2 gauge multiplet and (φ, χ,ψ) to the N = 2 matter multiplet.

If σ is a section of ad P ⊗ A, where A is some bundle on S, then we denote by σ̂

the induced A-valued vector field on P ×G M . For instance, when M is a vector space
equipped with a linear orthogonal G-action, then σ̂ = σ · φ.

The variation of the fields with respect to the A supercharge Q A is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δφi = iχ i

δχ = ϕ̂

δξ = i η
δη = [ϕ, ξ ]
δψ i = −dAφ

i − i�i
jkχ

jψk − αidt

δA = i λ
δλ = −dAϕ

δϕ = 0

(5)

The bosonic part of the action is given by (see e.g. [DF99, Theorems 3.46 and 6.33])

Sbosonic =
∫

S
dvolS

(
1

2
|dAφ|2 + 1

2
|α|2 + (dAϕ, dAξ) − 1

2
|[ϕ, ξ ]|2 + (ϕ̂, ξ̂ ) + φ∗h

)

+ i
∫

S
φ∗a (6)

Remark 3.2. Let us explain the meaning of the term
∫

S dvolS φ
∗h in the action. The

function h gives a grading operator Ph on the Hilbert space of the theory. Let Ĥ be
the Hamiltonian operator. Then the addition of the term

∫
S dvolS φ

∗h to the action
corresponds to deforming the partition function tr(exp(−Ĥ)) to tr(exp(−Ĥ) exp(−Ph)).

3.2. N = 4 case. As in Sect. 2.4, in the case the target manifold is Kähler, the super-
symmetry is enhanced. Consider the following data:

• G is a Lie group equipped with a nondegenerate symmetric bilinear pairing on its
Lie algebra.

• M is a Kähler manifold equipped with a G-action by Kähler isometries with the
moment map μ : M → g∗, so that dμ(x) = −ιξxω for every x ∈ g.

• α, a are real one-forms on M whose (1, 0) parts are G-invariant and equivariantly
closed.

• h is a locally constant G-invariant function on M .

The G-gauged N = 4 supersymmetric mechanics S → M has the following fields:

• A principal G-bundle P → S.
• A connection A on P .
• Odd sections η, c, ν ∈ 
�(S, ad P).
• An odd one-form λ ∈ 
�1(S, ad P).
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Table 1. 1dN = 4 fields in a N = 2 description

N = 2 target M × g N = 4 target M
φ φ, σ

χ χ, ν

ψ ψ, c
A, η, λ, ϕ, ξ A, η, λ, ϕ, ξ

• Sections ϕ, ξ, σ ∈ �(S, ad P).
• A section φ of P ×G M → S.
• An odd section χ of φ∗(P ×G TM) → S.
• An odd section ψ of φ∗(P ×G TM) ⊗ T∗S → S.

The variation of the fields with respect to the A supercharge Q A is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δφi = iχ i

δχ = ϕ̂

δξ = i η
δη = [ϕ, ξ ]
δψ i = −dAφ

i − i�i
jkχ

jψk − (αi + σ j∂iμ(e j ))dt

δA = i λ
δσ = i ν
δλ = −dAϕ

δν = [ϕ, σ ]
δc = − � dAσ − μ

δϕ = 0.

(7)

The bosonic part of the action is (see [Bap08, Section 3] for the case α = 0)

Sbosonic =
∫

S
dvolS

(
1

2
|dAσ |2 + 1

2
|σ̂ |2 + 1

2
|dAφ|2 + 1

2
|μ|2 + 1

2
|α|2 + (dAϕ, dAξ)

−1

2
|[ϕ, ξ ]|2 + (ϕ̂, ξ̂ ) + ([ϕ, σ ], [ξ, σ ]) + φ∗h

)

+ i
∫

S
φ∗a (8)

Remark 3.3. Given the data as above, consider the Riemannian manifold M̃ = M × g.
Given a basis {ei } of g we denote the corresponding coordinates on the second factor by
σ i . Then the action (8) ofN = 4 gauged supersymmetric mechanics coincides with the
action (6) of the N = 2 gauged supersymmetric mechanics into M̃ with the one-form

α̃ = α +
∑

i

(μ(ei )dσ
i + σ idμ(ei ))

if we match the fields as in Table 1.

Suppose G acts freely and properly on μ−1(0) ⊂ M , so that M//G = μ−1(0)/G
is a Kähler manifold equipped with a closed (1, 0) form [β]. It is shown in [Hit+87,
Section 6B] that the low-energy approximation to the G-gaugedN = 4 supersymmetric
mechanics S → M described by the action (8) is described by the supersymmetric
mechanics S → M//G.
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Let GC ⊃ G be a complex Lie group whose Lie algebra is the complexification of
the Lie algebra of G. Moreover, suppose the G-action on M extends to a holomorphic
GC-action on M . Wemay then identify the Kähler quotient M//G with the GIT quotient
(M/GC)s , where the stable locus (M/GC)s ⊂ M/GC consists ofGC-orbits intersecting
μ−1(0). Using the previous two observations we introduce the following version of
Proposal 2.24 in the presence of gauge symmetries.

Proposal 3.4. Let G be a Lie group with complexification GC, M be a Kähler mani-
fold equipped with a G-structure preserving the Kähler structure with a moment map
μ : M → g∗, α and a one-forms whose (1, 0) parts β = α1,0 and a1,0 are equivariantly
closed and. Consider the induced one-form [β] on the quotient stack M/GC. Consider a
locally constant function h on M/GC. Suppose the zero locus [β]−1(0) = X admits the
structure of a (−1)-shifted symplectic algebraic stack X equipped with an orientation

data det(LX)
1
2 . Consider the G-gauged N = 4 supersymmetric quantum mechanics

into M twisted by α + ia. Then the space of states in the A twist, for generic parameters,
is

H = R�(X, PX ⊗ La).

The locally constant function h on X defines a grading on H.

4. Compactification of Principal Bundles

In this short section we collect some results that will be useful for describing compacti-
fications of gauge theories.

4.1. Principal bundles. Let G be a finite-dimensional Lie group, S, N closed manifolds
and consider a principal G-bundle P → S × N .

Definition 4.1. A principal G-bundle P → S × N is trivializable along the fibers of
S × N → S if it admits a trivializing cover {Ui × N }, where {Ui } is an open cover of S.

The space of smooth maps Map(N ,G) forms a Fréchet Lie group under pointwise
multiplication. Its Lie algebra is C∞(N ; g). One has the following description of prin-
cipal Map(N ,G)-bundles.

Proposition 4.2. There is a 1:1 correspondence between isomorphism classes of prin-
cipal G-bundles P → S × N trivializable along the fibers of π : S × N → S and
isomorphism classes of principal Map(N ,G)-bundles PN → S.

Proof. Given a principal Map(N ,G)-bundle PN → S consider its pullback π∗ PN →
S × N . There is a natural evaluation map Map(N ,G) × N → G, so we can induce
the principal Map(N ,G)-bundle π∗ PN to a principal G-bundle. If {Ui } is a trivializing
cover for PN → S, then {Ui × N } is a trivializing cover for P → S × N .

Conversely, suppose P → S × N is a principal G-bundle that is trivializable along
the fibers of π . Let {Ui × N } be the trivializing cover. Then π∗(P|Ui ×N ) defines a
Map(N ,G)-torsor onUi . Gluing these defines a principal Map(N ,G)-bundle PN → S.

��
Under the above correspondence we may identify the adjoint bundle ad PN with the

pushforward π∗ ad P of the adjoint bundle on S × N .
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4.2. Connections. Let us now discuss connections on principal Map(N ,G)-bundles.

Proposition 4.3. Under the correspondence given by Proposition 4.2 a connection on
a principal Map(N ,G)-bundle PN → S corresponds to a connection on P → S × N
in the S direction.

Proof. Let {Ui } be a trivializing cover for PN → S and gi j : Ui ∩U j → Map(N ,G) the
transition functions. Then a connection on PN is specified by a collection of one-forms
Ai ∈ �1(Ui ;Map(N , g)) satisfying Adgi j (d + A j ) = d + Ai . This data is obviously the
same as a connection on P in the S direction. ��

Let ConntrivG (N ) be the affine space of connections on the trivial G-bundle on N . It
carries an action of Map(N ,G) given by gauge transformations.

Proposition 4.4. Under the correspondence given by Proposition 4.2 a Map(N ,G)-
equivariant map φ : PN → ConntrivG (N ), i.e. a section of PN ×Map(N ,G)ConntrivG (N ) →
S, is the same as a connection on P → S × N in the N direction.

Proof. Let {Ui } be a trivializing cover for PN → S and gi j : Ui ∩U j → Map(N ,G) the
transition functions. A Map(N ,G)-equivariant map φ : PN → ConntrivG (N ) is the same
as a collection of maps φi : Ui → ConntrivG (N ) such that gi jφ j = φi . A map φi : Ui →
ConntrivG (N ) is the same as a g-valued one-form along the fibers of Ui × N → Ui . This
data is the same as a connection on P → S × N in the N direction. ��

The following statement is proven analogously.

Proposition 4.5. Suppose AS is a connection on a principal Map(N ,G)-bundle PN →
S and φ a section of PN ×Map(N ,G) ConntrivG (N ) corresponding to a connection AN
on P → S × N in the N direction by Proposition 4.4. Then dASφ coincides with the
�(N × S,�1

N ⊗�1
S ⊗ ad P) component of the curvature of the connection AN + AS on

P → S × N.

5. 2d A-Model

In this section consider the 2d A-model into a hyperKähler manifold on the interval
with supersymmetric boundary conditions and its compactification to supersymmetric
mechanics.

5.1. 2d σ -model. Let (M, g, ω, I ) be a Kähler manifold and (�, h, j) a Riemann sur-
face. We say a one-form ψ ∈ �1(�, φ∗TM ) is self-dual if

( j ⊗ I )ψ = ψ.

A self-dual one-form has components ψ = ψ+ + ψ−, where

ψ+ ∈ �1,0(�, φ∗T(0,1)
M ), ψ− ∈ �0,1(�, φ∗T(1,0)

M ).

The 2d A-model into M has the following fields [Wit88]:

• A map φ : � → M .
• An odd section χ ∈ 
�(�, φ∗TM ).
• A self-dual odd one-form ψ ∈ 
�1(�, φ∗TM ).
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The supersymmetry transformation is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δφi = iχ i

δχ i = 0

δψ i = −∂φi − iχ j�i
jm
ψm

δψ i = −∂φi − iχ j�i
jmψ

m .

(9)

The bosonic part of the action is

Sbosonic = 1

2

∫

�

dvol�(dφ, dφ).

5.2. Supersymmetric mechanics on the path space. Let L0, L1 ⊂ M be two Lagrangian
submanifolds. Consider the path space

P(L0, L1) = {φ : [0, 1] → M | φ(0) ∈ L0, φ(1) ∈ L1},
where the coordinate along [0, 1] will be denoted by s. It has a natural structure of a
Fréchet manifold (see e.g. [Sta05]) such that the tangent space at φ ∈ P(L0, L1) can be
identified with the space

TφP(L0, L1) = {v ∈ �([0, 1], φ∗TM ) | v(0) ∈ Tφ(0)L0, v(1) ∈ Tφ(1)L1}.
It has a natural (weak) Riemannian metric defined by

(v,w) =
∫ 1

0
(v(s), w(s))ds.

We will also be interested in the closed submanifold P̃(L0, L1) ⊂ P(L0, L1) defined as

P̃(L0, L1) = {φ ∈ P(L0, L1) | φ′(0) ⊥ L0, φ′(1) ⊥ L1},
where theorthogonality is definedwith respect to themetric on M .WehaveTφ P̃(L0, L1) ⊂
TφP(L0, L1) defined by the conditions v(0) = v(1) = 0.

The path space P(L0, L1) carries a natural one-form α ∈ �1(P(L0, L1)) defined by

ιvα =
∫ 1

0
ω(v(s), φ′(s))ds. (10)

It is easy to see that it is closed. Its primitive,whenever defined, is knownas the symplectic
action functional.

Let S be an oriented Riemannian 1-manifold. Let � = S × [0, 1]. Consider the 2d
A-model on � with the boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(s, 0) ∈ L0
∂φ
∂s (s, 0) ⊥ L0

χ(s, 0) ∈ φ∗TL0

ψ |S×{0} ∈ �1(S, φ∗TL0).

Similar boundary conditions are imposed at the other end of the interval [0, 1].
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Theorem 5.1. The 2d A-model of maps S × [0, 1] → M with the above boundary
conditions is equivalent to the supersymmetric mechanics of maps S → P(L0, L1),
whereP(L0, L1) is equipped with its natural Riemannian structure and one-formα given
by (10). Under this correspondence the supersymmetry transformation (9) corresponds
to the transformation induced by the A supercharge Q A (5).

Proof. Amap φ : S ×[0, 1] → M satisfying the above boundary conditions is the same
as a map φ : S → P(L0, L1). A self-dual one-form ψ ∈ �1(S × [0, 1], φ∗TM ) can be
written as ψ = ψtdt + Iψtds. Therefore, we can match the fields of the 2d A-model on
S × [0, 1] and the supersymmetric mechanics as shown in Table 2.

We have

ιvα =
∫ 1

0
ω(v(s), φ′(s))ds

= −
∫ 1

0
(v(s), Iφ′(s))ds

= −(v, I∂sφ). (11)

Therefore,

|α|2 =
∫ 1

0
|Iφ′(s)|2ds =

∫ 1

0
|φ′(s)|2ds

since I is orthogonal. In particular,

Sbosonic = 1

2

∫

�

dvol� |dφ|2

= 1

2

∫

S
dvolS(|∂tφ|2 + |α|2)

which coincides with the bosonic part of the action of the supersymmetric mechanics.
The supersymmetry transformation induced by Q A is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δφi = iχ i

δψ i = −∂tφ
i − i�i

jk
χ jψk − αi

δψ i = −∂tφ
i − i�i

jkχ
jψk − αi

δχ i = 0.

Using (11) we get αi = i ∂sφ
i and αi = −i ∂sφ

i . Observing that

∂φi = ∂tφ
i + i ∂sφ

i , ∂φi = ∂tφ
i − i ∂sφ

i

we see that the above supersymmetry transformation coincides with (9). ��
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Table 2. Fields in the supersymmetric mechanics and in the 2d A-model

Supersymmetric mechanics 2d A-model
φ φ

χ χ

ψ ψt

5.3. HyperKähler case. Let us now assume that M has a hyperKähler structure. We
denote by I, J, K the three complex structures, ωI , ωJ , ωK the three Kähler structures
and�I ,�J ,�K the three holomorphic symplectic structures. Suppose that L0, L1 ⊂ M
are holomorphic Lagrangians with respect to the �I holomorphic symplectic structure
(these give examples of (B, A, A) branes).

As before, P̃(L0, L1) has an induced (weak) Riemannian structure. The complex
structure I induces pointwise a Kähler structure on P̃(L0, L1). We may also consider
the closed one-form β ∈ �1,0(P̃(L0, L1)) defined by

β(v) =
∫ 1

0
�I (v(s), φ

′(s))ds.

By construction its real part is

α(v) =
∫ 1

0
ωJ (v(s), φ

′(s))ds.

Therefore, by Proposition 2.18 the supersymmetry of the supersymmetric mechanics of
maps S → P̃(L0, L1) enhances fromN = 2 toN = 4. Let us now assume that (M, I )
has an algebraic structure and L0, L1 ⊂ M are algebraic subvarieties. The zero locus of
β is the intersection L0 ∩ L1. It has a natural enhancement to a (−1)-shifted symplectic
scheme L0 ×M L1 [Pan+13, Theorem 2.9]. The Proposal 2.24 suggests the following.

Proposal 5.2. Suppose M is a hyperKähler manifold, so that (M, I,�I ) is an algebraic
symplectic manifold. Suppose L0, L1 ⊂ M are algebraic Lagrangian subvarieties.
Choose square roots of the canonical bundles on Li which determine an orientation
data on the derived intersection L0 ×M L1. Then the space of states Hom(L0, L1) in
the 2d A-model into (M, ωJ ), for generic parameters, is

R�(L0 ∩ L1, PL0×M L1).

Remark 5.3. The above definition was proposed in [BF09,Bra+15]. We refer to [SV19]
for the discussion of the relationship to the usual definition of the Floer homology group.
Note also that the above definition is independent of the choice of the algebraic structure
if we use the perverse sheaf constructed in [Bus14].

Remark 5.4. One may interpret “generic parameters” in the above statement as follows.
Let us consider the 2d A-model into M with the symplectic structure ω = (1 + α)ωJ
and the B-field B = αωK for α a non negative number. Then for α = 0 we recover the
usual 2d A-model into (M, ωJ ). In the limit α → ∞ we obtain the 2d B-model into
(M, I ) [Kap04]. So, one expects the proposal to be true for large α.

6. 3d A-model

In this section we describe a 3-dimensional analog of the A-model with target given by
a hyperKähler manifold.
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6.1. 3d σ -model. Fix the following data:

• A Lie group G equipped with a homomorphism ρ : G → SO(3).
• X a hyperKähler manifold equipped with a G-action by isometries. In addition, we
assume it acts on the sphere of complex structures on X via ρ.

• M is an oriented Riemannian 3-manifold equipped with a principal G-bundle Q
together with a connection ∇ and an isometric identification

Q ×G R3 ∼= �1
M . (12)

Consider the induced bundle

X = Q ×G X
π−→ M.

The connection ∇ on Q induces a connection on X → M that we denote by the same
letter. Its vertical tangent bundle is

VX = Q ×G TX.

Since G acts on X by isometries,X → M admits a fiberwise metric. In addition, since G
acts by permuting the complex structures on X , the bundle X → M carries a fiberwise
hyperKähler structure with the associated sphere bundle of complex structures given by
the unit sphere bundle of M using (12). In particular, the action by complex structures
gives a map

a : π∗�1
M ⊗R VX −→ VX.

The 3d A-model has the following fields:

• A section φ of X → M .
• A pair of odd sections χ,ψ ∈ 
�(M, φ∗VX).

The bosonic part of the action functional of the 3d A-model is

Sbosonic = 1

2

∫

M
dvolM (∇φ,∇φ)

Remark 6.1. This theory may be obtained by topologically twisting the 3-dimensional
supersymmetric σ -model into X . The corresponding 4-dimensional version was consid-
ered in [AF94,FKS98].

The covariant derivative gives a section ∇φ ∈ �(M,�1
M ⊗ φ∗VX). Applying the

action map a by complex structures, we get a(∇φ) ∈ �(M, φ∗VX).

Remark 6.2. In local coordinates (x, y, z) on M we have

a(∇φ) = I∇xφ + J∇yφ + K∇zφ.

The equation a ◦ ∇φ = 0 is known as the 3-dimensional Fueter equation, see e.g.
[Wal17].

The supersymmetry transformation is
⎧
⎪⎨

⎪⎩

δφi = iχ i

δχ i = 0
δψ i = (I a(∇φ))i − i�i

jkχ
jψk .

(13)
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6.2. Twisted hyperKähler mapping space. Suppose the homomorphismρ : G → SO(3)
factors through G → SO(2) ↪→ SO(3). Our convention is that G fixes the complex
structures ±I on X and acts on J, K via ρ.

Let � be a Riemann surface with a complex structure we denote by j . In addi-
tion, suppose P → � is a principal G-bundle with a connection ∇ and an isometric
identification

P ×G R2 ∼= �1
�.

Consider the space X� of smooth sections of the bundle

X� = P ×G X
π�−→ �.

As before, this is a bundle of hyperKähler manifolds and there is an action

a� : π∗
��

1
� ⊗R VX� −→ VX�

by complex structures. The tangent space at φ ∈ X� may be identified with

Tφ X�
∼= �(�, φ∗VX�).

There is a (weak) Riemannian metric on X� defined by integrating the pointwise metric
along �:

(v,w)X� =
∫

�

dvol� (v,w), v,w ∈ Tφ X�.

The complex structure I on X induces a complex structure on X� in a similar way.
Define the one-form α on X� by

ιvα = −
∫

�

dvol� (v, a( j∇φ)), (14)

where j∇s is obtained by acting by the complex structure j on � on the �1
� factor of

∇φ.
If we choose a trivialization of P over a coordinate neighborhood (x, y) in � this

one-form becomes

ιvα =
∫

�

( − (v, J∇yφ) + (v, K∇xφ)
)
dxdy

=
∫

�

(ωJ (v,∇yφ) − ωK (v,∇xφ)
)
dxdy.

The one-form α is the real part of the following holomorphic (1, 0) form β. Let

∂φ ∈ �(�,�
0,1
� ⊗R φ∗VX�)

be the (0, 1) part of the covariant derivative. Define β by the formula

ιvβ = 2 i
∫

�

dvol� (v, a(∂φ)). (15)

Finally, define the function h on X� by

h =
∫

�

ωI (∇xφ,∇yφ)dxdy. (16)

The function h is locally constant and computes the symplectic volume of the section
φ with respect to ωI .
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6.3. Supersymmetric mechanics on the mapping space. Consider the setting as in the
previous sections and take M = S ×� for an oriented Riemannian 1-manifold S. Take
Q = S × P with the trivial connection along the S direction.

Theorem 6.3. The 3d A-model of sections X → � × S is equivalent to the supersym-
metric mechanics of maps S → X� , where X� is equipped with its natural Riemannian
structure, one-form α given by (14), and h as in (16). Under this correspondence the
supersymmetry transformation (13) corresponds to the transformation induced by the A
supercharge Q A (6).

Proof. A section φ of the bundle X = S × X� → S × � is the same as a map
φ : S → X� = Sect(�,X�). Using the identification

�(S, φ∗TX� )
∼= �(S × M, φ∗VX)

we can identify the fermion fields in the 3d A-model with the fermion fields in the
supersymmetric mechanics.

Next, in local coordinates we have

ιvα =
∫

�

(
(v, K∇xφ) − (v, J∇yφ)

)
dxdy

= (v, K∇xφ)X� − (v, J∇yφ)X� .

Therefore, we can expand

1

2
|α|2X�

= 1

2

∫

�

(|K∇xφ|2 + |J∇yφ|2)dxdy −
∫

�

(J∇xφ, K∇yφ)dxdy

= 1

2

∫

�

(|∇xφ|2 + |∇yφ|2)dxdy −
∫

�

ωI (∇xφ,∇yφ)dxdy,

where in the last line we have used the fact that J K = I .
This shows that

Sbosonic = 1

2

∫

S×�

|dφ|2 dvol

= 1

2

∫

S

(|∂tφ|2X�
+ |α|2X�

)
dt +

∫
h dt.

The variation of the field ψ with respect to the supercharge Q A is given by

δψ i = −∂tφ
i − i�i

jkχ
jψ i − αi

= −∂tφ
i − i�i

jkχ
jψ i − K∇xφ

i + J∇yφ
i

= (I a(∇φ))i − i�i
jkχ

jψ i .

This agrees with the supersymmetry transformation in (13) as desired. ��
Since α is the real part of a closed (1, 0) form β, we obtain anN = 4 supersymmetric

mechanics into X� . The zeros of β are solutions to

a(∂φ) = 0,
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i.e. (J − iK )∂φ = 0. Applying J and rearranging terms we obtain the Cauchy–Riemann
equation

dφ ◦ j = I ◦ dφ.

In other words, the zeros of β are I -holomorphic sections of X� → �.
Let us now suppose (X, I,�I ) admits the structure of a complex symplectic algebraic

variety. Moreover, suppose the complexification GC of G and the bundle PC = P ×G

GC → � are algebraic. Then X� = PC ×GC X → � is also algebraic. By the results
of [GR18] we obtain a (−1)-shifted symplectic structure on the space Sect(�,X�) of
algebraic sections of X� → �.

Proposal 6.4. Choose an orientation data on Sect(�,X�). Then the space of states in
the 3d A-model is the cohomology

R�(Sect(�,X�), PSect(�,X�))

of the perverse sheaf PSect(�,X�). It admits a grading by the symplectic volume of the
section with respect to ωI .

Example 6.5. Consider the case G = U(1) = SO(2) and X = T∗Y for a smooth
complex algebraic variety Y . Equip X with a U(1)-action given by scaling the cotangent
fiber. The isomorphism P ×U (1)R2 ∼= �1

� uniquely determines P , so that PC is the
C×-bundle corresponding to the canonical bundle K� → �. In this case

Sect(�,X�) ∼= T∗[−1]Map(�,Y ).

The component of the space Map(�, Y ) containing φ : � → Y has virtual dimension

dimMap =
∫

�

φ∗c1(Y ) + dim(Y )(1 − g).

Therefore, using Example 1.17 we get that the space of states in the 3d A-model into
T∗Y is the shifted Borel–Moore homology

HBM
dimMap −•(Map(�, Y )).

This answer was previously proposed in [Nak16].

7. GL Twist of the 4d N = 4 Super Yang–Mills Theory

In this section we describe a compactification of the GL twist [Mar95,KW07] of the 4d
N = 4 super Yang–Mills theory on a 3-manifold.



64 P. Safronov, B. R. Williams

7.1. Twisted super Yang–Mills theory. Consider the following data:

• G is a compact Lie group equipped with nondegenerate symmetric bilinear pairing
(−,−) on its Lie algebra.

• A parameter θ ∈ R.

Wemay define the 4dN = 4 super Yang–Mills theory given the above data. It admits
a twist (known as the GL twist) which allows us to consider the theory on an arbitrary
Riemannian 4-manifold. Let M be a closed oriented Riemannian 4-manifold. The theory
has the following fields:

• A principal G-bundle P → M .
• A connection A on P .
• A one-form φ ∈ �1(M, ad P).
• Sections σ, σ̃ ∈ �(M, ad P).
• Odd one-forms ψ, ψ̃ ∈ 
�1(M, ad P).
• Odd two-forms χ± ∈ 
�2(M, ad P), where χ+ is self-dual and χ− anti self-dual.
• Odd sections η, η̃ ∈ 
�(M, ad P).

There are two commuting supersymmetry transformations Ql , Qr . We will consider
the supercharge Q = uQl + vQr , where u, v ∈ R. The supersymmetry transformation
is [KW07, Formulas (3.27), (3.28)]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δAμ = iuψμ + ivψ̃μ

δφμ = ivψμ − iuψ̃μ

δσ = 0
δσ̃ = iuη + ivη̃
δχ+ = u(F − 1

2 [φ ∧ φ])+ + v(dAφ)
+

δχ− = v(F − 1
2 [φ ∧ φ])− − u(dAφ)

−
δη = vd∗

Aφ + u[σ̃ , σ ]
δη̃ = −ud∗

Aφ + v[σ̃ , σ ]
δψ = udAσ + v[φ, σ ]
δψ̃ = vdAσ − u[φ, σ ].

(17)

The bosonic part of the action is (see [KW07, Section 3.4])

Sbosonic =
∫

M
dvolM

(
1

2
|FA|2 + 1

2
|d∗

Aφ|2 − 1

2
[σ̃ , σ ]2 + (dA σ̃ , dAσ) + ([φ, σ̃ ], [φ, σ ])

)

+
iθ

16π2

∫

M
(FA ∧ FA).

(18)

7.2. Supersymmetric mechanics on the space of connections. Let N be a closed oriented
Riemannian 3-manifold, S a closed oriented Riemannian 1-manifold and set M = N ×S
with the product metric and orientation. Consider the affine space ConntrivGC

(N ) of C∞
connections A = A + iφ on the trivial principal GC-bundle over N . It is naturally a
weakly Kähler manifold [Cor88] with the Kähler form

ω =
∫

N
(δφ ∧ �N δA).
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Let G N = Map(N ,G) be the Fréchet Lie group of smoothmaps N → G. Its Lie algebra
gN = C∞(N ; g) carries an invariant symmetric bilinear form

(v,w)N =
∫

N
dvolN (v(x), w(x)),

where on the right we use the pairing on g. The group G N acts on ConnGC(N ) preserving
the Kähler structure with the moment map

μ = dA �N φ.

A principal G N -bundle PN → S is the same as a principal G-bundle P → N × S
trivializable along the fibers of N × S → S by Proposition 4.2.

There is a Chern–Simons functional

SC S = 1

2

∫

N

(

(A ∧ dA) +
1

3
(A ∧ [A ∧ A])

)

on ConntrivGC
(N ) which defines a holomorphic function. Its imaginary part is given by

ImSC S =
∫

N

(

(φ ∧ FA) − 1

6
(φ ∧ [φ ∧ φ])

)

.

The differential of SC S defines a closed (1, 0) one-form

δSC S =
∫

N
(δA ∧ FA)

=
∫

N

(

δA ∧
(

FA − 1

2
[φ ∧ φ]

)

− δφ ∧ dAφ

)

+ i
∫

N

(

δA ∧ dAφ + δφ ∧
(

FA − 1

2
[φ ∧ φ]

))

on ConntrivGC
(N ). Define

α = u2 − v2

u2 + v2
δ Re SC S − 2uv

u2 + v2
δImSC S (19)

and

a = θ

8π2 δ Re SC S . (20)

Note that α is the real part of a closed (1, 0)-form

β = u2 − v2 + iuv

u2 + v2
δSC S

on ConntrivGC
(N ) and similarly for a.

Theorem 7.1. The GL twist of the 4dN = 4 super Yang–Mills theory on N ×S is equiv-
alent to the N = 4 G N -gauged supersymmetric mechanics of maps S → ConntrivGC

(N ).
Under this correspondence the supersymmetry transformation (17) corresponds to the
transformation induced by the A supercharge Q A (7).
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Proof. We decompose the one-form fields under the splitting M = N × S as follows:

A �→ A + A0, φ �→ φ + φ0, ψ �→ ψ + ψ0,

where the first component is a one-form along N and the second component is a one-
form along S. As before, we denote by A = A + iφ the component of the complexified
connection on P in the N direction; we denote byA0 = A0 + iφ0 the component of the
complexified connection on P in the S direction.

If � is the Hodge star operator on N × S and �N is the Hodge star operator on N ,
then we have �(dt ∧ γ ) = �Nγ for any one-form γ along N , where dt is a one-form of
norm 1 along S. (Anti) self-dual two-forms on M are identified with one-forms γ along
N : (anti) self-dual two-forms on N × S are dt ∧ γ ± �Nγ . Therefore, we may write

χ± = dt ∧ χ±
N ± �Nχ

±
N . (21)

If we match the fields as in Table 3, then the supersymmetry transformations (17)
coincide with (7).

The action (18) becomes

Sbosonic =
∫

M
dvolM

(1

2
|FA|2 + 1

2
|dA0 + dA0A|2 + 1

2
|d∗

Aφ|2 + 1

2
|dA0φ0|2

+ (d∗
Aφ, d

∗
A0
φ0)

1

2
[σ̃ , σ ]2 + (dAσ̃ , dAσ) + (dA0 σ̃ , dA0σ)

+ ([φ, σ̃ ], [φ, σ ]) + ([φ0, σ̃ ], [φ0, σ ])
)

+
iθ

8π2

∫

M
FA ∧ (dA0 + dA0 A).

The norm squared of α with respect to the metric on ConntrivGC
(N ) is

|α|2 =
∫

N
dvolN |FA|2.

Also, observe that

1

2

∫

M
dvolM (|dA0 + dA0A|2 + (d∗

Aφ, d
∗
A0
φ0))

= 1

2

∫

M
dvolM (|dA0 + dA0 A + idA0φ|2 + |dAφ0 + i[φ, φ0]|2).

Using these identities it is easy to see that the action (18) is equivalent to (8) substi-
tuting the fields using Table 3. ��

The zero locus of α on ConntrivGC
(N )/Map(N ,GC) coincides with the moduli space

of flat GC-connections LoctrivGC
(N ) on a trivializable GC-bundle. Let us also consider

nontrivial GC-bundles. Assuming GC is an algebraic group, there is a (−1)-shifted sym-
plectic stack RLocGC(N ) parametrizing GC-local systems (see e.g. [Pan+13]) whose
classical truncation is LocGC(N ). It follows from [JTU20, Theorem 4.8] and [JU21a]
that RLocGC(N ) carries a canonical orientation data (called a spin structure in those pa-
pers). Note that the restriction of a to LocGC(N ) is zero, so the twist by La in Proposal
3.4 disappears.
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Table 3. Fields in theN = 4 gauged supersymmetric mechanics and in the GL twist of the 4d N = 4 super
Yang–Mills theory

Supersymmetric mechanics GL twist
A A0

η − uη+vη̃
u2+v2

c uη̃−vη

u2+v2
ν vψ0 − uψ̃0
λ uψ0 + vψ̃0
ϕ −(u2 + v2)σ

ξ − 1
u2+v2

σ̃

σ φ0
φ A + iφ
χ (u + iv)(ψ − iψ̃)

ψ − (u+iv)(χ+
N −iχ−

N )

u2+v2

Proposal 7.2. Suppose GC is an algebraic group. Then the space of states in the GL
twist on a closed oriented 3-manifold N, for generic parameters, is

R�(LocGC(N ), PRLocGC (N )).

The previous complexwas considered in [AM20]where it was called the complexified
instanton Floer homology of N .

8. Haydys–Witten Theory

In this section we describe a compactification of a topological twist of the 5d N = 2
super Yang–Mills theory considered in [Wit12] on a Kähler surface.

8.1. Twisted super Yang–Mills theory. Consider a compact Lie group G equipped with
a nondegenerate symmetric bilinear pairing (−,−) on its Lie algebra.Wemay define the
5dN = 2 super Yang–Mills theory with a gauge group G. It admits a topological twist
introduced in [Wit12] which allows us to consider the theory on the product M × S of
an oriented Riemann 4-manifold M and an oriented Riemannian 1-manifold S. We call
it the Haydys–Witten twist of the 5d N = 2 super Yang–Mills theory. The coordinates
along M will have Greek indices and S will have a coordinate t .

Notation 8.1. For a vector bundle V → M × S we denote by�n
M (M × S, V ) the space

of V -valued n-forms on M × S along the M direction.

The theory has the following fields:

• A principal G-bundle P → M × S.
• A connection A on P in the M direction and A0 in the S direction.
• A self-dual two-form B ∈ �2(M × S, ad P).
• Sections σ, σ̃ ∈ �(M × S, ad P).
• Odd one-forms ψ, ψ̃ ∈ 
�1

M (M × S, ad P).
• Odd self-dual two-forms χ, χ̃ ∈ 
�2

M (M × S, ad P).
• Odd sections η, η̃ ∈ 
�(M × S, ad P).
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We denote by FA ∈ �2
M (M × S, ad P) the curvature of A and by Ft ∈ �1

M (M ×
S, ad P) the contraction of the curvature of A + A0 with ∂t .

Notation 8.2. Suppose X and Y are self-dual two-forms on an oriented Riemannian
4-manifold. Then one can define their cross product to be (see [Wit12, Formula (5.29)]
and [QZ16, Section 2.2])

(X × Y )μν = XμλY λ
ν − XνλY λ

μ .

In the case X,Y are self-dual two-forms valued in a bundle of Lie algebras, their cross
product is symmetric and is given by

(X × Y )μν = 1

2
[Xμλ,Y λ

ν ] − 1

2
[Xνλ,Y λ

μ ].

Remark 8.3. Let N be an oriented Riemannian 3-manifold and consider the product
metric on N × S1. Identify the self-dual two-forms on N × S1 with�1

N (N × S1) using
(21). Then the cross product of the self-dual two-forms on N × S1 is identified with the
cross product X,Y �→ �(X ∧ Y ) of one-forms on N .

The supersymmetry transformation is written in [And13, Section 4] (we take u = 1
and v = 0). Adjusting the conventions slightly ( [And13] works in the Minkowski
signature, while we work in the Euclidean signature), it is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δAμ = iψ̃μ

δA0 = iη̃
δσ = −i

√
2η

δσ̃ = 0
δBμν = iχ̃μν

δη = [σ, σ̃ ]
δη̃ = −√

2dA0 σ̃

δψ = −Ft + d∗
A B

δψ̃ = −√
2dAσ̃

δχκλ = −2(FA)
+
κλ +

1
2 (B × B)κλ + dA0 Bκλ

δχ̃κλ = −√
2[Bκλ, σ̃ ].

(22)

The bosonic part of the action is (see [And13, Formula 5.40])

Sbosonic =
∫

M×S
dvolM×S

(1

2
|FA|2 + 1

2
|Ft |2 + 1

8
(dA Bμν, dA Bμν) + (dAσ, dAσ̃ )

+
1

4
|dA0 B|2 + (dA0σ, dA0 σ̃ )

+
1

16
|B × B|2 + 1

2
([B, σ ], [B, σ̃ ]) − 1

2
|[σ, σ̃ ]|2

+
1

8
R|B|2 − 1

8
Rμνρσ Bμρ Bνσ

)
.

(23)

Here R is the scalar curvature and Rμνρσ is the Riemann curvature tensor.
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Consider the Fréchet manifold Conntriv,+G (M) parametrizing pairs of a connection A
on the trivial G-bundle P → M together with a self-dual ad P-valued two-form B. It
carries a metric

g(δA + δB, δA + δB) =
∫

M
dvolM (δA, δA) +

1

2

∫

M
dvolM (δB, δB).

The group G M = Map(M,G) acts on Conntriv,+G (M) by gauge transformations on A
and by conjugation on B. This action preserves the metric.

Consider a smooth G M -invariant function f : Conntriv,+G (M) → R given by

f (A, B) =
∫

M
dvolM

(

−(FA, B) +
1

12
(B × B, B)

)

. (24)

Its differential is

α = δ f =
∫

M
dvolM

(

−(FA, δB) +
1

4
(B × B, δB) + (d∗

A B, δA)

)

(25)

In addition, consider the G M -invariant function h : Conntriv,+G (M) → R given by the
first Pontryagin class

h(A, B) = 1

2

∫

M
(FA ∧ FA). (26)

Note that this function is identically zero since we are restricting to connections
on topologically trivial G-bundles, but it has nontrivial values if we include nontrivial
bundles.

Theorem 8.4. The Haydys–Witten twist of the 5d N = 2 super Yang–Mills theory on
M × S is equivalent to the N = 2 G M -gauged supersymmetric mechanics of maps
S → Conntriv,+G (M)withα given by (25) and h given by (26). Under this correspondence
the supersymmetry transformation (22) corresponds to the transformation induced by
the A supercharge Q A (5).

Proof. We can match the fields in the super Yang–Mills theory and the gauged super-
symmetric mechanics as shown in Table 4. It is then straightforward to check that the
A supersymmetry transformation in gauged supersymmetric mechanics corresponds to
the supersymmetry transformation (22).

Using integration by parts one may compute that
∫

M
dvolM

(
|d∗

A B|2 − (F+
A, B × B)

)

=
∫

M
dvolM

(
1

4
(dA BμνdA Bμν) +

1

4
R|B|2 − 1

4
Rμνρσ Bμρ Bνσ

)

.

Moreover,

|F+
A|2dvolM = 1

2
|FA|2dvolM +

1

2
(FA ∧ FA).

Combining these identities it is easy to see that the action (23) coincides with the action
(6) of gauged supersymmetric mechanics. ��
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Table 4. Fields in the N = 2 gauged supersymmetric mechanics and in the Haydys–Witten twist of the 5d
N = 2 super Yang–Mills theory

Supersymmetric mechanics Haydys–Witten twist
A A0
η −η

λ η̃

ϕ
√
2σ̃

ξ 1√
2
σ

φ A, B
χ ψ̃, χ̃

ψ ψ,−χ

8.2. Kähler case. Suppose now that M is a Kähler manifold.Wewill denote by (−,−)C
the hermitian extension of the metric on differential forms to complexified differential
forms, by (−,−)ω the corresponding symplectic structure and by (−,−) the C-linear
extension of the metric.

In this section we are going to show that the supersymmetry of the compactified

model is enhanced. Consider the Fréchet manifold Conn∂,triv,(2,0)GC
(M) parametrizing

(0, 1) connections A0,1 on the trivial GC-bundle over M together with an ad P-valued
(2, 0) form B2,0. It will also be convenient to identify A0,1 with the (0, 1) part of a
connection A on the trivial G-bundle over M . This manifold admits a linear Kähler
structure associated with the Hermitian metric

(δA0,1 + δB2,0, δA′
0,1 + δB ′

2,0)C

= 2
∫

M
dvolM (δA0,1, δA′

0,1)C +
∫

M
dvolM (δB2,0, δB ′

2,0)C.

Conn∂,triv,(2,0)GC
(M) admits a holomorphic action by Map(M,GC) given by a gauge

transformation on A0,1 and conjugation on B2,0. The following lemma is proven by a
straightforward computation.

Lemma 8.5. For X,Y ∈ �2,0(M) we have

ω · (X,Y )ω = −2Re X × Re Y.

Using this identity we can see that the subgroup G M = Map(M,G) ⊂ Map(M,GC)

of compact gauge transformations acts by isometries and admits a moment map

μ(A0,1, B2,0) = −(FA − Re B2,0 × Re B2,0) ∧ ω. (27)

Consider the holomorphic function W : Conn∂,triv,(2,0)GC
(M) → C given by

W (A0,1, B2,0) = −2
∫

M
dvolM (FA0,1 , B2,0) (28)

and its differential

β = ∂W = −2
∫

M
dvolM

(
(δA0,1, ∂

∗
A0,1

B2,0) + (FA0,1 , δB2,0)
)
. (29)
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Theorem 8.6. Suppose M is a Kähler surface. The Haydys–Witten twist of the 5dN = 2
super Yang–Mills theory on M × S is equivalent to the N = 4 G M -gauged supersym-

metric mechanics of maps S → Conn∂,triv,(2,0)GC
(M) with β given by (29) and h given by

(26). Under this correspondence the supersymmetry transformation (22) corresponds to
the transformation induced by the A supercharge Q A (7).

Proof. By Theorem 8.4 the compactification is equivalent to the N = 2 G M -gauged
supersymmetric mechanics of maps S → Conntriv,+G (M). We may identify self-dual
two-forms on a Kahler manifold as

�2,+(M) ∼= �2,0(M) ⊕ �0(M) · ω,
where the map �2,+(M) → �2,0(M) is given by taking the (2, 0) component of a self-
dual two-form and the decomposition on the right-hand side is orthogonal. This allows
us to identify

Conntriv,+(M) ∼= Conn∂,triv,(2,0)GC
(M) × Map(M, g)

by sending (A, B) to A0,1 given by the (0, 1) component of A, B2,0 given by the (2, 0)
component of B and Bω ∈ Map(M, g) given by the ω component of B. Under this
decomposition

f (A, B) = Re W (A0,1, B2,0) +
∫

M
μ(A0,1, B2,0)Bω.

The claim then follows from Remark 3.3. ��
The critical points of W on Conn∂,triv,(2,0)GC

(M) are given by

FA0,1 = 0, ∂∗
A0,1

B2,0 = 0. (30)

Using the Kähler identities we may rewrite the last equation as ∂ A0,1 B2,0 = 0.
Let us now assume M is a projective surface and GC is an algebraic group. Then we

may consider the derived algebraic stack RBunGC(M) of algebraic GC-bundles on M
which is quasi-smooth. The shifted cotangent stack T∗[−1]RBunGC(M) parametrizes
principal GC-bundles P → M together with an algebraic section B ∈ �(M, ad P ⊗
KM ), i.e. solutions of (30). Using Example 1.17 we arrive at the following.

Proposal 8.7. Suppose GC is an algebraic group and M a projective surface. Then the
space of states in the Haydys–Witten twist on M is the shifted Borel–Moore homology

HBM
dim(RBunGC (M))−•(BunGC(M))

of the moduli stack of GC-bundles on M. It has a natural grading given by the second
Chern character

∫
M ch2(P) of the GC-bundle P.

9. The Twist of the 7d N = 1 Super Yang–Mills Theory

In this section we describe a compactification of the topological twist of 7dN = 1 super
Yang–Mills theory on a Calabi–Yau three-fold.
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9.1. Twisted super Yang–Mills theory. Consider a compact Lie group G equipped with
a nondegenerate symmetric bilinear pairing (−,−) on its Lie algebra and consider the
7dN = 1 super Yang–Mills theory with a gauge group G. It admits a topological twist
(see e.g. [AOS97]) which allows us to consider the theory on a G2 manifold M .

Notation 9.1. Denote the fundamental 3-form on the G2 manifold M by ϕ ∈ �3(M).

The theory has the following fields:

• A principal G-bundle P → M .
• A connection A on P .
• Three sections σ, ρ, ρ̃ ∈ �(M, ad P).
• Two odd one-forms ψ, χ ∈ 
�1(M, ad P).
• Odd sections ν, η ∈ 
�(M, ad P).

The supersymmetry transformation is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δA = iχ
δσ = i ν
δρ = 0
δρ̃ = 2i η
δη = 1

2 [ρ, ρ̃]
δχ = dAρ

δν = [σ, ρ]
δψ = dAσ − �(�ϕ ∧ FA).

(31)

The bosonic part of the action is

Sbosonic =
∫

M
dvolM

(
1

2
|FA|2 + 1

2
|dAσ |2 + (dAρ, dAρ̃) + ([σ, ρ], [σ, ρ̃]) − 1

2
|[ρ, ρ̃]|2

)

(32)

Remark 9.2. The above formulas are obtained by a dimensional reduction from the for-
mulas in [AOS97, Section 3] which describe the topological twist of the 8-dimensional
super Yang–Mills theory on an 8-manifold with Spin(7)-holonomy.

9.2. Calabi–Yau compactification. Suppose that X is a smooth projective Calabi–Yau
3-fold with a holomorphic volume form � ∈ �3,0(X) and Kähler form ωX ∈ �1,1(X).
Our convention is that

dvolX = 1

4
Re� ∧ Im� = ω3

X

6
.

Let S be a one-dimensional Riemannian manifold and consider the product Riemannian
metric on M = X × S. There is a natural G2 structure on X × S with the fundamental
three-form

ϕ = Re(�) − dt ∧ ωX

and the fundamental four-form

�ϕ = −dt ∧ Im(�) − ω2
X

2
.
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Consider the Fréchet manifold ConntrivG (X) parametrizing connections A on the trivial
G-bundle on X . It admits a Riemannian structure

g(v,w) =
∫

X
dvolX (v,w).

The group G X = Map(X,G) acts on ConntrivG (X) by gauge transformations on A. Its
Lie algebra gX = C∞(X; g) carries an invariant symmetric bilinear form

(v,w)gX =
∫

X
dvolX (v(x), w(x)).

This action preserves the metric.
ConntrivG (X) is equipped with a Kähler structure with Kähler form defined by

ω(v,w) = 1

2

∫

X
ω2

X ∧ (v ∧ w).

The G X action is Hamiltonian with respect to this Kähler structure. The moment map
is

μ = 1

2
ω2

X ∧ FA = (!FA)dvolX .

Consider the holomorphic Chern–Simons functional

ShC S = − i

2

∫

X
� ∧

(

A ∧ dA +
1

3
(A ∧ [A ∧ A])

)

which defines a holomorphic function on ConntrivG (X). (Notice that ShC S depends holo-
morphically on the (0, 1)part of the connection A.)Define the one-formα onConntrivG (X)

by

α = δ Re ShC S =
∫

X
Im(�) ∧ δA ∧ FA. (33)

Finally, define the smooth function

h = −1

2

∫

X
(FA ∧ FA) ∧ ω. (34)

Theorem 9.3. Let X be a Calabi–Yau 3-fold. The topological twist of the 7d N = 1
super Yang–Mills theory on X × S is equivalent to the N = 4 G X -gauged supersym-
metric mechanics of maps S → ConntrivG (X) with α given by (33) and h given by (34).
Under this correspondence the supersymmetry transformation (31) corresponds to the
transformation induced by the A supercharge Q A (7).

Proof. We decompose the one-form fields under the splitting M = X × S as follows:

A �→ A + A0, ψ �→ ψ + ψ0, χ �→ χ + χ0,

where the first component is a one-form along X and the second component is a one-form
along S. For instance, A is a connection on P in the X direction and A0 is a connection
on P in the S direction. We may then match the fields as in Table 5.
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The action (32) becomes

Sbosonic =
∫

M
dvolM

(1

2
|FA|2 + 1

2
|dA0 + dA0 A|2 + 1

2
|dAσ |2 + 1

2
|dA0σ |2

+ (dAρ, dAρ̃) + (dA0ρ, dA0 ρ̃) + (dA0 σ̃ , dA0σ) + ([σ, ρ], [σ, ρ̃]) − 1

2
|[ρ, ρ̃]|2

)
.

We have

1

2
|α|2 = 1

2

∫

X
|Im� ∧ FA|2dvolX

= 1

2

∫

X

∣
∣
∣
∣
∣
�

2i
∧ F0,2 − �

2i
∧ F2,0

∣
∣
∣
∣
∣

2

dvolX

= 2
∫

X
(F0,2, F2,0)dvolX

and

1

2
|μ|2 = 1

2

∫

X
|!FA|2dvolX .

By [ESW20, Corollary 4.3] we have

1

2
|FA|2dvolX +

1

2
(FA ∧ FA) ∧ ω =

(

2(F2,0, F0,2) +
1

2
(!FA)

2
)

dvolX .

This shows that the bosonic action agrees with that of theN = 4 SUSY mechanics (8).
We now show that the reduction of the 7d supersymmetry matches that of the su-

persymmetric mechanics. The variation of the field c in supersymmetric mechanics is
obtained from the variation of the 7d field ψ0. We read this off as

δψ0 = dA0σ +
1

2
�7 (ω

2
X ∧ FA).

(The subscript in �7 is to emphasize that we are using the Hodge operator with respect
to the metric on the 7-manifold X × S.) Using c = −ψ0dt we see this matches with
the supersymmetry in (7). The variation of the field ψ in supersymmetric mechanics is
obtained from the variation of the 7d field ψ . We read this off as

δψ = dAσ + �7

(

dt ∧ Im(�) ∧ FA +
ω2

X

2
∧ (dA0 + dA0 A)

)

.

This coincides with the variation in (7). ��
We may identify connections A on the trivial G-bundle over X with (0, 1) connec-

tions A0,1 on the trivial GC-bundle over X . The action of Map(X,G) extends to an
action of Map(X,GC) by complexified gauge transformations. The zero locus of α on
ConntrivG (X)/Map(X,GC) coincides with the moduli space BuntrivG (X) of holomorphic
structures on a trivializableGC-bundle.Let us also consider nontrivialGC-bundles. IfGC
is an algebraic group, there is a (−1)-shifted symplectic stack RBunGC(X) parametriz-
ing algebraic GC-bundles (see e.g. [Pan+13]). It is shown in [JU21b] that RBunGC(X)

carries a canonical orientation data for G = SU(n).
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Table 5. Fields in the N = 4 gauged supersymmetric mechanics and in the twist of the 7d N = 1 super
Yang–Mills theory

SUSY mechanics 7d theory
A A0
η η

c −ψ0dt
ν ν

λ ρ

ξ ρ̃

σ σ

φ A
χ χ

ψ −ψdt

Proposal 9.4. Suppose GC is an algebraic group. Then the space of states in the topolog-
ical twist of the 7d N = 1 super Yang–Mills theory on a smooth projective Calabi–Yau
3-fold X is

R�(BunGC(X), PRBunGC (X)).

It carries a natural grading by the second Chern character
∫

X ch2(P) ∧ ω of the GC-
bundle P.

The previous complex gives the categorified Donaldson–Thomas invariants of X ;
this definition was introduced in the papers [Bra+15,KL12].
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