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Higher Kac-Moody algebras and

symmetries of holomorphic field theories

OWEN GWILLIAM AND BRIAN R. WILLIAMS

We introduce a higher dimensional generalization of the affine Kac-
Moody algebra using the language of factorization algebras. In
particular, on any complex manifold there is a factorization al-
gebra of “currents” associated to any Lie algebra. We classify local
cocycles of these current algebras, and compare them to central
extensions of higher affine algebras recently proposed by Faonte-
Hennion-Kapranov. A central goal of this paper is to witness higher
Kac-Moody algebras as symmetries of a class of holomorphic quan-
tum field theories. In particular, we prove a generalization of the
free field realization of an affine Kac-Moody algebra and also de-
velop the theory of ¢g-characters for this class of algebras in terms of
factorization homology. Finally, we exhibit the “large N” behavior
of higher Kac-Moody algebras and their relationship to symmetries
of non-commutative field theories.
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The loop algebra Lg = g[z, 2], consisting of Laurent polynomials val-
ued in a Lie algebra g, admits a non-trivial central extension g for each
choice of invariant pairing on g. This affine Lie algebra and its cousin, the
Kac-Moody vertex algebra, are foundational objects in representation the-
ory and conformal field theory. A natural question then arises: do there
exists multivariable, or higher dimensional, generalizations of the affine Lie
algebra and Kac-Moody vertex algebra?

In this work, we pursue two independent yet related goals:

1) Use factorization algebras to study the (co)sheaf of Lie algebra-valued
currents on complex manifolds, and their relationship to higher affine
algebras;

2) Develop tools for understanding symmetries of holomorphic field theory
in any dimension, that provide a systematic generalization of methods
used in chiral conformal field theory on Riemann surfaces.

Concretely, for every complex dimension d and to every Lie algebra, we
define a factorization algebra defined on all d-dimensional complex mani-
folds. There is also a version that works for an arbitrary principal bundle.
When d =1, it is shown in [CG17|, that this factorization algebra recov-
ers the ordinary affine algebra by restricting the factorization algebra to
the punctured complex line C*. When d > 1, part of our main result is to
show how the factorization algebra on C¢\ {0} recovers a higher dimen-
sional central extensions of g-valued functions on the punctured plane. A
model for these “higher affine algebras” has recently appeared in work of
Faonte-Hennion-Kapranov [FHK19], and we will give a systematic relation-
ship between our approaches.

By a standard procedure, there is a way of enhancing the affine algebra
to a vertex algebra. The so-called Kac-Moody vertex algebra, as developed in
[Ere85, [Kac98| [Bor86], is important in its own right to representation theory
and conformal field theory. In [CG17] it is also shown how the holomorphic
factorization algebra associated to a Lie algebra recovers this vertex algebra.
The key point is that the OPE is encoded by the factorization product
between disks embedded in C. Our proposed factorization algebra, then,
provides a higher dimensional enhancement of this vertex algebra through
the factorization product of balls or polydisks in C%. This structure can be
thought of as a holomorphic analog of an algebra over the operad of little
d-disks.
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It is the general philosophy of [CGI17, [CG] that every quantum field
theory defines a factorization algebra of observables. This perspective al-
lows us to realize the higher Kac-Moody algebra inside of familiar higher
dimensional field theories. In particular, this philosophy leads to higher di-
mensional analogs of free field realization via a quantum field theory called
the S~ system, which is defined on any complex manifold.

In complex dimension one, a vertex algebra is a gadget associated to
any conformal field theory that completely determines the algebra of local
operators. More recently, vertex algebras have been extracted from higher
dimensional field theories, such as 4-dimensional gauge theories |[BLL™ 15|
BPRvR15].

A future direction, which we do not undertake here, would be to use
these higher dimensional vertex algebras as a more refined invariant of the
quantum field theory.

Before embarking on our main results, we take some time to motivate
higher dimensional current algebras from two different perspectives.

A view from physics

In conformal field theory, the Kac-Moody algebra appears as the symmetry
of a system with an action by a Lie algebra. A generic example is a flavor
symmetry of a field theory where the matter takes values in some representa-
tion. In ordinary 2d chiral CFT, the central extension appears as the failure
of the classical Lie bracket on g-valued currents to be compatible with the
OPE. This is measured by the charge anomaly, which occurs as a 2-point
function in the CFT.

This paper is concerned with symmetries for holomorphic theories in
any complex dimension. Classically, the story is completely analogous to the
ordinary picture in chiral CFT: for holomorphic theories, the action by a Lie
algebra is enhanced to a symmetry by an infinite dimensional Lie algebra of
currents on the $2?~!-modes of the holomorphic theory. This current algebra
is an algebraic version of the sphere mapping space Map(S529~1, g).

In any dimension, there is a chiral charge anomaly for the class of holo-
morphic field theories that we study, which measures the failure of quan-
tizing the classical symmetry. In complex dimension 2 (real dimension 4),
for instance, the anomaly is a holomorphic version of the Adler-Bardeen-
Jackiw anomaly [AdI69, BJ69]. In terms of supersymmetric field theory, the
anomaly is the holomorphic twist of the Konishi anomaly [KS85]. For a gen-
eral form of the anomaly in our situation, we refer to Section |3, where we
consider a general class of theories with “holomorphic matter”.
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Throughout this paper, we use ideas and techniques from the Batalin-
Vilkovisky formalism, as articulated by Costello, and from the theory of
factorization algebras, following [CG17, [CG]. In this introduction, however,
we will try to explain the key objects and constructions with a light touch, in
a way that does not require familiarity with that formalism, merely comfort
with basic complex geometry and ideas of quantum field theory.

A running example is the following version of the v system.

Let X be a complex d-dimensional manifold. Let G be a complex alge-
braic group, such as GL,,(C), and let P — X be a holomorphic principal
G-bundle. Fix a finite-dimensional G-representation V and let V'V denote
the dual vector space with the natural induced G-action. Let V — X de-
note the holomorphic associated bundle P x& V', and let V' — X denote
the holomorphic bundle Ky ® VV, where V* — X is the holomorphic asso-
ciated bundle P x“ V*. Note that there is a natural fiberwise pairing

(—, =) : VeV = Kx[l

arising from the evaluation pairing between V and VV.

The field theory involves fields v, for a smooth section of V, and 3, for
a smooth section of Q%41 ® VY. Here, V¥ denotes the dual bundle. The
action functional is

S(8,) = /X (8,3),

so that the equations of motion are
Oy =0=0p.

Thus, the classical theory is manifestly holomorphic: it picks out holomor-
phic sections of V and V' as solutions.

The theory also enjoys a natural symmetry with respect to G, arising
from the G-action on V and V'. For instance, if 9y = 0 and g € G, then the
section g+ is also holomorphic. In fact, there is a local symmetry as well. Let
ad(P) — X denote the Lie algebra-valued bundle P x% g — X arising from
the adjoint representation ad(G). Then a holomorphic section f of ad(P)
acts on a holomorphic section v of V, and

A(fv) = (Of )y + foy =0,

so that the sheaf of holomorphic sections of ad(P) encodes a class of local
symmetries of this classical theory.

IThe shriek denotes the Serre dual, V' = Kx @ VV.
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If one takes a BV/BRST approach to field theory, as we will in this paper,
then one works with a cohomological version of fields and symmetries. For
instance, it is natural to view the classical fields as consisting of the graded
vector space of Dolbeault forms

v e Q¥ (X,V) and B e Q% (X, V)= (X, V),

but using the same action functional, extended in the natural way. As we
are working with a free theory and hence have only a quadratic action, the
equations of motion are linear and can be viewed as equipping the fields with
the differential 0. In this sense, the sheaf £ of solutions to the equations of
motion can be identified with the elliptic complex that assigns to an open
set U C X, the complex

EWU) = Q" (U, V) @ Q¥ (U, V",

with 0 as the differential. This dg approach is certainly appealing from
the perspective of complex geometry, where one routinely works with the
Dolbeault complex of a holomorphic bundle.

It is natural then to encode the local symmetries in the same way. Let
Ad(P) denote the Dolbeault complex of ad(P) viewed as a sheaf. That is,
it assigns to the open set U C X, the dg Lie algebra

Ad(P)(U) = Q°*(U, ad(P))

with differential & for this bundle. By construction, Ad(P) acts on €. In
words, & is a sheaf of dg modules for the sheaf of dg Lie algebra Ad(P).

So far, we have simply lifted the usual discussion of symmetries to a dg
setting, using standard tools of complex geometry. We now introduce a novel
maneuver that is characteristic of the BV /factorization package of [CG17,
Cdl.

The idea is to work with compactly supported sections of Ad(P), i.e., to
work with the precosheaf Ad(P). of dg Lie algebras that assigns to an open
U, the dg Lie algebra

Ad(P)c(U) = Q2*(U,ad(P)).
The terminology precosheaf encodes the fact that there is natural way to

extend a section supported in U to a larger open V O U (namely, extend by
zero), and so one has a functor Ad(P): Opens(X) — Algy .
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There are several related reasons to consider compact Supportﬂ First,
it is common in physics to consider compactly-supported modifications of
a field. Recall the variational calculus, where one extracts the equations of
motion by working with precisely such first-order perturbations. Hence, it
is natural to focus on such symmetries as well. Second, one could ask how
such compactly supported actions of Ad(P) affect observables. More specif-
ically, one can ask about the charges of the theory with respect to this local
symmetryﬂ Third—and this reason will become clearer in a moment—the
anomaly that appears when trying to quantize this symmetry are naturally
local in X, and hence it is encoded by a kind of Lagrangian density L on
sections of Ad(P). Such a density only defines a functional on compactly
supported sections, since when evaluated a noncompactly supported section
f, the density L(f) may be non-integrable. Thus L determines a central
extension of Ad(P). as a precosheaf of dg Lie algebras, but not as a sheafﬂ

Let us sketch how to make these reasons explicit. The first step is to
understand how Ad(P). acts on the observables of this theory.

Modulo functional analytic issues, we say that the observables of this
classical theory are the commutative dg algebra

(Sym(Q%*(X,V)* @ Q¥ (X, V"), ),

i.e., the polynomial functions on £(X). More accurately, we work with a
commutative dg algebra essentially generated by the continuous linear func-
tionals on £(X), which are compactly supported distributional sections of
certain Dolbeault complexes (aka Dolbeault currents). We could replace X
by any open set U C X, in which case the observables with support in U
arise from such distributions supported in U. We denote this commutative
dg algebra by Obsd(U). Since observables on an open U extend to observ-
ables on a larger open V O U, we recognize that Obs® forms a precosheaf.

Manifestly, Ad(P).(U) acts on Obs?(U), by precomposing with its ac-
tion on fields. Moreover, these actions are compatible with the extension

2In Section [1] we extract factorization algebras from Ad(P)., and then extract
associative and vertex algebras of well-known interest. We postpone discussions
within that framework till that section.

3We remark that it is precisely this relationship with traditional physical ter-
minology of currents and charges that led de Rham to use current to mean a
distributional section of the de Rham complex.

4We remark that to stick with sheaves, one must turn to quite sophisticated
tools [Wit88| [Get88, BMS8&7] that can be tricky to interpret, much less generalize
to higher dimension, whereas the cosheaf-theoretic version is quite mundane and
easy to generalize, as we’ll see.
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maps of the precosheaves, so that Obs is a module for Ad(P). in pre-
cosheaves of cochain complexes. This relationship already exhibits why one
might choose to focus on Ad(P),, as it naturally intertwines with the struc-
ture of the observables.

But Noether’s theorem provides a further reason, when understood in
the context of the BV formalism. The idea is that Obs® has a Poisson bracket
{—,—} of degree 1 (although there are some issues with distributions here
that we suppress for the moment). Hence one can ask to realize the action
of Ad(P). via the Poisson bracket. In other words, we ask to find a map of
(precosheaves of) dg Lie algebras

J: Ad(P). — Obs[—1]
such that for any f € Ad(P).(U) and F € Obs®(U), we have

f-F={J(f), F}.

Such a map would realize every symmetry as given by an observable, much
as in Hamiltonian mechanics.
In this case, there is such a map:

I, B) = /U (8. f1)-

This functional is local, and it is natural to view it as describing the “minimal
coupling” between our free 8 system and a kind of gauge field implicit in
Ad(P). This construction thus shows again that it is natural to work with
compactly supported sections of Ad(P), since it allows one to encode the
Noether map in a natural way. We call Ad(P). the Lie algebra of classical
currents as we have explained how, via J, we realize these symmetries as
classical observables.

Remark 0.1. We remark that it is not always possible to produce such a
Noether map, but the obstruction always determines a central extension of
Ad(P). as a precosheaf of dg Lie algebras, and one can then produce such
a map to the classical observables.

In the BV formalism, quantization amounts to a deformation of the
differential on Obs®, where the deformation is required to satisfy certain
properties. Two conditions are preeminent:



136 O. Gwilliam and B. R. Williams

e the differential satisfies a quantum master equation, which ensures that
Obs?(U)[—1] is still a dg Lie algebra via the bracketﬂ and

e it respects support of observables so that Obs? is still a precosheaf.

The first condition is more or less what BV quantization means, whereas
the second is a version of the locality of field theory.

We can now ask whether the Noether map J determines a map of pre-
cosheaves of dg Lie algebras from Ad(P). to Obs?[—1]. Since the Lie bracket
has not changed on the observables, the only question is where J is a cochain
map for the new differential d? If we write d? = d¢ + hAﬁ then

[d,J] =hAoJ.

Naively—i.e., ignoring renormalization issues—this term is the functional ob
on Ad(P). given

ob(f) = / (FKA),

where K is the integral kernel for the identity with respect to the pairing
(—,—). (It encodes a version of the trace of f over £.) This obstruction,
when examined with care, provides a holomorphic analogue of the ABJ and
Konishi anomalies.

This functional ob is a cocycle in Lie /alg\ebra cohomology for Ad(P)
and hence determines a central extension Ad(P), as precosheaves of dg Lie
algebras. It is the Lie algebra of quantum currents, as there is a lift of J to
a map J? out of this extension to the quantum observables.

A view from geometry

There is also a strong motivation for the algebras we consider from the
perspective of the geometry of mapping spaces. There is an embedding
gz, 271 — C>®(S') ® g = Map(S', g), induced by the embedding of alge-
braic functions on punctured affine line inside of smooth functions on S?.
Thus, a natural starting point for d-dimensional affine algebras is the “sphere

5Again, we are suppressing—for the moment important—issues about renormal-
ization, which will play a key role when we get to the real work.

6By working with smeared observables, one really can work with the naive BV
Laplacian A. Otherwise, one must take a little more care.
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algebra”
(0.1) Map(5*~1, g),

where we view §2¢-1 sitting inside punctured affine space A? = C4\ {0}.

When d = 1, affine algebras are given by extensions Lg prescribed by a
2-cocycle involving the algebraic residue pairing. Note that this cocycle is
not pulled back from any cocycle on O,5(A!) ® g = g[2].

When d > 1, Hartog’s theorem implies that the space of holomorphic
functions on punctured affine space is the same as the space of holomor-
phic functions on affine space. The same holds for algebraic functions, so
that Oalg(j%d) Rg= Oalg(Ad) ® g. In particular, the naive generalization
Oalg(;&d) ® g of has no interesting central extensions. However, in con-
trast with the punctured line, the punctured affine space A? has interesting
higher cohomology.

The key idea is to replace the commutative algebra Oalg(fo%d) by the de-
rived space of functions RI‘(Ad, Oalg)- This complex has interesting cohomol-
ogy and leads to nontrivial extensions of the Lie algebra object RF(ACZ, 0)®
g, as well as its Dolbeault model QO’*(;&d) ® g. Faonte-Hennion-Kapranov
[FHK19] have provided a systematic exploration of this situation.

Our starting point is to work in the style of complex differential geometry
and use the sheaf of g-valued Dolbeault forms Q%*(X,g), defined on any
complex manifold X. We deem this sheaf of dg Lie algebras—or rather its
cosheaf version Gx = Qg’*(X,g)—the holomorphic g-valued currents on X.
We will see that there exists cocycls on this sheaf of dg Lie algebras that give
rise to interesting extensions of the factorization algebra C14¢G . which serve
as our model for a higher dimensional Kac-Moody algebra. Section [2.1.5]is
devoted to relating our construction to that in [FHK19|.

A novel facet of this paper is that we enhance this Lie algebraic object to
a factorization algebra on the manifold X by working with whe Lie algebra
chains Cl¢Gy of this cosheaf. It serves as a higher dimensional analog of the
chiral enveloping algebra of g introduced by Beilinson and Drinfeld [BD04],
and it yields a higher dimensional generalization of the vertex algebra of a
Kac-Moody algebra.

Analogs of important objects over Riemann surfaces arise from this new
construction. For instance, we obtain a version of bundles of conformal blocks
from our higher Kac-Moody algebras: factorization algebras are local-to-
global objects, and one can take the global sections (sometimes called the
factorization or chiral homology). In this paper we explicitly examine the
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factorization homology on Hopf manifolds, which provide a systematic gen-
eralization of elliptic curves in the sense that their underlying manifolds are
diffeomorphic to S* x S2¢~1. Due to the appearance S', one finds connec-
tions with traces. As one might hope, these Hopf manifolds form moduli
and so one can obtain, in principle, generalizations of g-character formulas.
(Giving explicit formulas is deferred to a future work.)

Another key generalization is given by natural determinant lines on mod-
uli of bundles. Any finite-dimensional representation V of the Lie algebra
g determines a line bundle over the moduli of bundles on a complex mani-
fold X: take the determinant of the Dolbeault cohomology of the associated
holomorphic vector bundle V over X. In [FHK19] they use derived algebraic
geometry to provide a higher Kac-Moody uniformization for complex d-folds
and discuss these determinant lines. We offer a complementary perspective:
such a determinant line appears as the global sections of a certain factor-
ization algebra on X determined by the vector bundle V. That is, there
is another factorization algebra whose bundle of conformal blocks encodes
this determinant. We construct this factorization algebra as observables of a
quantum field theory, as generalizations of the bc and B~ systemsE] In short,
by combining [FHKI9] with our results, there seems to emerge a systematic,
higher-dimensional extension of the beautiful, rich dialogue between repre-
sentation theory of infinite-dimensional Lie algebras, complex geometry, and
conformal field theory.
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1. Current algebras on complex manifolds

This paper takes general definitions and constructions from [CG17] and
specializes them to the context of complex manifolds. In this subsection we
will review some of the key ideas but refer to [CG17] for foundational results.

Remark 1.1. It might help to bear in mind the one-dimensional case that
we wish to extend. Let X be a Riemann surface, and let g be a simple Lie
algebra with Killing form . Consider the local Lie algebra Gy, = Qg’*(E) ®g
on Y. There is a natural cocycle depending precisely on two inputs:

9(a®M,B®N):/{(M,N)/a/\85,
>

where a, 8 € Q2*(X) and M, N € g. In Chapter 5 of [CG17] it is shown how
the twisted enveloping factorization algebra of Gy for this cocycle recov-
ers the Kac-Moody vertex algebra associated to the affine algebra extend-
ing Lg = gz, 271].

1.1. Local Lie algebras

A key notion for us is a sheaf of Lie algebras on a smooth manifold. These
often appear as infinitesimal automorphisms of geometric objects, and hence
as symmetries in classical field theories.

Definition 1.2. A local Lie algebra on a smooth manifold X is

(i) a Z-graded vector bundle L on X of finite total rank;

(ii) a degree 1 operator £ : £*" — £ on the sheaf £5" of smooth sections
of L, and

(iii) a degree 0 bilinear operator

by : L x L7 — £
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such that ¢2 = 0, /1 is a differential operator, /5 is a bidifferential operator,

O(ta(x,y)) = La(i(2),y) + (=1) (@, 1(y))

and the graded Jacobi identity holds
(=)= ey (@, ba(y, 2)) + (D) Ws (y, Lo (2, 2)) + (=1)IFles (2, (2,)) = 0,

for any sections z,y,z of £5" of degree |x|,|y|,|z|, respectively. We call ¢;
the differential and /o the bracket.

In other words, a local Lie algebra is a sheaf of dg Lie algebras where
the underlying sections are smooth sections of a vector bundle and where
the operations are local in the sense of not enlarging support of sections.
(As we will see, such Lie algebras often appear by acting naturally on the
local functionals from physics, namely functionals determined by Lagrangian
densities.)

Remark 1.3. For a local Lie algebra, we reserve the more succinct nota-
tion £ to denote the precosheaf of compactly supported sections of L, which
assigns a dg Lie algebra to each open set U C X, since the differential and
bracket respect support. At times we will abusively refer to £ to mean the
data determining the local Lie algebra, when the support of the sections is
not relevant to the discussion at hand.

The key examples for this paper all arise from studying the symmetries of
holomorphic principal bundles. We begin with the specific and then examine
a modest generalization.

Let w: P — X be a holomorphic principal G-bundle over a complex
manifold. We use ad(P) — X to denote the associated adjoint bundle P x©
g — X, where the Borel construction uses adjoint action of G on g from the
left. The complex structure defines a (0, 1)-connection dp : Q%4(X; ad(P)) —
Q04+ (X ad(P)) on the Dolbeault forms with values in the adjoint bundle,
and this connection satisfies 9 = 0. Note that the Lie bracket on g induces
a pointwise bracket on smooth sections of ad(P) by

[s,t](x) = [s(), t(2)]

where s,t are sections and x is a point in X. This bracket naturally extends
to Dolbeault forms with values in the adjoint bundle, as the Dolbeault forms
are a graded-commutative algebra.
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Definition 1.4. For n: P — X a holomorphic principal G-bundle, let
Ad(P)*" denote the local Lie algebra whose sections are Q0*(X,ad(P)),
whose differential is Op, and whose bracket is the pointwise operation just
defined above.

The dg Lie algebra Ad(P)*"(X) controls formal deformations of the
holomorphic principal G-bundle P. Indeed, given a Maurer-Cartan element
a € Ad(P)*(X)! = Q%(X,ad(P)) one considers the new complex struc-
ture defined by the connection dp 4 a. The Maurer-Cartan condition is
equivalent to (Op + )% = 0.

This construction admits important variations. For example, we can
move from working over a fixed manifold X to working over a site. Let Holy
denote the category whose objects are complex d-folds and whose morphisms
are local biholomorphismsﬁ This category admits a natural Grothendieck
topology where a cover {¢; : U; — X} means a collection of morphisms into
X such that union of the images is all of X. It then makes sense to talk about
a local Lie algebra on the site Hol;. Here is a particularly simple example
that appears throughout the paper.

Definition 1.5. Let G be a complex Lie group and let g denote its ordinary
Lie algebra. There is a natural functor

Gsh: Hol — dgLie
X = QX)®g,

which defines a sheaf of dg Lie algebras. Restricted to each slice Holy,y, it
determines the local Lie algebra for the trivial principal bundle G x X — X,
in the sense described above. We use G to denote the cosheaf of compactly
supported sections 0% ® g on this site.

Remark 1.6. It is not necessary to start with a complex Lie group: the
construction makes sense for a dg Lie algebra over C of finite total dimension.
We lose, however, the interpretation in terms of infinitesimal symmetries of
the principal bundle.

Remark 1.7. For any complex manifold X we can restrict the functor "
to the overcategory of opens in X, that we denote by 9%‘. In this case, 9%‘,
or its compactly supported version Gy, comes from the local Lie algebra

8A biholomorphism is a bijective map ¢ : X — Y such that both ¢ and ¢!
are holomorphic. A local biholomorphism means a map ¢ : X — Y such that every
point z € X has a neighborhood on which ¢ is a biholomorphism.
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of Definition [L.4] in the case of the trivial G-bundle on X. In the case that
X = C? we will denote the sheaves and cosheaves of the local Lie algebra
by 92’2 G4 respectively.

1.2. Current algebras as enveloping factorization algebras of
local Lie algebras

Local Lie algebras often appear as symmetries of classical field theories.
For instance, as we will show in Section [3] each finite-dimensional complex
representation V of a Lie algebra g determines a charged Sv-type system on
a complex d-fold X with choice of holomorphic principal bundle 7 : P — X.
Namely, the on-shell v fields are holomorphic sections for the associated
bundle P x¢ V — X, and the on-shell £ fields are holomorphic d-forms with
values in the associated bundle P x& V* — X. It should be plausible that
Ad(P)*" acts as symmetries of this classical field theory, since holomorphic
sections of the adjoint bundle manifestly send on-shell fields to on-shell fields.
Such a symmetry determines currents, which we interpret as observables
of the classical theory. Note, however, a mismatch: while fields are contravari-
ant in space(time) because fields pull back along inclusions of open sets,
observables are covariant because an observable on a smaller region extends
to any larger region containing it. The currents, as observables, thus do not
form a sheaf but a precosheaf. We introduce the following terminology.

Definition 1.8. For a local Lie algebra (L — X, ¢1,{3), its precosheaf £[1]
of linear currents is given by taking compactly supported sections of L.

There are a number of features of this definition that may seem peculiar
on first acquaintance. First, we work with £[1] rather than £. This shift is
due to the Batalin-Vilkovisky formalism. In that formalism the observables
in the classical field theory possesses a 1-shifted Poisson bracket {—, —} (also
known as the antibracket), and so if the current J(s) associated to a section
s € L encodes the action of s on the observables, i.e.,

{J(s),F}=s"F,

then we need the cohomological degree of J(s) to be 1 less than the degree
of s. In short, we want a map of dg Lie algebras .J : £ — Obs®[—1], or
equivalently a map of 1-shifted dg Lie algebras J : L[1] — Obs®!, where Obs®
denotes the algebra of classical observables.

Second, we use the term “linear” here because the product of two such
currents is not in £[1] itself, although such a product will exist in the larger
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precosheaf Obs®! of observables. In other words, if we have a Noether map of
dg Lie algebras J : £ — Obs®[—1], it extends to a map of 1-shifted Poisson
algebras

J : Sym(£L[1]) — Obs®!

as Sym(L[1]) is the 1-shifted Poisson algebra freely generated by the 1-
shifted dg Lie algebra £[1]. We hence call Sym(g[1]) the enveloping 1-shifted
Poisson algebra of a dg Lie algebra gﬂ

For any particular field theory, the currents generated by the symmetry
for that theory are given by the image of this map J of 1-shifted Poisson
algebras. To study the general structure of such currents, without respect to
a particular theory, it is natural to study this enveloping algebra by itself.

Definition 1.9. For a local Lie algebra (L — X, ¢1,{2), its classical cur-
rents Cur®'(£) is the precosheaf Sym(£[1]) given by taking the enveloping
1-shifted Poisson algebra of the compactly supported sections of L. It assigns

Cur™(L)(U) = Sym(£(U)[1])
to an open subset U C X.

We emphasize here that by Sym(£L(U)[1]) we do not mean the sym-
metric algebra in the purely algebraic sense, but rather a construction that
takes into account the extra structures on sections of vector bundles (e.g.,
the topological vector space structure). Explicitly, the nth symmetric power
Sym"™(£L(U)[1]) means the smooth, compactly supported, and S,-invariant
sections of the graded vector bundle

L% - um,

For further discussion of functional analytic aspects (which play no tricky
role in our work here), see [CG17], notably the appendices.

A key result of [CG17], namely Theorem 5.6.0.1, is that this precosheaf
of currents forms a factorization algebra. From hereon we refer to Cur®(£)
as the factorization algebra of classical currents. If the local Lie algebra acts
as symmetries on some classical field theory, we obtain a map of factoriza-
tion algebras J : Cur®(£) — Obs® that encodes each current as a classical
observable.

There is a quantum counterpart to this construction, in the Batalin-
Vilkovisky formalism. The idea is that for a dg Lie algebra g, the enveloping

9See [BV1T, BL13, [GHIS] for discussions of these constructions and ideas.
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1-shifted Poisson algebra Sym(g[1]) admits a natural BV quantization via
the Chevalley-Eilenberg chains C,(g). This assertion is transparent by ex-
amining the Chevalley-Eilenberg differential:

dep(zy) = dg(2)y £z dg(y) + [z, ]

for x,y elements of g[1]. The first two terms behave like a derivation of
Sym(g[1]), and the last term agrees with the shifted Poisson bracket. More
accurately, to keep track of the h-dependency in quantization, we introduce
a kind of Rees construction.

Definition 1.10. The enveloping BD algebra UPP(g) of a dg Lie algebra
g is given by the graded-commutative algebra in C[A]-modules

Sym(g[1])[A] = Symcyy (a[A][1]),

but the differential is defined as a coderivation with respect to the natural
graded-cocommutative coalgebra structure, by the condition

d(zy) = dg(x)y £ 2 dg(y) + hlz, y].

This construction determines a BV quantization of the enveloping 1-
shifted Poisson algebra, as can be verified directly from the definitions. (For
further discussion see [GH18] and |[CG].) It is also straightforward to extend
this construction to “quantize” the factorization algebra of classical currents.

Definition 1.11. For a local Lie algebra (L — X, {1, ¥0s), its factorization
algebra of quantum currents Cur(L) is given by taking the enveloping BD
algebra of the compactly supported sections of L. It assigns

Cur(£)(U) = UPP(L(U))
to an open subset U C X.

As mentioned just after the definition of the classical currents, the sym-
metric powers here mean the construction involving sections of the external
tensor product. Specializing i = 1, we recover the following construction.

Definition 1.12. For a local Lie algebra (L — X, ¢1,42), its enveloping
factorization algebra U(L) is given by taking the Chevalley-Eilenberg chains
Clie(L) of the compactly supported sections of L.
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Here the symmetric powers use sections of the external tensor powers,
just as with the classical or quantum currents.

When a local Lie algebra acts as symmetries of a classical field theory, it
sometimes also lifts to symmetries of a BV quantization. In that case the map
J : Sym(£L[1]) — Obs® of 1-shifted Poisson algebras lifts to a cochain map
J4: Curd(L) — Obs? realizing quantum currents as quantum observables.
Sometimes, however, the classical symmetries do not lift directly to quantum
symmetries. We turn to discussing the natural home for the obstructions
to such lifts after a brief detour to offer a structural perspective on the
enveloping construction.

1.2.1. A digression on the enveloping FE,, algebras. This construc-
tion U(L) has a special feature when the local Lie algebra is obtained by
taking the de Rham forms with values in a dg Lie algebra g, i.e., when
L =0 ®g. In that case the enveloping factorization algebra is locally con-
stant and, on the d-dimensional real manifold R?, determines an E,; alge-
bra, also known as an algebra over the little d-disks operad, by a result of
Lurie (see Theorem 5.5.4.10 of [Lur]). This construction satisfies a universal
property: it is the d-dimensional generalization of the universal enveloping
algebra of a Lie algebra.

To state this result of Knudsen precisely, we need to be in the context
of oco-categories.

Theorem 1.13 ([Knul8]). Let C be a stable, C-linear, presentable, sym-
metric monoidal co-category. There is an adjunction

UF4 : LieAlg(C) & E4Alg(@) : F

between Lie algebra objects in C and E4 algebra objects in C. This adjunction
intertwines with the free-forget adjunctions from Lie and E4 algebras in C
to C so that

Freep, (X) ~ UPaFreer;. (2471 X)

for any object X € C.
When € is the co-category of chain complexes over a field of characteris-

tic zero, the Eq algebra UPg is modeled by the locally constant factorization
algebra U(Q2: @ g) on RY,

This theorem is highly suggestive for us: our main class of examples is G4
and UGy, which replaces the de Rham complex with the Dolbeault complex.
In other words, we anticipate that UG, should behave like a holomorphic
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version of an Ej algebra and that it should be the canonical such algebra
determined by a dg Lie algebra. We do not pursue this structural result in
this paper, but it provides some intuition behind our constructions.

1.3. Local cocycles and shifted extensions

Some basic questions about a dg Lie algebra g, such as the classification of
extensions and derivations, are encoded cohomologically, typically as cocy-
cles in the Chevalley-Eilenberg cochains Cj; (g, V') with coefficients in some
g-representation V. When working with local Lie algebras, it is natural to
focus on cocycles that are also local in the appropriate sense. (Explicitly, we
want to restrict to cocycles that are built out of polydifferential operators.)
After introducing the relevant construction, we turn to studying how such
cocycles determine modified current algebras.

1.3.1. Local cochains of a local Lie algebra. In Section 4.4 of [CG]
the local cochains of a local Lie algebra are defined in detail, but we briefly
recall it here. The basic idea is that a local cochain is a Lagrangian density:
it takes in a section of the local Lie algebra and produces a smooth density
on the manifold. Such a cocycle determines a functional by integrating the
density. As usual with Lagrangian densities, we wish to work with them
up to total derivatives, i.e., we identify Lagrangian densities related using
integration by parts and hence ignore boundary terms.

In a bit more detail, for L is a graded vector bundle, let JL denote
the corresponding oo-jet bundle, which has a canonical flat connection. In
other words, it is a left D x-module, where Dx denotes the sheaf of smooth
differential operators on X. For a local Lie algebra, this JL obtains the
structure of a dg Lie algebra in left Dx-modules. Thus, we may consider its
reduced Chevalley-Eilenberg cochain complex Cj, (JL) in the category of
left Dx-modules. By taking the de Rham complex of this left Dx-module,
we obtain the local cochains. For a variety of reasons, it is useful to ignore
the “constants” term and work with the reduced cochains. Hence we have
the following definition.

Definition 1.14. Let £ be a local Lie algebra on X. The local Chevalley-
FEilenberg cochains of £ is

Cikoc([“) - Q;( [2d] ®Dx Ciie,red(JL)'

This sheaf of cochain complexes on X has global sections that we denote
by Cle(£(X)).

loc
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Note that we use the smooth de Rham forms, not the holomorphic de
Rham forms.

Remark 1.15. This construction Cj (L) is just a version of diagonal
Gelfand-Fuks cohomology [Fuk86, [Los98|, where the adjective “diagonal”
indicates that we are interested in continuous cochains whose integral ker-
nels are supported on the small diagonals.

1.3.2. Shifted extensions. For an ordinary Lie algebra g, central exten-
sions are parametrized by 2-cocycles on g valued in the trivial module C.
It is possible to interpret arbitrary cocycles as determining as determining
shifted central extensions as Lo, algebras. Explicitly, a k-cocycle © of de-
gree n on a dg Lie algebra g determines an Lo, algebra structure on the
direct sum g @® C[n — k] with the following brackets {ﬂm}m>1 61 is simply
the differential on g, Zg is the bracket on g, €m =0 for m > 2 except

~

b(x1 +ay,...,xp +ag) =0+ O(x1,x9,...,2).

(See [KS| LV12] for further discussion. Note that n = 2 for k = 2 with ordi-
nary Lie algebras.) Similarly, local cocycles provide shifted central extensions
of local Lie algebras.

Definition 1.16. For a local Lie algebra (L, ¢1,¢3), a cocycle © of degree
2+ k in Cj, (L) determines a k-shifted central extension

(1.1) 0—>(C[k]—>29—>L—>0

of precosheaves of L, algebras, where the L., structure maps are defined

by
Z\n(xl,...,xn):(ﬁ (z1,. /@xh..., ))

Here we set ¢,, = 0 for n > 2.

As usual, cohomologous cocycles determine quasi-isomorphic extensions.
Much of the rest of the section is devoted to constructing and analyzing
various cocycles and the resulting extensions.

1.3.3. Twists of the current algebras. Local cocycles give a direct way
of deforming the various current algebras a local Lie algebra. For example,
we have the following construction.
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Definition 1.17. Let © be a degree 1 local cocycle for a local Lie alge-
bra (L — X, ¢1,¢3). Let K denote a degree zero parameter so that C[K] is
a polynomial algebra concentrated in degree zero. The twisted enveloping
factorization algebra Ug (L) assigns to an open U C X, the cochain complex

Ue(£)(U) = (Sym(L(U)[1] & C- K),dge + K - ©)
= (Sym(L(U)[1)[K],dg + K - ©),

where d; denotes the differential on the untwisted enveloping factorization
algebra and © is the operator extending the cocycle © : Sym(£L(U)[1]) —
C - K to the symmetric coalgebra as a graded coderivation. This twisted en-
veloping factorization algebra is module for the commutative ring C[K], and
so specializing the value of K determines nontrivial modifications of U(L).

An analogous construction applies to the quantum currents, which we
will denote Curg (£).

1.3.4. A special class of cocycles: the j functional. There is a par-
ticular family of local cocycles that has special importance in studying sym-
metries of higher dimensional holomorphic field theories.

Consider

6 € Sym™*!(g")®,

so that 0 is a g-invariant polynomial on g of homogenous degree d + 1. This
data determines a local functional for G = Q%* ® g on any complex d-fold
as follows.

Definition 1.18. For any complex d-fold X, extend 6 to a functional Jx ()
on Gx = Qg’*(X) ® g by the formula

(1.2) 3X(0)(a0,...,ad):/Xe(ozo,ﬁal,...,aad),

where 0 denotes the holomorphic de Rham differential. In this formula, we
define the integral to be zero whenever the integrand is not a (d, d)-form.

To make this formula as clear as possible, suppose the «; are pure tensors
of the form w; ® vy; with w; € Qg’*(X) and y; € g. Then

(13) 3X(0)(W0 ®y07 <., Wy ®yd) = a(y(), “e 7yd)/ wo A a(")1 e /\awd
X
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Note that we use d copies of the holomorphic derivative 9 : Q%% — Qb* to
obtain an element of Q4 in the integrand and hence something that can be
integrated.

This formula manifestly makes sense for any complex d-fold X, and since
integration is local on X, it intertwines nicely with the structure maps of Gx.

Definition 1.19. For any complex d-fold X and any 6 € Sym?*!(g*)9, let
jix () denote the local cochain in Cj, (Gx) defined by

jX(Q)(ao, N ,ad) = 9((10,8&1, ve ,80éd).
Hence Jx (0) = fXjX(H)

This integrand jx (0) is in fact a local cocycle, and in a moment we will
use it to produce an important shifted central extension of Gx.

Proposition 1.20. The assignment

ix o Sym*(g")e[-1] — Ci.(Sx)
0 — jx(e)

is an cochain map.

Proof. The element jx () is local as it is expressed as a density produced
by polydifferential operators. We need to show that jx(€) is closed for the
differential on CIOC(S X) Note that Gx is the tensor product of the dg com-
mutative algebra Qo v and the Lie algebra g. Hence the differential on the
local cochains of Gy splits as a sum 0 + dg where 9 denotes the differential
on local cochains induced from the 0 differential on the Dolbeault forms
and dgy denotes the differential induced from the Lie bracket on g. We now
analyze each term separately.
Observe that for any collection of o; € G, we have

A(ix(0)(ag, a1, ..., 0aq)) =ix(0)(Oag, Do, . . ., Oag)
:i:]X( ), B0an, ..., 0ay) +
+ix(0)(ag, Oa,...,00a)
(8)X( ) (v, Oty . .., Oarg)

because 0 is a derivation and @ wedges the form components. (It is easy to
see this assertion when one works with inputs like in equation (1.3)).) Hence
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viewing jx (6) as a map from G to the Dolbeault complex, it commutes with
the differential 0. This fact is equivalent to 0jx(6) = 0 in local cochains.
Similarly, observe that for any collection of «; € G, we have

(dng(H))(ao, A1y .. ,de) = (dng(G))(ozo, 8041, ey 80éd))
=0

since @ is closed for the Chevalley-Eilenberg differential for g. (]

As should be clear from the construction, everything here works over
the site Holy of complex d-folds, and hence we use j(#) to denote the local
cocycle for the local Lie algebra G on Holy.

This construction works nicely for an arbitrary holomorphic G-bundle
P on X, because the cocycle is expressed in a coordinate-free fashion. To
be explicit, on a coordinate patch U; C X with a choice of trivialization of
the adjoint bundle ad(P), the formula for jx (f) makes sense. On an overlap
U; NUj, the cocycles patch because jx () is independent of the choice of
coordinates. Hence we can glue over any sufficiently refined cover to obtain
a global cocycle. Thus, we have a cochain map

i : Sym™(g")? 1] = C,o(Ad(P)(X))
given by the same formula as in (|1.2)).

1.3.5. Another special class: the LMNS extensions. Much of this
paper focuses on local cocycles of type jx(6), where § € Sym?*+!(g*)?. But
there is another class of local cocycles that appear naturally when studying
symmetries of holomorphic theories. Unlike the cocycle jx(6), which only
depend on the manifold X through its dimension, this class of cocycles
depends on the geometry.

In complex dimension two, this class of cocycles has appeared in the work
of Losev-Moore-Nekrasov-Shatashvili (LMNS) [LMNS96, LMNS97, [LMNS98]
in their construction of a higher analog of the “chiral WZW theory”. Though
our approaches differ, we share their ambition to formulate a higher analogs
of constructions and ideas in chiral CFT.

Let X be a complex manifold of dimension d with a choice of (k,k)-
form 7. Choose a form 64,1 € Sym(g*)®. This data determines a local
cochain on Gx whose local functional is:

¢9177 : 9(X)®d+1_k — C
WO D g — / N AOgi1-g(ao,0an, ..., 0cq )
X
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Such a cochain is a cocycle only if On = 0, because 1 does not interact with
the Lie structure.

Note that a Kéahler manifold always produces natural choices of n by
taking n = w¥, where w is the symplectic form. In this way, Kihler geom-
etry determines an important class of extensions. It would be interesting
to explore what aspects of the geometry are reflected by these associated
current algebras. The following is a direct calculation.

Lemma 1.21. Fiz 6 € Sym®1=%(g*)9. If a formn € Q¥F(X) satisfies On =
0 and dn = 0, then the local cohomology class [pg,,] € Hy..(Sx) depends only
on the cohomology class [w] € H*(X,QF).

When n =1, it trivially satisfies the conditions of the lemma. In this
case ¢p1 = jx () in the notation of the last section.

1.4. The higher Kac-Moody factorization algebra

Finally, we can introduce the central object of this paper.

Definition 1.22. Let X be a complex manifold of complex dimension d
equipped with a holomorphic principal G-bundle P. Let © be a degree
1 cocycle in Cj (Ad(P)), which determines a 1-shifted central extension
Ad(P)e. The Kac-Moody factorization algebra on X of type © is the twisted
enveloping factorization algebra Ug(Ad(P)) that assigns

(Sym (Q*(U,ad(P))[1]) [K],0 + dcr + ©)
to an open set U C X.

Remark 1.23. As in the definition of twisted enveloping factorization al-
gebras, the factorization algebras Ug (Ad(P)) are modules for the ring C[K].
In keeping with conventions above, when P is the trivial bundle on X, we
will denote the Kac-Moody factorization algebra by Ug(Gx).

The most important class of such higher Kac-Moody algebras makes
sense over the site Holy of all complex d-folds.

Definition 1.24. Let g be an ordinary Lie algebra and let € Sym®*!(g*)s.
Let G4 denote the 1-shifted central extension of §4 determined by the local
cocycle j(0). Let Ug(G) denote the -twisted enveloping factorization algebra
Uj(9)(9) for the local Lie algebra § = 0%* @ g on the site Holy of complex
d-folds.



152 O. Gwilliam and B. R. Williams

In the case d = 1 the definition above agrees with the Kac-Moody factor-
ization algebra on Riemann surfaces given in [CG17]. There, it is shown that
this factorization algebra, restricted to the complex manifold C, recovers a
vertex algebra isomorphic to that of the ordinary Kac-Moody vertex alge-
bra. (See Section 5 of Chapter 5.) Thus, we think of the object Ug(Ad(P))
as a higher dimensional version of the Kac-Moody vertex algebra.

1.4.1. Holomorphic translation invariance and higher dimensional
vertex algebras. To put some teeth into the previous paragraph, we note
that [CG17] introduces a family of colored operads PDiscsq, the little d-
dimensional polydiscs operads, that provide a holomorphic analog of the
little d-disks operads E4. Concretely, this operad PDiscsq encodes the idea
of the operator product expansion, where one now understands observables
supported in small disks mapping into observables in large disks, rather than
point-like observables.

In the case d = 1, Theorem 5.3.3 of [CG17] shows that a PDiscs;-algebra
A determines a vertex algebra V(A) so long as A is suitably equivariant
under rotation . This construction V is functorial. As shown in |[CG17],
many vertex algebras appear this way, and any vertex algebras that arise
from physics should, in light of the main results of [CG17, ICG]J.

For this reason, one can interpret PDiscsg-algebras, particularly when
suitably equivariant under rotation, as providing a systematic and operadic
generalization of vertex algebras to higher dimensions. Proposition 5.2.2
of [CG17| provides a useful mechanism for producing PDiscsq-algebra: it
says that if a factorization algebra is equivariant under translation in a
holomorphic manner, then it determines such an algebra.

Hence it is interesting to identify when the higher Kac-Moody factoriza-
tion algebras are invariant in the sense needed to produce PDiscsq-algebras.
We now address this question.

First, note that on the complex d-fold X = C%, the local Lie algebra G4
is manifestly equivariant under translation.

It is important to recognize that this translation action is holomorphic
in the sense that the infinitesimal action of the (complexified) vector fields
0/0z; is homotopically trivial. Explicitly, consider the operator n; = ¢ /0%,
on Dolbeault forms (and which hence extends to Gca), and note that
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Both the infinitesimal actions and this homotopical trivialization extend
canonically to the Chevalley-Eilenberg chains of G¢c« and hence to the en-
veloping factorization algebra and the current algebras. (For more discussion

of these ideas see [Wilb] and Chapter 10 of [CGI.)
A succinct way to express this feature is to introduce a dg Lie algebra

Ci, = spanc{9/dz1,...,0/024,0/0%1,...,0/0Z4, M, . .-, Na}

where the partial derivatives have degree 0 and the 7; have degree —1, where
the brackets are all trivial, and where the differential behaves like 0 in the
sense that the differential of n; is 0/0z;. We just argued in the preceding
paragraph that Gc« and its current algebras are all strictly (Cgol—invariant.

When studying shifted extensions of G¢a, it then makes sense to consider
local cocycles that are also translation invariant in this sense. Explicitly, we
ask to work with cocycles in

Cfoc(gd)([:ﬁol C Cikoc(gd)‘

Local cocycles here determine higher Kac-Moody algebras that are holomor-
phically translation invariant and hence yield PDiscss-algebras.

The following result indicates tells us that we have already encountered
all the relevant cocycles so long as we also impose rotation invariance, which
is a natural condition.

Proposition 1.25. The map jca : Sym®(g*)®[—1] — Cf (S4) factors
through the subcomplex of local cochains that are rotationally and holomor-
phically translation invariant. Moreover, it determines an isomorphism on
H*:

H' (ice) : Sy ()0 55 1 (Ca(90)%)

As the proof is rather lengthy, we provide it in Appendix [A]

2. Local aspects of the higher Kac-Moody
factorization algebras

A factorization algebra encodes an enormous amount of information, and
hence it is important to extract aspects that are simpler to understand. In
this section we will take two approaches:

1) by compactifying along a sphere of real dimension 2d — 1, we obtain
an algebra (more precisely, a homotopy-coherent associative algebra)
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that encodes the higher dimensional version of “radial ordering” of
operators from two-dimensional conformal field theory, and

2) by compactifying along a torus (S')¢, we obtain an algebra over the
little d-disks operad.

In both cases these algebras behave like enveloping algebras of homotopy-
coherent Lie algebras (in a sense we will spell out in detail below), which
allows for simpler descriptions of some phenomena. It is important to be
aware, however, that these algebras do not encode the full algebraic structure
produced by the compactification; instead, they sit as dense subalgebras. We
will elaborate on this subtlety below.

For factorization algebras, compactification is accomplished by the push-
forward operation. Given a map f : X — Y of manifolds and a factorization
algebra F on X, its pushforward f.JF is the factorization algebra on Y where

fFU) = F(f7HU))

for any open U C Y. The first example we treat arises from the radial pro-
jection map

r:(Cd\{O}—>(O,oo)

sending z to its length |z|. The preimage of a point is simply a 2d — 1-
sphere, so one can interpret the pushforward Kac-Moody factorization alge-
bra r,UgGy as compactification along these spheres. Our first main result is
that there is a locally constant factorization algebra A along (0, 00) with a
natural map

¢ A= r+UpGq

that is dense from the point of view of the topological vector space struc-
ture. By a theorem of Lurie, locally constant factorization algebras on R
correspond to homotopy-coherent associative algebras, so that we can in-
terpret ¢ as saying that the pushforward is approximated by an associative
algebra, in this derived sense. We will show explicitly that this algebra is
the A algebra arising as the enveloping algebra of an L., algebra already
introduced by Faonte-Hennion-Kapranov.

For the physically-minded reader, this process should be understood as
a version of radial ordering. Recall from the two-dimensional setting that
it can be helpful to view the punctured plane as a cylinder, and to use
the radius as a kind of time parameter. Time ordering of operators is then
replaced by radial ordering. Many computations can be nicely organized in
this manner, because a natural class of operators arises by using a Cauchy
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integral around the circle of a local operator. The same technique works
in higher dimensions where one now computes residues along the 2d — 1-
spheres. From this perspective, the natural Hilbert space is associated to
the origin in the plane (more accurately to an arbitrarily small disk around
the origin), and this picture also extends to higher dimensions. Hence we
obtain a kind of vacuum module for this higher dimensional generalization
of the Kac-Moody algebras.

Our second cluster of results uses compactification along the projection
map

C9\ {coordinate hyperplanes} — (0, 00)?
(2155 24) = (=l lzal)-

We construct a locally constant factorization algebra on (0,00)? that maps
densely into the pushforward of the higher Kac-Moody algebra. Lurie’s the-
orem shows that locally constant factorization algebras on R correspond
to E,4 algebras, so we obtain a higher-dimensional analog of the spherical
result.

2.1. Compactifying the higher Kac-Moody algebras
along spheres

Our approach is modeled on the construction of the affine Kac-Moody Lie
algebras and their associated vertex algebras from Section 5.5 of [CGI7]
and [Gwil2], so we review the main ideas to orient the reader.

On the punctured plane C*, the sheaf th = 0% ® g is quasi-isomorphic
to the sheaf O ® g. The restriction maps of this sheaf tell us that for any
open set U, there is a map of Lie algebras

OCH®g—0U)®g,
so that we get a map of Lie algebras
Oug(C) ® g =g[z,27'] > OU) ® g
because Laurent polynomials C[z, 27! = Oy (C*) are well-defined on any
open subset of the punctured plane. This loop algebra Lg = g[z, 2~ '] admits
interesting central extensions, known as the affine Kac-Moody Lie algebras.

These extensions are labeled by elements of Sym?(g*)9, which is compatible
with our work in Section [1.3.4]
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To apply radial ordering to this sheaf—or rather, its associated current
algebras—it is convenient to study the pushforward along the radial pro-
jection map r(z) = |z|. Note that the preimage of an interval (a,b) is an
annulus, so

53" ((a,0)) = 53" ({a < |2 < 0})

and hence we have a canonical map of Lie algebras
glz.27"] = O({a < |2 < b}) @ g = 7..93"((a,1)).

We can refine this situation by replacing the left hand side with the locally
constant sheaf g[z, z~!] to produce a map of sheaves gz, z~'] = 7.G3"((a, b)).
The Poincaré lemma tells us that 2* is quasi-isomorphic to the locally con-
stant sheaf C, and so we can introduce a sheaf

Lg*" = Q* ® glz, 27!

that is a soft resolution of g[z,z71]. There is then a map of sheaves of dg
Lie algebras

(2.1) Lg*" — r,G5"

that sends a® z 2" to [r*ajo. 2" ® x, with z € g, a a differential form
on (0,00), and [r*a]o« the (0,*)-component of the pulled back form. This
map restricts nicely to compactly support sections Lg — r,.G;. By taking
Chevalley-Eilenberg chains on both sides, we obtain a map of factorization
algebras

(2.2) ULg = CYe(Lg) — CY¢(r,G1) = 7, UG;.

The left hand side ULg encodes the associative algebra U(Lg), the enveloping
algebra of Lg, as can be seen by direct computation (see section 3.4 of
[CGI1T]) or by a general result of Knudsen [Knul8]. The right hand side
contains operators encoded by Cauchy integrals, and it is possible to identify
such as operator, up to exact terms, as the limit of a sequence of elements
from U(Lg).

We extend this argument to the affine Kac-Moody Lie algebras by work-
ing with suitable extensions on Lg. It is a deformation-theoretic argument,
as we view the extensions as deforming the bracket.
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We wish to replace the punctured plane C* by the punctured d-
dimensional affine space

A?=c\ {0},

the current algebras of G; by the current algebras of G4, and, of course, the
extensions depending on Sym?(g*)® by other local cocycles. There are two
nontrivial steps to this generalization:

1) finding a suitable replacement for the Laurent polynomials, so that
we can recapitulate (without any issues) the construction of the maps

and , and

2) deforming this construction to encompass the extensions of G, and
hence the twisted enveloping factorization algebras UyGy.

We undertake the steps in order.

2.1.1. Derived functions on punctured affine space. When d =1,
we note that

Clz, 271 c O(C*) = Q% (C),

and so the Laurent polynomials are a dense subalgebra of the Dolbeault com-
plex. When d > 1, Hartog’s lemma tells us that every holomorphic function
on punctured d-dimensional space extends through the origin:

O(A?) = O(A?).

This result might suggest that A? is an unnatural place to seek a gener-
alization of the loop algebra, but such pessimism is misplaced because Ad
is not affine and so its derived algebra of functions, given by the derived
global sections RF(&‘[,O), is more interesting than the underived global
sections O(A?).

Indeed, a straightforward computation in algebraic geometry shows

0, %« £0,d—1
H* (A%, 0415) = { Clz1, ..., 24, *=0
(C[z:l_l,...,zd_l]ﬁ, x=d—1

(For instance, use the cover by the affine opens of the form A4\ {z; = 0}.)
When d =1, this computation recovers the Laurent polynomials, so we
should view the cohomology in degree d — 1 as providing the derived re-
placement of the polar part of the Laurent polynomials. A similar result
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holds in analytic geometry, of course, so that we have a natural map
RT(A?, O,g) — RO(AY, O,y) ~ Q0 (A?)

that replaces our inclusion of Laurent polynomials into the Dolbeault com-
plex on Al.

For explicit constructions, it is convenient to have an explicit dg com-
mutative algebra that models the derived global sections. It should be no
surprise that we like to work with the Dolbeault complex, but there is also
an explicit dg model A4 for the algebraic version derived global sections due
to Faonte-Hennion-Kapranov [FHK19] and based on the Jouanolou method
for resolving singularities. In fact, they provide a model for the algebraic
p-forms as well.

Definition 2.1. Let a4 denote the algebra
Clzt, ...\ 2a, 25, .., 23][(z2") 7Y

defined by localizing the polynomial algebra with respect to zz* =), 227.
View this algebra ay as concentrated in bidegree (0,0), and consider the
bigraded-commutative algebra RZ’* over ag that is freely generated in bide-
gree (1,0) by elements

dzl, ce ,dzd,
and in bidegree (0,1) by
dzf,...,dz]).

We care about the subalgebra Afl’* where AP™ consisting of elements w €
RE™ such that

(i) the coefficient of dz} ---dz; has degree —m with respect to the z;
variables, and

(ii) the contraction t¢w with the Euler vector field £ = ), 270.~ vanishes.
This bigraded algebra admits natural differentials in both directions:

1) define a map 9 : AD? — Afl’qﬂ of bidegree (0, 1) by

8=2i:dz;‘5;k,
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2) define a a map of bidegree (1,0) by
0
0=>» dz—.

These differentials commute, so 00 = 00, and each squares to zero.

We denote the subcomplex with p = 0 by
— d —
(40,0) = | P Al 0| ,
q=0

and it has the structure of a dg commutative algebra. For p > 0, the complex
AP* = (®4AP1[—q],0) is a dg module for (A4, D).

From the definition, one can guess that the variables z; should be un-
derstood as the usual holomorphic coordinates on affine space C? and the
variables 2z} should be understood as the antiholomorphic coordinates z;.
The following proposition confirms that guess; it also summarizes key prop-
erties of the dg algebra Ay and its dg modules AL™, by aggregating several
results of [FHKI9].

Proposition 2.2 ([FHK19], Section 1).
1) The dg commutative algebra (Ag,0) is a model for RT (A 0%9):

Ag ~ RD (AP, 0%9),

Similarly, (A%*,9) ~ RT (A%, Qpalg),

2) There is a dense map of commutative bigraded algebras
jr AT = (C?\ {o})

senciing z; to z;, 27 to z;, and dz] to dZ;, and the map intertwines with
the 0 and O differentials on both sides.

3) There is a unique GLy,-equivariant residue map
Res.— : Ag’d_l — C
that satisfies

Res.—o (f(z)w%lﬁ/f(z, 2¥)dzy - - - dzd> = £(0)



160 O. Gwilliam and B. R. Williams

for any f(z) € Clz1,...,2q4]. In particular, for any w € Ag’d_l,

Res.ow) = § )

where S?~1 is any sphere centered at the origin in CZ.

It is a straightforward to verify that the formula for the Bochner-
Martinelli kernel makes sense in the algebra A;. That is, we define

walg (z Z*) _ (d B 1)' 1
BMA™ (2mi)?d (z2*)d

d
D (1) e Ao Az A A de,
=1

which is an element of Ag’dfl.

2.1.2. The sphere algebra of g. The loop algebra Lg = gz, 2~ !] arises
as an algebraic model of the mapping space Map(S?, g), which obtains a
natural Lie algebra structure from the target space g. For a topologist, a
natural generalization is to replace the circle S', which is equal to the unit
vectors in C, by the sphere S?¢~1 which is equal to the unit vectors in
CY. That is, consider the “sphere algebra” of Map(52?~!, g). An algebro-
geometric sphere replacement of this sphere is the punctured affine d-space
Al or a punctured formal d-disk, and so we introduce an algebraic model
for the sphere algebra.

Definition 2.3. For a Lie algebra g, the sphere algebra in complex dimen-
sion d is the dg Lie algebra Aj ® g. Following [FHK19] we denote it by g

There are natural central extensions of this sphere algebra as em L, al-
gebras, in parallel with our discussion of extensions of the local Lie algebras.
For any 6 € Symd+1(g*)9, Faonte-Hennion-Kapranov define the cocycle

Ornk : (Ag®@ @)@t — C
a® - Qay — ResZ:()@(ao, 3(11, ce 780«1) '

This cocycle has cohomological degree 2 and so determines an unshifted
central extension as L, algebras of Ay ® g:

(2.3) C-K—g5— As®g.

Our aim is now to show how the Kac-Moody factorization algebra UyGy
is related to this L., algebra, which is a higher-dimensional version of the
affine Kac-Moody Lie algebras.
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2.1.3. The case of zero level. Here we will consider the higher Kac-
Moody factorization algebra on C?\ {0} “at level zero,” namely the fac-
torization algebra U(Gca\foy)- In this section we will omit C4\ {0} from
the notation, and simply refer to the factorization algebra by U(G4). Our
construction will follow the model case outlined in the introduction to this
section. Recall that r : A% — (0, 00) is the radial projection map that sends

(21,...,2q) to its length \/21Z1 + - - - 24Z4-

Lemma 2.4. There is a map of sheaves of dg commutative algebras on Rsg
7T Q= Q0

sending a form « to the (0,%)-component of its pullback r*c.

This result is straightforward since the pullback r* denotes a map of
dg algebras to r.2** and we are simply postcomposing with the canonical
quotient map of dg algebras ** — Q0+,

We also have a map of dg commutative algebras Aq — Q0*(U) for any
open set U C Ad, by postcomposing the map j of proposition with the
restriction map. We abusively denote the composite by j as well. Thus we
obtain a natural map of dg commutative algebras

A QR Ay — Q0
sending o ® w to 7(a) A j(w). By tensoring with g, we obtain the following.
Corollary 2.5. There is a map of sheaves of dg Lie algebras on Rsq
Tod: @ gy — (2% @ g) = (G

sending o @ x to m(a) @ x.

Note that Q* ® g§ = Q0" ® A3 ® g, s0 7y 4 is simply m4 ® idg.

This map preserves support and hence restricts to compactly-supported
sections. In other words, we have a map between the associated cosheaves

of complexes (and precosheaves of dg Lie algebras). In summary, we have
shown our key result.
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Proposition 2.6. The map
Tg,d - QIE>0,C ® g; — 7ﬁ*gd

is a map of precosheaves of dg Lie algebras. It determines a map of factor-
ization algebras

CH(mga) 1 U (R, ®3) — 7« (US4) .

The map of factorization algebras follows from applying the functor
Clie(—) to the map Tg,d; this construction commutes with push-forward
by inspection.

Both maps are dense in every cohomological degree with respect to the
natural topologies on these vector spaces, leading to the following observa-
tion.

Corollary 2.7. By Theorem [I.13 of Knudsen, the enveloping E;i algebra
of the sphere algebra gj is dense inside the pushforward factorization algebra

T+ (UGg).

2.1.4. The case of non-zero level. Pick a § € Sym?*!(g*)?. This choice
determines a higher Kac-Moody factorization algebra UypG,, and we would
like to produce maps akin to those of Proposition [2.6]

The simplest modification of the level zero situation is to introduce a
central extension of the precosheaf

Gg = QE‘{>O:C ® g:i

as a precosheaf of L, algebras on R~, with the condition that this extension
intertwines with the extension 7,594 ¢ of r.G4. In other words, we need a map

O‘)C'K[—l]%(}d,@/ Ggq 0
T
O*)(C'K[—l]%ﬂkgd,g r*Sd 0.

of central extensions of L., algebras. This condition fixes the problem com-
pletely, because we simply pull back the extension defining 7.G40. Let us ex-
tract an explicit description, which will be useful later. On an open U C R,
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the extension for 7,544 is given by an integral

/ 9(0[0,8a1,...,(9ad):// 0(ag, Daq, ..., 0aq)
r=(U) U Jg2a-1

that can be factored into a double integral. This formula indicates that ©’
must be given by the cocycle whose value on elements ¢; ® a; € Qf ® gj is

O (¢ ® ag, ..., ¢q @ aq)
= [ [ 0o 730000 0 (00) A 30, ... D0 00) 1 3(ea))

We thus obtain the following result.

Lemma 2.8. For § € Sym?*!(g*)8, let Ggg denote the precosheaf of Loo
algebras obtained by extending Gg by the cocycle

(o ® ag, .. .,pq @ aq)
»—)/ /SM 1 7(¢o) A j(ao), d(m(p1) A jlar)),...,0(m(dq) A jlag))).

By construction, there is a canonical map

Tg,d0 : Gdo — T+«9d,0

of precosheaves of Lo, algebras on Rsq, and hence there is a map of factor-
1zation algebras

[U(T('g,d,g) : U@Gd — T*[Uggd.

The maps remain degreewise dense, but now we are working with a
twisted enveloping factorization algebra, which is slightly different in flavor
than Knudsen’s construction. The central parameter K parametrizes, in
fact, a family of F; algebras that specializes at K = 0 to the enveloping F}
algebra of the sphere algebra gy.

Corollary 2.9. There is a family of E1 algebras over the affine line
Spec(C[K]) with the enveloping E1 algebra of the sphere algebra g3 at the
origin. This family is dense within the pushforward r. (UpSyq).
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2.1.5. A comparison with the work of Faonte-Hennion-Kapranov.
There is a variant of the preceding result that is particularly appealing in
light of [FHK19], which is to provide a map of factorization algebras on the
positive reals

U(7g,a,0) : U ®839) = 7<5a,0,

where the source is the factorization algebra encoding the enveloping FE;
algebra of ﬁ;ﬁ. Specializing the central parameters to zero on both sides must
recover the map Umy 4 of Proposition Such a map has two connected
consequences:

1) It shows that the higher current Lie algebras g , of [FHK19] “control”
our twisted current factorization algebras G4 in the same way that
the affine Kac-Moody Lie algebras control their vertex algebras.

2) It shows that our factorization algebras G449 know the information
encoded by the Lie algebras gJ -

In short this map provides a conduit for transferring insights between derived
algebraic geometry (as represented by the [FHK19] approach) and quantum
field theory (as represented by ours).

Remark 2.10. Before embarking on the construction of the map, we re-
mark that it was a pleasant surprise to come upon [FHK19] and to find that
they had explored terrain that we had approached from the direction ex-
posed in this paper, i.e., the higher dimensional generalization of results from
[CG1T]. Their Jouanolou model A, gave a more explicit and more tractable
analogue to Laurent polynomials and hence allowed us to sharpen our re-
sults into something more punchy, and their discussion of the global derived
geometry verified natural guesses, which were beyond our technical powers.
Although we had found the same extensions, our explanations were based
on finding an explicit generalization of the d = 1 formula, with confirmation
arising from Feynman diagram computations. By contrast, Faonte, Hennion,
and Kapranov give a beautiful structural explanation via cyclic homology,
which resonates with our physical view of large N limits We come back to
this structure in more detail in Section [5| We thank Faonte, Hennion, and
Kapranov for inspiring and enlightening conversations and correspondence
on these subjects.

Constructing the map requires overcoming two issues. First, note that

Gap =% ® 920
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can be viewed as an extension
. ~
Q. ®C — Ggp — Gqg

of precosheaves of L, algebras on R-q. By contrast, .54 is an extension
by the constant precosheaf CK[—1]. There is, however, a natural map of

precosheaves
/ LOF & O[]

to employ, since integration is well-defined on compactly-supported forms.
This map indicates the shape of the underlying map of short exact sequences.

The second issue looks more serious: the two cocycles at play seem dif-
ferent at first glance. The pushforward r.G4 ¢ uses a cocycle whose behavior
on the image under 7y 4 is given by

@push b0 ® ag, ..., 04 R aq)
/ /SM ) 7(¢0) A j(ao), d(m(é1) A j(ar)),...,0(m(pa) A j(aaq))),

where we use elements of the form ¢; ® a; € Q3 (U) ® g with U an open sub-
set of R<g. On the other hand, on those same elements, the FHK extension
is given by

Oruk(do ® ao, ..., ¢d ® aq)
= o nda) [ 0@, 003 ). 03 (e).

(Note that in the FHK case, we do not integrate over U because we extend
by QF.) The key difference here is that the FHK extension does not involve
applying 0 to the (0, *)-components of the pulled back forms r*¢;. It sep-
arates the ¢; and a; contributions, whereas the other cocycle mixes them.
The tension is resolved by showing these cocycles are cohomologous.

Lemma 2.11. There is a cochain n for Gg such that

®pu5h = /QFHK + dna
where d here denotes the differential on the Lie algebra cochains of Gg.

Proof. We note that the Lie algebra g and the invariant polynomial 6 play
no substantive role in the problem. The issue here is about calculus. Hence it



166 O. Gwilliam and B. R. Williams

suffices to consider the case that g is the one-dimensional abelian Lie algebra
and 6 is the unique-up-to-scale monomial of degree d + 1 (i.e., “xd+1”).
Let

0
E=r—
r@r

denote the Euler vector field on R+, and let
le'
dy = —

denote a (1,0)-form on A% = C9\ 0.
For concision we express the element ¢; ® a; in Q5(U) @ Ay by @;a;. We
now define

d

77(500@07-"790dad):Z<L¢0(LE@1)@1---@---¢d>

i=1

X <% (aoaidﬁ) 6(11 @zﬁad) .

It is a straightforward exercise in integration by parts and the bigrading of
Dolbeault forms to verify that 1 cobounds the difference of the cocycles. [J

With this explicit cochain 7 in hand, we can produce the desired map.
Proposition 2.12. There is an Lo, map of Lo algebras

Tgdo e @ o ~ 7940,

by which we mean there is a sequence of multilinear maps

n
Tgdo(n) : H Q. ® 939 — 4S540,
i=1

that have degree 2 —n and are skew-symmetric and intertwine with the
L brackets on both sides (cf. [KS, [LV12]). The terms my q9(n) vanish for
n#1,d+ 1. The n =1 map fits into the commuting diagram of short exact
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sequences
0—— Q- K[-1] — QF @85, Ga 0
lf Fg.d,m J”
0——C. - K[-1] —— 7540 7+94 0.

The n = d+ 1 map sends the d + 1-tuple (¢o ® ag, ..., Pqs @ aq) to

n(¢0®a07"'7¢d®ad)'

This Lo map is equivalent to giving a map of dg conilpotent cocom-
mutative coalgebras on the Chevalley-FEilenberg chains of these Lo, algebras,
which in fact provides a map

U(ga0) : U ®954) = 7:UpGa
of factorization algebras.

Proof. Note that for our L, algebras, the only nontrivial brackets are ¢1, {o,
and £411. We already know that the n = 1 map intertwines with ¢; and /¢
brackets, as it does modulo the central extensions. We can thus set the maps
for n = 2,...,d to zero. The first nontrivial issue arises at n = d + 1, as the
n = 1 map does not intertwine the ¢4.1 brackets. The defining property of
1, however, ensures that 74 q9(d + 1) corrects the failure. Hence we may set
the maps for n > d + 1 to zero as well. O

Corollary 2.13. The enveloping Ey algebra of g3 o is dense inside the push-
forward r,UyGy.

2.2. Compactifying along tori

There is another direction that one may look to extend the notion of affine
algebras to higher dimensions. The affine algebra is a central extension of the
loop algebra on g. Instead of looking at higher dimensional sphere algebras,
one can consider higher torus algebras, i.e., iterated loop algebras:

Llg=C[sf, - ,zf]®g.

These iterated loop algebras are algebraic versions of the torus mapping
space
Map(S! x --- x 81, g).
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We now explore what information the Kac-Moody factorization algebras
encode about extensions of such iterated loop algebras.

To do this, we study the Kac-Moody factorization algebras on the com-
plex manifold (C*)¢, which is an algebro-geometric version of the torus
(S1)4. As with the punctured affine space Al we compactify by pushing
forward to (R-0)¢ along a radial projection map

7 (C*)d — (R>0)?
(z17---72d) — (‘Zl,f"7|zd|).

The preimage of a point (rq,...,rq) is a d-fold product of circles, and the
preimage of an open d-cube is a polyannulus—a d-fold product of annuli.
Observe that on a polyannulus U, the underived and derived algebras of
functions coincide,

I'(U,0) < RI(U, 0),
as U is a Stein manifold because it is a product of Stein manifolds. Similarly,

the scheme (A'\ {0})¢ is affine and so its structure sheaf has no higher
cohomology:

RO((A\ {0N)%,0) =~ Clz1, 27, .., 20, 27 -

Note that the iterated loop algebras Leg appear precisely by tensoring g
with functions on this product of punctured affine lines. Thus, in contrast
to Ad, we seem to be able to work in an underived setting.

This impression is misleading, however, in the sense that it ignores some
additional algebraic structure that naturally appears at the level of current
algebras: there is an Ey algebra that sits densely inside the pushforward 7, G .

Lemma 2.14. There is a map
pa: QO — 700

of sheaves of dg commutative algebras on (Rso)? sending a form o to the
projection of the pulled back 7™« onto its (0, x)-components.

As algebraic functions sit inside holomorphic functions and hence inside
the Dolbeault complex, there is a map of dg commutative algebras

(C[zl,zl_l, .. .,zd,zd_l] — QO’*(U)
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for any open U C (C\ {0})?. There is thus a map
py QU @Clar, 2yt za, 2y — FOQD
of dg commutative algebras. We tensor with g to obtain the following result.
Lemma 2.15. There is a map
Pdg: V' ® Lig — F*Sgh

of sheaves of dg Lie algebras on (Rsq)? sending an element a ® x to pg(a) ®
x.s As this map preserves support, it restricts to a map

Pdg : Sl ® Lg — 7.8y
of precosheaves of dg Lie algebras on (Rsq)?.

By taking Chevalley-FEilenberg chains, we obtain a statement at the level
of factorization algebras.

Corollary 2.16. There is a map
U(pa,g) : U(Q2: @ g) = US4

of factorization algebras on (Rso)?. As the source is locally constant, it cor-
responds to an Eq algebra, which is the enveloping Ey algebra of Lg, by
Knudsen’s theorem.

This map has dense image in each degree, and so we see that the envelop-
ing Fy algebra of the iterated loop algebra L%g “controls” the pushforward
7 UG, in this sense.

Remark 2.17. When d = 1 one can understand the radially ordered prod-
ucts of operators by evaluating these current factorization algebras on nested
annuli. For d > 1 one can read likewise understand interesting phenomena
about operator products by evaluating these current factorization algebras
these polyannuli. In particular, the connection with E,; algebra indicates
that there is a (possibly nontrivial) 1 — d-shifted Poisson bracket between
operators, even at the level of cohomology.

In the case of the extended Lie algebras G4, we note that one can pull
back the extension along the map pg4 4 to determine an extension of Q2 ® Lig
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as a precosheaf of Lo, algebras. One can view this extension as extending
L%g as an Lo algebra:

Cld—1] — %9 — L,

It is essentially immediate from the definitions that the cocycle is
LU(fo @ 20) @ -+ @ (fa @ xq) :9(x0,...,xd)ﬁ | fT | fodfy -~ dfy
Z1 =1 Zd =1

where f; € C[zfﬁl, cel zfitl] and xz; € g. This formula is just an iterated ver-
sion of the usual residue pairing.

This extension then determines a twist of the enveloping F,; algebra, as
well. By techniques analogous to what we did in comparing with [FHKI9],
one can show the following.

Proposition 2.18. For § € Sym®*!(g*)?, there is a map of factorization
algebras

Pd,e0 - U ® Ligy) — p.UpSq

that has dense image in each degree.

In this sense the enveloping E; algebra of Lég, controls the twisted
enveloping factorization algebra.

3. The holomorphic charge anomaly

In this section, we change our focus and exhibit a natural occurrence of the
Kac-Moody factorization algebra as a symmetry of a simple class of higher
dimensional quantum field theories. This example generalizes the free field
realization of the affine Kac-Moody algebra as a subalgebra of differential
operators on the loop space.

Our approach is through the general machinery of perturbative quantum
field theory developed by Costello [Cosll] and Costello-Gwilliam [CG17,
CG]. We study the quantization of a particular free field theory, which makes
sense in any complex dimension. Classically, the theory depends on the data
of a G-representation, and the holomorphic nature of the theory allows us
the classical current algebra Curd(g x) at “zero level” to act as a symmetry.
We find that upon quantization, the symmetry is broken, but in a way that
we can measure by an explicit anomaly, i.e., local cocycle for G x. This failure
leads to a symmetry of the quantum theory via the quantum current algebra
Cur?(SGx) twisted by this cocycle.
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3.1. Holomorphic bosons

We introduce a classical field theory on any complex manifold X in the BV
formalism whose equations of motion, in part, include holomorphic functions
on X. When the complex dimension is d = 1, our theory is identical to the
chiral 7 system, which is a bosonic version of the familiar bc system in
conformal field theory. In dimensions d = 2 and d = 3, this class of theories
is still of physical importance. They are equivalent to minimal twists of
supersymmetric matter multiplets.

To start, we fix a finite dimensional g-module V' and an integer d > 0.
There are two fields, a field v : C? — V, given by a smooth function into
V, and a field g € Q¥4~1(C? VV), given by a differential form of Hodge
type (d,d — 1), valued in the dual vector space VV. The action functional
describing the classical field theory is

(3.1) S(v,8) = / (8,37)v

where (—, —)y denotes the evaluation pairing between V' and its dual. The
classical equations of motion of this theory are

0B =0=0y

and hence pick out pairs (v, §) that are holomorphic.

The symmetry we consider comes from the g-action on V. It extends, in
a natural way, to an action of the “gauged” Lie algebra C*°(X,g) on the ~
fields: an element x(z,%z) € C*°(X, g) acts simply by x(z,%) - v(2,%) where
the dot indicates the pointwise action via the g-module structure on V. There
is a dual action on the § fields. This Lie algebra action is compatible with
the action functional —that is, it preserves solutions to the equations of
motion—precisely when (2, Z) is holomorphic: dx(z,%) = 0. In other words,
the natural Lie algebra of symmetries is Ox ® g, the holomorphic functions
on X with values in g.

Notice that the original action functional has an “internal symme-
try” via the gauge transformation

B B+ 0p

with 4’ an arbitrary element of Q44=2( X, V*). Thus, the space Q*4=2(X, V")
provide ghosts in the BRST formulation of this theory. Moreover, there are
ghosts for ghosts 87 € Q%4=3(X,VV), and so on. Together with all of the
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antifields and antighosts, the full theory consists of two copies of a Dolbeault
complex. The precise definition is the following.

Definition 3.1. In the BV formalism the classical 8y system on the com-
plex manifold X has space of fields

&y = Q" (X, V) ® Q™ (X, V*)[d - 1],

with the linear BRST operator given by Q = 0. We will write fields as pairs
(7, B) to match with the notation above. There is a (—1)-shifted symplectic
pairing is given by integration along X combined with the evaluation pairing
between V' and its dual:

(7, 8) = /X (v, B)v.

The action functional for this free theory is thus

Sv(B,7) = /X (8,37)v.

Remark 3.2. As usual in homological algebra, the notation [d — 1] means
we shift that copy of the fields down by d — 1. Note that the elements in
degree zero (i.e., the “physical” fields) are precisely maps v: X — V and
sections B € Q44=1(X:VV), just as in the initial description of the theory.
The gauge symmetry 3 — 3 + 93’ has naturally been incorporated into our
BRST complex (which only consists of a linear operator since the theory
is free). We note that the pairing only makes sense when at least one of
the inputs is compactly-supported or X is closed; but, as usual in physics,
it is the Lagrangian density that is important, rather than the putative
functional it determines.

Remark 3.3. This theory is a special case of a nonlinear o-model, where
the linear target V is replaced by an arbitrary complex manifold Y. When
d =1 this theory is known as the (classical) curved [+ system and has
received extensive examination [Wit07, [Cosal [Nekl [GGW]; when a quanti-
zation exists, the associated factorization algebra of quantum observables
encodes the vertex algebra known as chiral differential operators of Y. The
second author’s thesis [Wila] examines the theories when d > 1 and uncovers
a systematic generalization of chiral differential operators.

In parallel with our discussion above, once we include the full BV com-
plex, it is natural to encode the symmetry Ox ® g by the action of the dg
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Lie algebra G5 = Q0*(X, g). The action by G5 extends to a natural action
on the fields of the v system in such a way that the shifted symplectic
pairing is preserved. In other words, a determines a symplectic vector field
on the space of fields.

This vector field is actually a Hamiltonian vector field, and we will en-
code it by an element o € 93? by a local functional IS € O1,(Ev). It is a
standard computation in the BV formalism to verify the following.

Definition/Lemma 1. The §x-equivariant B~y system on X with values
in V is defined by the local functional

I9(a, B,7) = /(,B,a Vv € Ooe(Ev @ Gx[1]).

This functional satisfies the §x-equivariant classical master equation
= 1
(0 +dg)I9 + 5{19,1'9} = 0.

The classical master equation encodes the claim that the function I9
defines a dg Lie algebra action on the theory £y In particular, I9 determines
a map of sheaves of dg Lie algebras

I9: G5 = Oc(Ev)[-1],

where the Lie bracket on the right hand side is defined by the BV bracket
{—,—}. If we post-compose with the map Ojc(Ey)[—1] — Derp.(Ey) that
sends a functional f to the Hamiltonian vector field {f, —}, then we find the
composite is precisely the action of 9_‘2? on fields already specified.

We view the sum

S(B,7) + I%(ax, B,7)

as the action functional of a field theory in which the « fields parametrize
a family of field theories, i.e., provide a family of backgrounds for the g~
system. We call it the equivariant classical action functional.

Note: For the remainder of the section we will restrict ourselves to the space
X = i

3.1.1. The (3~ factorization algebra. It is the central result of [CG17,
CG] that the observables of a quantum field theory form a factorization
algebra on the underlying spacetime.

For any theory, the factorization algebra of classical observables assigns
to every open set U, the cochain complex of polynomial functions on the



174 O. Gwilliam and B. R. Williams

fields that only depend on the behavior of the fields in U. (In other words,
each function must have support in U.) For the 7 system, the complex of
classical observable assigned to an open set U C C? is

ObsSH (U) = <Sym (QO’*(U)V Q VY@ QU @ V]-d+ 1]) ,5) .

As discussed following Definition [1.9] we use the completed tensor product
when defining the symmetric products. It follows from the general results
of Chapter 6 of [CG] that this assignment defines a factorization algebra on
ce.

The functional 19 defines a map of dg Lie algebras I9: G4(C%) —
Obs$} (C9). (Note that we have switched here from G5 to G4, and hence
are working with compactly supported «a.) Thanks to the shifted symplec-
tic pairing on the fields, the factorization algebra Obs‘{} is equipped with a
1-shifted Poisson bracket and hence a Py-structure. In Section [1.2[ we also
discussed how a local Lie algebra determines a Py-factorization algebra via
its classical current algebra. The classical Noether’s theorem, as proved in
Theorem 11.0.1.1 of [CG], then implies that I9 determines a map between
these factorization algebras.

Proposition 3.4 ([CG], Classical Noether’s Theorem). The assign-
ment that sends an element o € Q2 (U, g) to the observable

v ® B e QO (U, V) @ Qb (U, V) s /(J(B,a Ay
determines a map of Py-factorization algebras
JU: Cur®(Gy) — Obs$
on the manifold C?.

This formula for J is identical to that of the local functional 1% (a) defin-
ing the action of G4 on the B+ system, but it is only defined for compactly
supported sections «. Note an important point here: if « is not compactly
supported, then I9(«) is not a functional on arbitrary fields because the
density (5, « - )y may not be integrable. In general, a local functional need

10We work here with polynomial functions but it is possible to work with formal
power series instead, which is typically necessary for interacting theories. We use
Sym to denote polynomials and Sym to denote the completion, which are formal
power series.
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not determine an observable on an open set since the integral may not exist.
When « is compactly supported on U, however, then I9(a) does determine
an observable on U, namely the observable J(a). We also want to note
that the map J¢ is quadratic.

The challenge is to extend this relationship to the quantum situation.
Being a free field theory, the 8y system admits a natural quantization and
hence a factorization algebra Obs(‘l/ of quantum observables (whose definition
we recall below). The natural question arises whether the symmetry by the
dg Lie algebra G, persists upon quantization. We are asking if we can lift
JY to a “quantum current” J9: Curd(G4) — Obsy,, where Curd(Gy) is the
factorization algebras of quantum currents of Definition The existence
of this map of factorization algebras is controlled by the equivariant quantum
master equation, to which we now turn.

3.2. The equivariant quantization

The approach to quantum field theory we use follows Costello’s theory of
renormalization and the Batalin-Vilkovisky formalism developed in [Cos11].
The formalism dictates that in order to define a quantization, it suffices to
define the theory at each energy (or length) scale and to ask that these
descriptions be compatible as we vary the scale. Concretely, this compati-
bility is through an exact renormalization group (RG) flow and is encoded
by an operator W(P..r,—) acting on the space of functionals. The func-
tional W (P.<p,—) is defined as a sum over weights of graphs which is how
Feynman diagrams appear in Costello’s formalism. A theory that is com-
patible with the RG flow is called a “prequantization”. In order to obtain
a quantization, one must solve the quantum master equation (QME). For
us, the quantum master equation encodes the failure of lifting the classical
G4-symmetry to one on the prequantization.

The quantization we work with follows Costello’s approach quite closely,
but we will use a sophisticated version where some of the fields are “back-
ground” fields and hence are not integrated over. This allows us to study
the equivariant theory we just introduced. (This version is discussed in more
depth in [CGJ.) The two main ingredients to construct the weight are the
propagator P..; and the classical interaction I9. The propagator only de-
pends on the underlying free theory, that is, the higher-dimensional 7 sys-
tem. As above, the interaction describes how the linear currents G4 act on
the free theory.
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The construction of P..r, which makes sense for a wide class theories of
this holomorphic flavor, can be found in Section 3.2 of [Wilb]. For us, it is
important to know that P,..; satisfies the following properties:

(1) For 0 < e < L < oo the propagator
Pecr, € Ey®Ey

is a symmetric under the Z/2-action. Moreover, Py<oo = lilneﬁg limy,_ oo
is a symmetric element of the distributional completion &, ®Ey, .

(2) The propagator lies in the subspace
QHCIx CLV V)@ QP (C! x CLV*Q V) C EyREy.
If we use coordinates (z,w) € C?¢ x C%, the propagator has the form
(3.2) Pecp, = P2 (2,w) @ (idy +idy+)
where idy,idy~ are the elements in V ® V* V*® V that represent

identity maps. Moreover, P52, (z,w) is the Green’s function for the
operator 0 on C%:

P2 (2, w) = 6(2 — w).

(3) Let Ky € C®((0,00)¢) ® Ey @&y be the heat kernel for the Hodge
Laplacian

0
AHodge[(t + &Kt =0.

Thus, P..r, provides a d-homotopy between K, and K
5P€<L = Kt:L — Ki—.

To define the quantization, we recall the definition of a weight of a Feyn-
man diagram adjusted to this equivariant context. To simplify our discus-
sion, we introduce the notation O(G4[1]) to mean the underlying graded
vector space of Cf,,(G4), which is the (completed) symmetric algebra on the
dual of Gg.



Higher Kac-Moody algebras 177

For the free B system, the homotopy RG flow from scale L > 0to L' > 0
is an invertible linear map

(3-3) W(Pr<r,—) : O(E)[[R]] = O(&)][[A]
defined as a sum of weights of graphs

W(Ppep, ) = Wr(Prep, D).
r

Here, I" denotes a graph, and the weight Wr associated to I' is defined as fol-
lows. One labels the vertices of valence k by the kth homogenous component
of the functional I. The edges of the graph are labeled by the propagator
Pr 1. The total weight is given by iterative contractions of the homogenous
components of the interaction with the propagator. Formally, we can write
the weight as

W (Pocr,I) — hor B

(& e<L eI/

where dp denotes contraction with P. (For a complete definition, see Chap-
ter 2 of [Cosl1].)

To define the equivariant version, we extend (3.3 to a O(G4[1])-linear
map

W3 (Pr<s,—) : 0(& @ Sa[1])[[R]] — O(€ & Ga[1)[[]].

Definition/Lemma 2. A prequantization of the G4-equivariant 57 system
on C? is defined by the family of functionals {I9[L]} 1o, where

(3.4) I9[L] = lim W9 (P..p, I).

e—0

This family satisfies homotopy RG flow:
I[L) = W(Pp<yr, I[L)).
forall L < L'.

Proof. The key claim to justify is why the € — 0 limit of W9 (P..p, I9) ex-
ists, since it implies immediately that we have a family of actions satisfying
homotopy RG flow. This key claim follows from the following two interme-
diate results:

(1) Only one-loop graphs appear in the weight expansion W9(P..p, I9).
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(2) Let T" be a one-loop graph. Then
: S S
lg% WF (P€<L7 I )

exists.

Claim (1) is a direct combinatorial observation. Recall that the weight
is defined as a sum over connected graphs, and only two types of graphs
appear:

e trees with a v leg, a 8 leg, and arbitrarily many « legs or

e trivalent wheels with just « legs.

To see this, note that the inner edges that ared labeled by the propagator
P..1, which only depends on the fields 5 and . The trivalent vertex has
the form [ B[, 7]. If one connects two vertices, one is left with a single
leg and a single g leg but two « legs. Similarly, if one connects n vertices,
one is left with a single v leg and a single g leg but n « legs. If one uses a
propagator to connect v and S leg, one has a wheel with n « legs, and no
more propagators can be attached.

Claim (2) follows from Theorem 3.4 of [Wilb], which asserts that the
€ — 0 limit of the weights is finite. O

As an immediate consequence of the proof, we see that only polynomial
values of i occur in the expansion of I9[L], indeed the answer is linear in
h. This fact will be used later on when we make sense of the “free field
realization” of the Kac-Moody granted by this equivariant quantization.

Corollary 3.5. For each L > 0, the functional I9[L] lies in the subspace
O(& @ Gal1]) @ HO(E & SalL]) C O(€ & SalL)[H]].

To define the quantum master equation, we must introduce the BV
Laplacian Ay, and the scale L BV bracket {—,—}1. For L > 0, the opera-
tor Az : O(Ey) — O(Ey) is defined by contraction with the heat kernel K,
defined above. Similarly, {—, —} 1, is a bilinear operator on O(€y/) defined by

(1,0} = Ap(IJ) — (ALD)J — (=D)AL

There are equivariant versions of each of these operators given by extending
O(9Gq[1]))-linearly. For instance, the BV Laplacian is a degree one operator
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of the form
Ar : O(€ @ G4[l]) = O(E @ Gq[l).

A functional J € O(Ey @ Gy4[1]) satisfies the G4-equivariant scale L quantum
master equation (QME) if

- 1
(0+dg)J + §{J, JYrp+hALJ =0.

The main object of study in this section is the failure for the quantization
I9[L] to satisfy the equivariant QME.

Definition 3.6. The §G4-equivariant charge anomaly at scale L, denoted
Oy [L], is defined by

— 1
hOy (L] = (8 +dg)I9[L] + 5{IS[L], 19} + hATS(L].
The operator dg is the Chevalley-Eilenberg differential
Clie(Sa) = (0(Sa[1]),dg) -

Remark 3.7. Since the underlying non-equivariant BV theory £y is free, in
the Feynman graph expansion of 19, none of the external edges of any 1-loop
term are labeled by £y . In other words, the A contribution is a function only
of the « fields (i.e., the symmetries). Similarly, the obstruction to solving
the QME is only a function of the local Lie algebra G4. For this reason, the
QME is automatically solved modulo the space of functionals Cj,,(94) C
O(€ ® G4[1]), if we view those as the relevant “constants.” We are interested,
however, in making the action of G4 “inner” (in the terminology of [CGI).
in which case this obstruction term is relevant.

3.3. The charge anomaly for 3~

To calculate this anomaly, we utilize a general result about the quantum
master equation for holomorphic field theories formulated in [Wilb]. In gen-
eral, since the effective field theory defining the prequantization {I9[L]} is
given by a Feynman diagram expansion, the anomaly to solving the quantum
master equation is also given by a potentially complicated sum of diagrams.
As an immediate corollary of Proposition 4.4 of [Wilb] for holomorphic the-
ories on C?%, we find that only a simple class of diagrams appear in the
anomaly.
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a2

Figure 1: The diagram representing the weight Wr ((Pc<r, K¢, 1%) in the
case d = 2. On the black internal edges are we place the propagator P..j, of
the v system. On the red edge labeled by e we place the heat kernel K.
The external edges are labeled by elements o) € Q2*(C2).

Lemma 3.8. Let Oy [L] be the G4-equivariant charge anomaly for the B
system with values in V. Then

(1) the limit ©y = limy,_,0 Oy [L] exists and is a local cocycle so that Oy €
Cloc(Sa)-

(2) This element © is computed by the following limit

h@v = lim lim Z WF,e(Pe<La Km IS))

1
2 L—0e—0
I'eWheel;41 e

where the sum is over all wheels of valency (d + 1) with a distinguished
internal edge e, and the weight puts K¢ on e but the propagator on all
other internal edges.

This description of the local anomaly may seem obscure because it uses
Feynman diagrams. It admits, however, a very elegant algebraic characteri-
zation, using the identification of Proposition [1.25

Proposition 3.9. The charge anomaly for quantizing the SGq-equivariant

By system on C% is equal to

Oy — mli)dj(chmvm
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where j is the isomorphism from Proposition [1.25.

Let us unravel Oy in even more explicit terms: for «y, . .., ag compactly-
supported, g-valued Dolbeault forms,

ev(ao, e Oéd) = ( 1 /(Cd Trv(p(ao)(p(aal) - p(aad))

27i)@
where p : g — End(V') denotes the action of g on V.
Based on our analysis of the local Lie algebra cohomology of Gy, it is
clear that the obstruction must have this form, up to a scalar multiple. But
we provide a more detailed proof.

Proof. First, we note that the element Oy € C; (9q) sits in the subspace
of U(d)-invariant, holomorphic translation invariant local cocycles because
both the functional 79 and propagator P..j are U(d)-invariant, holomor-
phic translation invariant. By Proposition [1.25] we see that ©y must be

cohomologous to a cocycle of the form

(gy...,aq) — O(ao AN Dag A -+ N Dag)
(Cd

where 6 is some element of Sym?*!(g*)?. To use the notation of Section
it is some element J4(6). This cocycle factors in the following way:

(35)  (2(cheg)” " s (e @g) @ (2 Ch @) o ot Lo e
The first mapisan: ay® - - ® ag — g ® dag ® - - - ® dag. The second map
applies the symmetric function 0 : g®(@+1) — C to the Lie algebra factor and
takes the wedge product of the differential forms.

Lemma |3.8 implies that the obstruction is given by the sum over Feyn-
man weights associated to graphs of wheels of valency (d + 1). We can iden-
tify the algebraic component, corresponding to 6 in the above composition
, directly from the shape of this graph. The propagator P..; and heat
kernel K, factor as

P€<L:P€C?L®(idv+idv*) and K€:Kém®(idv+idv*),

where idy,idy« are the elements in V @ V* V* ® V representing the re-

spective identity maps. The analytic factors P2, K™ only depend on the

dimension d, and we recall their explicit form in Appendix [B}
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Each trivalent vertex of the wheel is also labeled by both an analytic
factor and Lie algebraic factor. The Lie algebraic part of each vertex can be
thought of as the defining map of the representation p: g — End(V). The
diagrammatics of the wheel amounts to taking the trace of the symmetric
(d + 1)st power of this Lie algebra factor. Thus, the Lie algebraic factor of
the weight of the wheel is the (d + 1)st component of the character of the
representation

1 *
chi, (V) = !Tr <p(X)d+1) € Sym4 (g*).

(d+1)

By these symmetry arguments, we know that the anomaly will be of the
form © = Aj(chg,(V')) for some number A € C. In Appendix we perform
an explicit calculation of this constant A, which depend on the specific form

of the analytic propagator and heat kernel. U

3.4. The quantum observables of the 3~ system

Before deducing the main consequence of the anomaly calculation, we intro-
duce the quantum observables of the 5v system. The quantum observables
Obs?/ define a quantization of the classical observables in the sense that as
h — 0, they degenerate to Obs“:}. More precisely,

Obs{} 2 Obsy, @cp C[R]/(R).

In practice, the Costello’s version of the BV formalism suggests that the
quantum observables arise by

(a) tensoring the underlying graded vector space of Obs! with C[[/]] and
(b) deforming the differential to @ + AAy, where Ay, is the BV Laplacian.

This construction actually defines a family of quantum observables, one
for each length scale L. A main idea of [CG| says that by considering the
collection of functionals at all length scales L, the observables Obsy, still
define a factorization algebra.

The fact that this works is quite subtle, since naively the differential Aj,
seems to have support on all of C%, so it is not obvious how to define the
corestriction maps of the factorization algebra. In the case of free theories,
such as the B system, there is a way to circumvent this difficulty. One can
work with an a priori smaller class of observables, namely those arising from
smooth functionals, not distributional ones. (A physicist might say we used



Higher Kac-Moody algebras 183

“smeared” observables.) The limit A = limy,_,o A7, then makes sense, and we
just use this BV Laplacian and work at scale 0. This approach is developed
in detail for the free 8 system on C in Chapter 5, Section 3 of [CGIT].
The case for C? is essentially identical. This approach yields a factorization
algebra Obs?/, as we now explain.

As shown in [CG17], a classical result of Atiyah and Bott [AB67] can be
extended to show that for any complex manifold U, the inclusion

2 (U) Qg (U)

of compactly-supported smooth Dolbeault forms into compactly-supported
smooth distributional Dolbeault forms is a quasi-isomorphism. Consequently
we introduce the subcomplex

Obsy (U) = (Sym(Q (U, V*)ld) & 0% (U, V)[1)), )

of
ObsiH(U) = (Sym(Q" (U, V¥)[d] & 20" (U, V)[1]),9) .

—cl
The Atiyah-Bott lemma ensures that the inclusion Obs:/(U ) < Obs$H(U) is
a quasi-isomorphism. 1
The assignment U +—> Obs;(U ) defines a factorization algebra on C%, and

.. . . . ——cl ~
so we have a quasi-isomorphism of factorization algebras Obs;, — Obs‘{/l.

Definition 3.10. The smoothed quantum observables supported on U C C%
is the cochain complex

Obsp (U) = (Sym(Qg’*(U, VY] @ QO (U, V)[1]), 8 + m) .

By Theorem 5.3.10 of [Gwil2], the assignment U (Tb/s?/(U) defines a
factorization algebra on C?. Just as in the classmal case, there is an induced
quasi-isomorphism of factorization algebras ObSV = Obst, as shown in the
proof of Lemma 11.24 in [GGW]. Hence this smoothed version Obsv agrees
with the construction Obsy, of [CG].

3.5. Free field realization
Proposition provides a factorization version of the classical Noether con-

struction: there is a map of factorization algebras from the current alge-
bra Cur®(G,) to the factorization algebra of classical observables Obs$:. Tt
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is natural to ask whether this map lifts along the “dequantization” map
Obs?/ — Obs%/lv, or in other words, whether quantization preserves the sym-
metries. Theorem 12.1.0.2 [CG| provides a general result about lifting clas-
sical Noether maps. It says that if © is the obstruction to solving the the
L-equivariant quantum master equation, then there is a map from the twisted
quantum current algebra Curg (£) to the observables of the quantum theory.
Thus, applied to our situation, it provides the following consequence of our
Feynman diagram calculation above.

Proposition 3.11. Let hOy be the obstruction to satisfying the Gg-
equivariant quantum master equation. There is a map of factorization al-
gebras on C% from the twisted quantum current algebra to the quantum ob-
servables

(3.6) J4: Curjg (G4) — Obsy,
that fits into the diagram of factorization algebras

Curyg, (94) —2 Obs},

hHOJ ih—>0

CurCl(Sd) e, Obs%}.

The quantum current algebra Curggv is a C[A]-linear factorization alge-
bra on C?. It therefore makes sense to specialize the value of A; our conven-
tion is to take

ho= (2mi)?.
From our calculation of the charge anomaly ©y above, once we specialize

h, we can realize the current algebra as an enveloping factorization algebra

Cur%@v (9(1) ‘ﬁ:(27ri)d = UChg+1(V) <9d)

Thus, as an immediate corollary of the above proposition, J9 specializes to
a map of factorization algebras

(3.7) J: Uaps, (v)(Sa) = Obs?/‘n:(m)d :

We interpret this result as a free field realization of the higher Kac-Moody
factorization algebra: the map embeds the higher Kac-Moody algebra into
the quantum observables of a free theory, namely the v system.
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3.5.1. Sphere operators. This formulation may seem abstract because
it uses factorization algebras, but we obtain a more concrete result once we
specialize to the sphere operators. It realizes a representation of g3 , inside
a Weyl algebra determined by the g system. 7

Recall from Section the dg algebra Ay that provides a dg model for
functions on punctured affine space. Indeed, we have an inclusion of cochain
complexes Ag — Q0*(C?\ 0) that is dense in cohomology.

Consider the dg vector space

Ag@ (Ve V*d-1))

where V' is our g-representation. The dual pairing between V and V* com-
bined with the higher residue defines a symplectic structure wy on this dg
vector space via

wy(a®u, V") = (v,v*)vjé a A Bdlz.
S2d71
This structure leads to the following dg version of the usual canonical quan-
tization story.

Definition 3.12. The Heisenberg dg Lie algebra H;y of this symplectic
dg vector space Ay ® (V @ V*[d — 1]) is the central extension

C—)f}fdy —>Ad®(V*[d—1]eBV)

determined by the 2-cocycle wy . Explicitly, the nontrivial bracket is

[c, b] = 7{ (e Ab)y diz,
SZd*l

where (c A b)y refers to taking the wedge product in A, together with the
pairing between V and its dual.

The universal enveloping algebra U(JHgy ) is a dg version of the Weyl
algebra. We think of this algebra as an algebraic replacement of differential
operators on the mapping space Map(S2¢~1, V).

The algebra U(Hgq,) is our algebraic replacement for the E; algebra
associated to the pushforward factorization algebras T*Obs‘{‘/. Indeed, just
as in the case of the current algebra, there is a map of E; algebras

U(g'fd7v) — Tx ObS?/ | h=(2mi)<

that is dense at the level of cohomology.
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In consequence there is a more concrete version of free field realization.

Corollary 3.13. The map determines a map

(3.8) j{gzdl JU (ﬁé,cth(V)) = U(Hay)

of E1-algebras.

This theorem says that there is a homotopy-coherent map between two
explicit algebras, but does not spell it out formulaically. For d = 1 both the
algebras are concentrated in degree zero and so there is no room for homo-
logical subtleties: the map is the well-known map from the affine Kac-Moody
Lie algebra to the Weyl algebra of formal loops. This free field realization is
a linear, in the sense that it arises from a representation of the Lie algebra g.
In the next subsection we give explicit formulas in the case d = 2. It would
be interesting to see a richer free field realization, such as the Wakimoto
realization [Wak86, [FE88, [FF90], in higher dimensions.

The types of free field realizations we observe are used extensively in
[Kac85] to prove number theoretic identities, such as the Jacobi triple prod-
uct identity, by studying characters. In the next section we discuss character
theory of the the higher Kac-Moody algebra, but leave calculations to later
work.

Proof. Let 7 : C%\ 0 — R be the radial projection. Consider the induced
map

T’*Jq : T*Uchg+1(v)(9d) — Tx Obsg/‘h:(

2mg)d *

Sitting inside the domain and codomain are locally constant subfactoriza-
tion algebras that encode the enveloping algebras of ﬁd,cth(V) and Hg v,
respectively. We need to understand how the map r,J¢ intertwines these
subalgebras.

The key is to use the action of U(d) by rotating C?. The classical By
system on C¢ (and C¢\ {0}) is manifestly equivariant under this rotation
action, as is the classical current algebra. The map J preserves this action,
and hence ,J is U(d)-equivariant. This equivariance persists upon quan-
tization, since the BV Laplacian is also compatible with this action. Thus,
U (d)-eigenspaces are preserved.

On the Kac-Moody side, recall that there is subfactorization algebra
of Uchgﬂ(v)(Sd) given by the sum of the U(d)-eigenspaces. It is precisely

Uens,, (v)Ga, where Gg = Q| - ® g3, as in Section
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On the observables side, the subfactorization algebra of r, Obs?/‘ h(
consisting of U (d)-eigenspaces is also locally constant on R, and it is

2m3)d

U0 ® (V@ V*[d - 1)).

Analogously to the Kac-Moody case, it is straightforward to see that this
factorization algebra is equivalent to U(Hgy ) as E; algebras. (A detailed
proof is available in Chapter 3 of [Wilal).

Finally, note that the family of functionals {I9[L]} defining the Noether
map are all U(d)-invariant. Thus, J9 preserves the subfactorization algebras
of U(d)-eigenspaces, and the result follows. O

3.5.2. Explicit formulas for two-dimensional free field realization.
We want to show that these results are not just abstract statements but lead
to explicit, useful formulas. One can analyze this higher free field realization
with bare hands. To keep things concrete, we will work out all the details
only in the case d = 2, but our methods work without difficulty (beyond
careful bookkeeping) in arbitrary dimension.

The essential idea is familiar from quantum mechanics and field theory:
the commutation relations (on the algebra side) can be identified with con-
tractions with the propagator (on the diagrammatic side), i.e., the two faces
of Wick’s formula. In the setting of factorization algebras, this relationship
arises from our embedding of the algebra U(Hgq,y/) into the factorization al-
gebra T*Obsg/. (A pedagogical discussion, with extensive examples, can be
found in Chapter 4 of [CG17].) We now spell out this relationship in some
detail.

First, it is useful for us present our algebras in terms of residues over
the sphere $2¢=1. This presentation is completely analogous to the mode
expansions in a vertex algebra via ordinary residues.

Recall that the higher residue determines a pairing (—, —) §1A® Ag —
C with

(a,b)g = fgzdl aNbAdiz,

and hence determines a map Ag — A}[—d + 1] that sends an element a to
the linear functional b+ (a,b)¢. This construction makes sense after ten-
soring with a vector space V, so an element o € A3 ® V* determines a func-
tional
fszd,la: AgRV — C
a = $eaa{aNc)y A ddz.

Setting d = 1, the reader will recognize standard manipulations with the
usual residue formula.
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We can now describe explicitly a simple linear operator in U(Hgy) as
an element of T*Obs'{/ via residues. Let I C Rs¢ be an interval. An element
in the linear component

p®acQ(l)®(Ag® Vi d-1])

determines the linear observable
Oua) = [ plr)a(=,7(z,7) %

where v € Q%*(r~1(I)) ® V is a field on the shell r1(I). In this way, one
can generate, in fact, a generating collection of linear operators for the whole
enveloping algebra.

We have seen how to embed simple operators, since A, is a subcomplex of
Q9%*(C%), so now we build toward describing how the commutator in U (3,1
in terms of contractions with the propagator P = Py, for Q0*(C?).

Recall that the propagator is a distributional (0, 1)-form on C? x C? with
values in V* ® V, and it satisfies d?z 0P = ddiag (2)idy, where dgiag is the J-
distribution along the diagonal C¢ in C??. We view idy as an element of
V* ® V. We note that P is smooth away from the diagonal; its singularities
lie only along the diagonal.

The analytic and the algebraic factors decouple, so to simplify notations,
let P(z) = p(z) ®idy, where p(z) is the differential form part of the propa-
gator above. Since d?z dp(z) is the -function on C¢\ 0, one has the residue

formula
7{ p(z)d%z =1.
SZd— 1

Thus, p(z) is the d-function for the (2d — 1)-sphere. In the case d = 2, the
propagator is given by

1  Zz1dzy — Z9dz;

P2 = gmi— p

X idv.

We can finally examine the commutator-contraction relation.
Consider the quadratic observables in U(Hg /) given by

F,(b,c) = ?{3 d%z (b, (a- )y

and

Fulbo) = § @ (b (o).
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where a,a’ € Ay ® g. The commutator bracket in U(Hgy ) is

(3.9) MGSS@, 0y, fiesa<b’ o @4 ,

and it should be computable as the sum of three types of terms:

e the terms that arise by contracting one b from one observable with one
c field from the other observable, using the propagator — this yields
a new quadratic observable;

e the term that contracts away all the fields — this yields a constant
term; and

e a contact term.

The first kind of term has the form
§o@f Puple- w2 a2 d 0w e o)y
z€S83 weS3

Let
n(z,z;w,w) = (b(2,2), [a(z,2),d (w,w)] - c(w,w))y.

Since d?w dp(z — w) = 6(z — w), we can write
(3.10) 7{ d*wp(z — w)n(z, Z; w, @)
weS?

=n(z,%z;2,2) — /N d%wp(z — w)p(w, W)Dwn(2, Z; w, W).
Here, N, is a neighborhood of the 3-sphere inside of C? and p(w,w) is a
compactly supported function that is identically 1 near the inner boundary
of the neighborhood and identically zero near the outer boundary.

The second term in the expression spoils the compatibility of
the bracket in As ® g and the commutator in the Heisenberg algebra. It
arises precisely because our differential form s may not be holomorphic. By
contrast, in the d = 1 case, the model A; = C[z, 271] consists of holomorphic
Laurent polynomials, and so the Lie brackets agree on the nose. The failure
of this bracket is corrected by an A,, morphism, as we will see in the section
below.

There is potentially another term in the expansion of involving a
double contraction and hence has integrand proportional to p(z — w)?. In
fact, this term vanishes identically since p(z —w) is a (0, 1)-form. Thus,
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the double contraction does not appear when d =2 (but it could in other
dimensions). Again, this result differs from the d = 1 case, where the double
contraction produces the term equal proportional to the level of the affine
Kac-Moody algebra.
This example of the commutator of quadratic observables encodes the
key information in this situation. We now make a clean general statement.
The map of interest

ji3 JU: U (G2,0hs(v)) = U(Ha)

goes from an Ao, algebra to the enveloping algebra of a strict dg Lie algebra,
which is a strict dg associative algebra. Indeed, by definition, U (52,ch3(V))
is the enveloping algebra of an L., algebra, so it has nonzero higher multi-
plications

my : U (ﬁ2,ch3(\/))®k — U (82,0n,(v))

for £ =1,2, and 3 because the Lo, algebra aZChs(V) only has nonzero ¢; =
0,0y = [—.—] and f3. The multiplications satisfy my = 0 for k > 2.

Proposition 3.14. In dimension d = 2, an A model for the map @
of E1-algebras is given by the sequence of maps (Jx)r=1,2,.., where

i U a.cny(v) ™" = UHV)[2 — K],
with Jp = 0 for k > 2,
91(a) :j{3<b,a-0)v
and

Bad)=¢ [ 00wy pwlpc - w).

where N, is some neighborhood of S® and p is a compactly supported function
as in the preceding computation.

Proof. In the computation of the commutator of quadratic observables, we
saw that the 1-ary map J; fails to be compatible with the commutator. This
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failure is precisely corrected by the 2-ary map Jo: we will show
(3.11)  992(a,a’) £ 32(0a,d’) + J2(a,dd’) = J1([a,d’]) — [J1(a),d1(a’)].

Suppose for simplicity that a,a’ are holomorphic. In that case, the desired
identity simplifies to

92(a,a’) = G1([a,d]) — [d1(a), 81(a)].

Above, we saw that the right-hand side is
§ [ @ul) e d @By pwlp(z - w),
ze5% JweN,

which is precisely the functional 9z (a, a’).

If a,d’ are not holomorphic, there are extra contact terms in the expan-
sion of [J1(a),d1(a’)] which exactly cancel the terms J2(da,a’) + J2(a, da’)
on the left-hand side of .

It remains to show how {Jo is compatible with the L., extension, i.e.,
that the ¢35 term is the homotopy in the Jacobi relation up to homotopy. For
a,a’,a” € Ay ® g: we want

(3.12) 7{ Try (a Add’ A dd") = (d2(a,[d’,a"]) + permutations)
SS
+ ([d1(a),d2(d,a")] + permutations)

There are two types of terms present here.
First, there are the single contractions of the propagator, which con-
tributes terms of the form

f 2 / @ (b(2), [a(2), [a(=), ' (2)]Je(w))v p(w)p(z — w).
z€S3 wEN,

These single contraction terms cancel the first term in parentheses in Equa-
tion (3.12]).

The second type of term involves a double contraction of the propagator.
It contributes terms of the form

f / 74 Try(a(z) A d (w) A" (w))p(w)p(z — w)p(z — wp(w — ).
z€S83 JweN, JuesS3

We note the similarities of this term and the weight of the 3-vertex wheel
appearing the calculation of the anomaly to satisfying the equivariant quan-
tum master equation. In fact, similar manipulations as in Appendix [B|show
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that it equals the left-hand side of (3.12]), and hence the A.-relation is
satisfied. O

4. Some global aspects of the higher Kac-Moody
factorization algebras

A compelling aspect of factorization algebras is that they are local-to-global
objects, and hence the global sections — the factorization homology — can
contain quite interesting information. For instance, in the case of a one-
dimensional locally constant factorization algebra, the global sections along
a circle encodes the Hochschild homology of the corresponding associative
algebra. In the complex one-dimensional situation, the factorization homol-
ogy along Riemann surfaces is closely related to the conformal blocks of the
associated vertex algebra.

In the first part of this section, we direct our attention to a class of com-
plex manifolds called Hopf manifolds, whose underlying smooth manifold
has the form S x S$2¢=!. They provide a natural generalization of elliptic
curves, and hence to generalizations of interesting phenomena from chiral
CFT in complex dimension one. In particular, the factorization homology on
Hopf manifolds serves as a natural home for characters of representations of
the sphere algebra g3 ,. We demonstrate that by identifying the factorization
homology with the Hochschild homology of g§ ,-

In the next section, we provide examples of such characters using field
theory. In physical terms, the factorization homology is related to the parti-
tion function of G-equivariant holomorphic field theories, such as the higher
dimensional 8+ and bc systems. We compute the partition functions on these
Hopf manifolds, which are close cousins to superconformal indices, and give
a concise description in terms of Hochschild homology, in Proposition

Finally, we return to the LMNS variants of the twisted higher Kac-
Moody factorization algebra that exist on other closed d-folds and assert a
relationship to the ordinary Kac-Moody algebra on Riemann surfaces.

4.1. Hopf manifolds and Hochschild homology

Given any (possibly dg) algebra A, a trace is a linear map
tr: A—C

which vanishes on pure commutators tr([a,b]) =0, a,b € A. Thus, every
trace determines (and is determined by) a linear map tr : A/[A, A] — C.
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There is a mathematical object associated to an algebra, called the Hoc-
schild homology HH,.(A) of A, which describes all traces simultaneously.
For an ordinary algebra, in degree zero, the Hochschild homology is pre-
cisely HHy(A) = A/[A, A]. Thus, the space of all traces for A can be iden-
tified with its dual HHp(A)Y. A natural source of traces, of course, come
from modules. Given a finite dimensional module, V', the ordinary trace is
defined and hence determines an element try € HHy(A)Y.

A (possibly Ay, associative algebra is equivalent to the data of a lo-
cally constant factorization algebra on R. The global sections, or factoria-
tion homology, of the factorization algebra along the circle S! is precisely
the Hochschild homology.

In this section, we view the higher Kac-Moody factorization algebra as
a factorization algebra on C?\ 0 = §?¢~1 x R. By U(d)-equivariance, this
determines a factorization algebra on any Hopf manifold (which we define
momentarily), which is topologically a product of odd spheres S??~1 x ST,
Pushing forward along the radial projection map allows us to view the global
sections of the factorization homology as the Hochshild homology of the A,
algebra U (fj;ﬁ). Combining techniques of factorization algebras and ordinary
algebra, we thus arrive at complete description of traces for the higher modes
algebra.

4.1.1. Overview of Hopf manifolds. Recall that for every complex
number ¢ such that 0 < |g| < 1, there is a natural action of Z on the punc-
tured plane C* where n - z = ¢""z. We will denote this multiplicative action
with the succinct notation ¢Z. The quotient space C* /¢Z is then an elliptic
curve, and the punctured unit disk {0 < |¢| < 1} parametrizes elliptic curves
in a convenient way.

This story admits an obvious higher dimensional generalization, first
explored by
Hopf [Hop4§].

Definition 4.1. Let d be a positive integer. Let q = (q1,...,¢4) be a d-
tuple of complex numbers where 0 < |¢;| <1 for i=1,...,d. The d-
dimensional Hopf manifold Xq is the quotient of punctured affine space
C?4\ {0} by the multiplicative action of Z:

Xq = (C\{0}) / a*.
In other words, we quotient by the equivalence relation

(21, -y 2a) ~ (q¥21,- -, q)7a)
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where n runs over Z.

We denote the obvious quotient map by pq: C?\ {0} = Xq. It is a
straightforward exercise to check that Xg is diffeomorphic to S§2d=1 5 Sl as
smooth manifolds; the clearest situation is where q; = g2 = - -+ = g4, which
is the most direct generalization of elliptic curves.

Remark 4.2. By definition, a Hopf manifold of dimension d is a complex
manifold diffeomorphic to S$2%! x S'. Our arguments below extend with
only a little extra effort to an arbitrary Hopf manifold, but this class is
interesting and easy to work with. Note that for d > 1, H35(Xq) = 0 and so
Hopf manifolds are not Kahler in complex dimensions bigger than one.

A key fact for us is that the Dolbeault complex of a Hopf manifold
admits a small model.

Lemma 4.3. For any Hopf manifold Xq, there is a quasi-isomorphic in-
clusion of bigraded complexes

(Cla, b, v, B],6) = (25" (Xq), )

), « has

where the generator a has bidegree (1,1), b has bidegree (d,d — 1
0, §(b) = a,

bidegree (0,1), and B has bidegree (1,0), and where 6(a) =
d(a) =0, and §(8) = a. Here 0 and § both have bidegree (0,1).

We borrow this claim from chapter 4 of [FOTO0S8]|, particularly example
4.63, and simply sketch the main points. Notably, a Hopf manifold is the
total space of a fibration

St x St — X4 — CPIL,

Topologically, this fibration is the product of a circle with the Hopf fibration
Sl — §2d+1 _, CP4-1. Each torus fiber can be equipped with the complex
structure of some elliptic curve, so that the fibration is holomorphic with
respect to the natural complex structures on X4 and CP?!. Both projective
space and an elliptic curve are Kéhler and hence admit small models, fol-
lowing [DGMST5|. As the Hopf manifold is a fibration, one obtains a model
for its Dolbeault complex by twisting the differential on the tensor product
of those models. The lemma above specifies the relevant twisting.

It is also possible to obtain a small model for the de Rham complex by
a further twisting. (See Theorem 4.70 of [FOT08|.) For the Hopf manifold,
however, life is particularly simple.
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Lemma 4.4 (Example 4.72, [FOTO08]). For Xq a Hopf manifold, the
Dolbeault cohomology coincides with the de Rham cohomology H*(S') ®
H* (8?1, Moreover, the complex (Cla, b, v, 3],0) is also a de Rham model
and hence is quasi-isomorphic to the de Rham complez.

Our primary interest, however, is in the (0,x)-forms. The complex
Q%% (Xq) sits inside Q**(X4) as a summand, and similarly the complex
Cla] sits inside (C[a, b, «, 5], 0) as a summand, yielding the following result.
Lemma 4.5. There is a quasi-isomorphic inclusion

(C[Oé],()) — (QOV*(XQ%E)
induced by the inclusion in lemma[{.5

Note that the source is precisely the small model for the Dolbeault com-
plex Q%*(E) of an elliptic curve, and — more importantly — for the de

Rham complex of a circle.

Example 4.6. Consider the (0, 1)-form
z;dz;
Bl = 57245

on C4\ {0}. It is Z-invariant, and hence descends along the map pq : C? \
0 — X when q = (q,...,q) with |¢| < 1. The descended form thus provides
an explicit Dolbeault representative for a.

Finally, the complex Q%*(X,) will appear later. We note that the cor-
responding subcomplex inside (Cla, b, o, 8], d) is the summand

Cb® Ca® '8 = Cba @ Ca® @ Ca®'aB — Cala,

concentrated between bidegrees (d,d — 1) and (d,d + 1). As 6(a®'af) =
aa, and §(a®1B) = a?, we see that the cohomology is spanned by b in
bidegree (d,d — 1) and ba in bidegree (d, d).

4.1.2. Current algebras on Hopf manifolds. For any choice of q =
(q1,-.-,44), we have the local Lie algebra Gx,_ = Q%*(Xq, 9), and the corre-
sponding Kac-Moody factorization algebra obtained by the enveloping fac-
torization algebra UGx, . A choice of invariant polynomial 6 € Sym?*1(g*)s
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defines a C[K]-linear twisted factorization enveloping algebra Uy(SGx,). To
reduce clutter, we will drop the subscript Xq from Gx, ), as our construction
is uniform in q.

Our first result is a computation of the global sections of this factoriza-
tion algebra.

Proposition 4.7. Let X4 be a Hopf manifold and let § € Syma+1(g*)9 be
an g-invariant polynomial of degree (d + 1). There is a quasi-isomorphism
of C[K]-modules

UypSG(Xq) — Hoch, (Ug)[K].

Remark 4.8. A character on g is a conjugation-invariant function of g,
and so an element of Sym(g*)9. It thus determines a linear functional on the
Hochschild homology group

HHo(Ug) = Ug/[Ug, Ug] = Sym(g)g-

This map then says that any local current (i.e., holomorphic symmetry)
determines a K-dependent family of elements of HHy(Ug), i.e., a kind of
cocharacter. A careful examination of the proof will show that in the 6-
twisted case, the map can be computed in the style of Wick contractions,
except that 6 determines contractions of d + 1-tuples of inputs. (When d = 1,
one recovers the Wick-like flavor of the usual Kac-Moody algebras.) Another
interesting feature of this map is its g-dependence, so that varying over the
moduli of Hopf manifolds, we obtain a g-cocharacter formula. In the next
subsection, we pair these maps with the characters determined by holomor-
phic free field theories.

Proof. Fix q and write simply X for Xq and G for Gx. We first consider
the untwisted case, with # = 0, where the statement reduces to UG(X) ~
Hoch,(Ug). The factorization homology on the left hand side is computed
by

UG(X) = C°(Q*(X) @ g).

Our goal is to compute the Lie algebra homology of the dg Lie algebra
QX))@ g.

We know that H%*(X) = C[a] where a has degree 1, by the arguments
above. Hodge theory will let us produce a quasi-isomorphism (Q%*(X), d) —
Cla]. Indeed, any Hermitian metric on X determines an adjoint 3" to d and
hence a Dolbeault Laplacian Ag = [0, 3']. Denote by J{%*(X ) the graded
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vector space of harmonic (0, *-forms, i.e., those annihilated by Az. In light
of lemma, the orthogonal projection determines a quasi-isomorphism

0,* Sk ) = 0,% ~
(4.1) g ° (QO (X),a) = 3{5 (X) = Clal.
Tensoring with g, we obtain a quasi-isomorphism
0% o -
(4.2) Tqp @idg @ §(X) — gla]
of dg Lie algebras, where the target has trivial differential.

Remark 4.9. In fact, by ellipticity, the orthogonal projection extends to
a deformation retraction of dg Lie algebras

The map ¢ is the inclusion of harmonic forms. The operator 7 is constructed
from the Green’s function p(z,w) € Q%*(X x X) of the 0 operator on X,
which satisfies

8wP(Za U)) = Wdiag

where wg;q4 is the volume form along the diagonal in X x X. The homotopy
7 is defined by

)@ = [ plawte)
weX
where p is a (0, *)-form on X. This data satisfies the homotopy retraction
condition
tom—idg = dn +nd = [0, 1),
and hence ensures that we know precisely how G(X) retracts onto its coho-

mology gla].

Applying Chevalley-Eilenberg chains to Equation (4.2]), we obtain the
following quasi-isomorphism for the global sections of the untwisted Kac-
Moody factorization algebra:

4.3)  CHe(ryy) : UG(X) = CLe(Q%* (X, g)) —— CLe(Cle] ® g).
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Unpacking the right hand side, we have
C(Cla] @ g) = C(g @ g[~1]) = CL**(g, Sym(g*?)),

where Sym(g?@) is the symmetric product of the adjoint representation
of g. By the Poincaré-Birkoff-Witt theorem, there is an isomorphism of
vector spaces Sym(g) = Ug, so we can interpret this cochain complex as
CHe(g, Ug™).

Any U(g)-bimodule M is automatically a module for the Lie algebra g
by the formula z-m = am — ma where x € g and m € M. Moreover, for
any such bimodule there is a quasi-isomorphism of cochain complexes

clie(g, M) = Hoch,(Ug, M)

which is induced from the inclusion of g < Ug. (See, for instance, Theo-
rem 3.3.2 of [Lod98].) Applied to the bimodule M = Ug itself we obtain a
quasi-isomorphism

Cle(g, Ug) = Hoch(Ug).

The right hand side is the Hochschild homology of Ug with values in Ug
equipped with the standard bimodule structure. Composing with the quasi-
isomorphism we obtain a quasi-isomorphism UG(X) = Hoch(Ug), as
desired.

We now consider the twisted case. Let 6 be a nontrivial degree (d + 1)
invariant polynomial on g. The factorization homology is then

Up(9)(X) = (Sym(Q%*(X) ® g)[K],0 + dcp + K - dy) -

We wish to show that this cochain complex admits a quasi-isomorphism to
Hoch,(Ug)[K]. The twisted complex is a K-linear deformation of the ordi-
nary Lie algebra homology of G(X). In particular, it does not follow that the
orthogonal projection defines a quasi-isomorphism to Hoch,(Ug)[K].
In order to find an explicit quasi-isomorphism, we appeal to the homolog-
ical perturbation lemma. For more details on this result, see Section 2.5
of [Gwil2).

In the untwisted case, upon tensoring with C[K], Remark implies
that we have a deformation retraction of cochain complexes

(gl [ K] = CHo(§(X))[K] )

L



Higher Kac-Moody algebras 199

To obtain the twisted complex, we turn on the deformation K dg on the
left-hand side. The homological perturbation lemma provides formulas for
the resulting deformations of the projection, inclusion, and homotopy maps.

Explicitly, these formulas involve the formal inverse to the operator idg —
K dg on defined by

. _ K™ n
(idg — Kdgn) = Z W(de on)".
n>0

Note that acting on any element in the symmetric algebra
Sym(Q*(Q%*(X) @ g[1]),

this formula is well-defined since only finitely many terms in the series act
nontrivially. (To see this, observe that dy lowers symmetric power and 7
preserves it, so any polynomial will eventually be annihilated.)

With this operator in hand, we define the maps

%g%*:w—i—K-ﬂo(idg—Kdgn)_lodgom
n=n+K-no(idg — Kdgn) todgon.

Note that modulo K, these reduce to the original maps above. The inclusion
map ¢ and the differential on CL¢(g[a]) do not get deformed in our situation
because the perturbed piece of the differential dy vanishes identically on
the harmonic forms. The homological perturbation lemma implies that the
resulting diagram

is a deformation retraction of cochain complexes. With the quasi-

isomorphism %g’(* in hand, the result of the proposition now follows from
the same argument as in the untwisted case. O

4.1.3. Twisted Hochschild homology. We deduce a consequence of
this calculation for the Hochschild homology of the A, algebra U (53,9)'
Let pq : C?\ {0} — X be the quotient map and consider the commuting
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diagram

cd\ {0} 2 X

R>0 L)Sl

where r is the radial projection map and 7 is the induced map on the
quotient. The action of Z on C?\ {0} gives Gca\foy the structure of a Z-
equivariant factorization algebra. In turn, Z acts on the pushforward factor-
ization algebra . We have seen that there is a locally constant subfactoriza-
tion algebra on Ry, equivalent as an E; (or A) algebra to U(g§,), that
sits as dense subalgebra of the pushforward factorization algebra 7“*’9@\{0}.
The action of Z preserves the dense subalgebra.

This relationship induces a map at the level of global sections on the
circle S', and it is quite interesting due to a nontrivial dependence on
q. The subtlety here is that global sections coincide with the Z-invariant
global sections on R, i.e., the sections that are “periodic” with respect to
the action of Z. For instance, the global sections of the sub-factorization
algebra are not Hochschild chains of U(gj,), but a version that takes into
account the monodromy around the circle. Systematic discussions of this
phenonema can be found in Section 5.5.3 of [Lur|, Lemma 3.18 of [AF15],
or Section 7.4 of [CG17]. We denote this g-twisted Hochschild homology
by Hoch, (U(ﬁ:l 9),d). Concretely, it is the Hochschild homology of the E
algebra Ugd 0 with coefficients in the bimodule Ug?, 24,07 equiped with the or-
dinary left module structure and right module structure determined by the
automorphism corresponding to the element 1 € Z on the algebra.

As the locally constant factorization algebra on R+ sits inside the push-
forward, we obtain a canonical map of global sections

HOCh*(U(Eé’g), q) — ?*Ua(gX)(Sl)a

which is, in fact, a quasi-isomorphism, by our results in the preceding section.

Now, the global sections of the pushforward factorization algebra agree
with the global sections of the factorization algebra on the source space, so
we have a quasi-isomorphism

p.Ua(9x)(S") = Ua(G)(X).

It follows that there is a quasi-isomorphism of Hochschild homologies

(4.4) Hoch.(U(g3,4),q) =~ Hoch,(Ug)[K].
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Peculiarly, this statement is purely algebraic as the dependence on the man-
ifold for which the Kac-Moody factorization algebra lives has dropped out.
The thing to note is that the quasi-isomorphism does depend on q.

4.2. Character formulas by coupling to a free theory

We turn to a class of free field theories on Hopf manifolds that have a
symmetry by the local Lie algebra Gx. Following Section [3] we study this
situation by coupling the local Lie algebra Gx to the free theory. Our main
result in this section, Proposition is an interpretation of this coupling
at the quantum level as a character of g.

There are two main differences between the theory we consider here and
the one considered in Section [3| First, in this section we are working on
a closed d-fold, namely the Hopf surface X = X. Although there is still a
factorization algebra of observables on X, the main statement in this section
concerns the global sections of this factorization algebra. Since the theory
actually makes sense on any complex manifold, our result — which is specific
to Hopf manifolds — is an avatar of a large class of analogous results.

Second, the theory we consider here is a free theory of fermions. Thus, we
will work with super vector spaces and super cochain complexes. These lead
to minor modifications to the approach of Section (3] but yields a statement
that is easiest to understand.

Before delving into the details, we note for physicists that we develop
here a holomorphic version of the Adler-Bardeen-Jackiw anomaly, as we
are studying fermionic matter fields coupled to a background holomorphic
gauge field. (See [Rabl18] for the traditional ABJ anomaly as seen within this
Costello formalism.) A more exact comparison is with the Konishi anomaly,
as these holomorphic theories sometimes arise as twists of supersymmetric
theories. By computing global sections on Hopf manifolds, we recover ana-
logues of the superconformal indices, since a Hopf manifold has S* x §2¢—1
as its underlying manifold.

Remark 4.10. As a matter of convention, if V' is a super vector space, we
denote by II(V') the super vector space obtained by reversing the parity.

4.2.1. The free bc system. To define the theory, we again start with a
g-module V. The theory is very similar in spirit to what is known as the bc
system in conformal field theory (which is usually considered in the context
of the gauging the bosonic string). Hence, we borrow the terminology.
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Definition 4.11. The classical bc system valued in the super vector space
W on a complex manifold X has space of fields

Epe(X) = Q¥ (X, W) @ Q¥ (X, W)[d — 1],

with the linear BRST operator given by Q = 0. We will write fields as pairs
(¢,b). There is a (—1)-shifted symplectic pairing is given by integration along
X combined with the evaluation pairing between W and its dual:

@@:L@@W

The action functional for this free theory is thus

%@@:Awmm.

Remark 4.12. Note that this theory is a modest variant of the definition of
the higher v system given in Section [3] The only difference is that we allow
for values in a super vector space W, as opposed to an ordinary (bosonic)
one. When d = 1 this theory is the usual be system (valued in W) from chiral
conformal field theory.

Being a free theory, there is a natural BV quantization defined for any
X. Its definition mirrors Definition for the 37 system. We denote the
resulting factorization algebra of quantum observables by Obs;!.

Before moving on to studying G x-equivariance of this factorization alge-
bra, we characterize the global observables of the bc system with values in W
evaluated on Hopf manifolds. To state the result we introduce the following
definition, whose bosonic version is familiar.

Definition 4.13. Let W be a super vector space, and view W & W* as an
abelian super Lie algebra. Define the central extension of super Lie algebras

C-h— Heisy(WaW*) - Wao W*

arising from the 2-cocycle defined by the natural pairing between W and its
dual. The h-dependent Weyl algebra associated to W is

Weyl, (W @ W*) := U(Heisp (W & W*)).

Remark 4.14. When W =V is purely bosonic, this definition recovers the
usual (A-dependent) Weyl algebra of V @ V*. When W =1II(V) is purely
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fermionic, Weyl, (II(V) @ II(V*)) is the (h-dependent) Clifford algebra of
V @ V* associated to the natural quadratic form.

Lemma 4.15. Let X be a Hopf manifold. Consider the observables of the
higher be system on X wvalued in the super vector space W . There is a natural
quasi-isomorphism

Obs{ (X) = Hoch,(Weyl,(W & W*)).

Proof. The observables of any free BV theory can be modeled as the Lie
algebra chains of a certain dg Lie algebra. (See chapter 4 of [CG17].) For
the higher be system valued in W, the dg Lie algebra is a (shifted) central
extension of the form

~

Chl-1] =L =L
where
L£=Q% (X, W*)[d—-1]® Q" (X, W)

is an abelian dg Lie algebra and the cocycle defining the extension is

LxL =  CH-1]
(c,b) = hfle,bw.

As a cochain complex, £ = £ @ C h[—1].

Our proof strategy is thus to compute this Lie algebra homology by find-
ing a small model with an obvious identification with the relevant Hochschild
homology. R

First, we identify this dg Lie algebra £ with a smaller dg Lie algebra,
via Hodge theory, as we did in the proof of Proposition Thanks to ,
we know how to deal with the ¢ fields, so we turn to replacing the b fields
by a simpler model.

Fix a Hermitian metric and hence obtain an orthogonal projection onto
the (d, *)-harmonic forms

. (Qd7*(X),5> % 32 (X) = C{b,ba},

where b has bidegree (d,d — 1) and ba has bidegree (d, d). (Note that we are
using the notation of lemma [4.3]) Observe that C{b, ba} = C[a]b, which is
naturally isomorphic to C[a][—(d — 1)], the shift of the complex Cla] up by
degree d — 1.

The fields with values in W* are Q%*(X, W*)[d — 1], so the harmonic
representative b contributes a shift up by d — 1 that cancels the shift down
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by d — 1 in the definition of the fields. Hence we obtain a quasi-isomorphism
of the b fields onto their cohomology:

78 @ WHd — 1] : Q¥ (X, WH)[d — 1] = W* @ C[a],

In conjunction with the map (4.1]), we obtain a quasi-isomorphism of dg Lie
algebras

(4.5) L5 Clo)® (W* e W) @ Chl-1].

We denote the small complex on the right hand side by L.
The bracket for £ is determined by the formula

[1®w",a®w =hw",w),

and the analogous formula with the roles of w and w* swapped.
By directly unraveling the definitions, one finds

Clie(£) = CHe(Heis, (W @ W*), U(Heisp (W @ W*))).
As we know there is a quasi-isomorphism
C*(g,Ug"?) = Hoch.(Ug)
for any dg Lie algebra g, we have a sequence of quasi-isomorphisms
cHie(L) = cle(L) = Hoch, (U (Heisy (W & WH))).

A standard result about free BV theories (see section 4.2 of [CG17]) provides
a quasi-isomorphism

Obs (X) = CH9(Z),
and so we have the claim, by composing all these quasi-isomorphisms. [J

We are most interested in the case that W = II(V'), where V is an ordi-
nary (bosonic) vector space. In this case, the lemma implies that there is a
quasi-isomorphism

Obs{ (X) = Hoch.(Cly(V & V*))

where Cl(V @ V*) denotes the Ai-dependent Clifford algebra. In this case,
there is a lovely simplification of the Hochschild homology.
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If we choose a basis {v;} of V, and dual basis {v}} of V*, then there is
a homomorphism

/ : Hoch, (CL(V & V*)) — C
Ber

determined by picking off the coefficient of the element v1 - - Vgimv)v7 - -
Ujlim(V) in the Hochschild complex. In other words, this map is precisely the
Berezin integral that projects onto the “top fermion.”

It is a standard fact that the Clifford algebra is Morita trivial [Kas86],
so that

Hoch, (Cl(V & V*)) ~ Hoch,(C) = C.
Hence, [ . is a quasi-isomorphism.

After inverting h and invoking Lemma we obtain a composition of
quasi-isomorphisms

(4.6) Obs; (X)[h™] = Hoch,(Cly(V & V*)[h™1]) = C[h,h ).

The first quasi-isomorphism is the one from Lemma [4.15] and the second is
Berezin integration.
We summarize our computations as follows.

Lemma 4.16. On a Hopf manifold Xy, there is a natural quasi-isomorphism
Obsi (X)[h™] = C[h,h ]
out of the quantum observables for a free fermion bc system.

This map encodes the “expected value” of a observables for this system.

4.2.2. Quantum equivariance. We now give our fermionic fields charge,
by equipping the odd vector space W =TII(V) with the structure of a g-
representation. The objective is to extract a character on the observables of
the bc system from the §x-equivariant quantization. By the same formalism
as in Section (3], the equivariant quantization determines a quantum Noether
map

JY : Curg G(X)[h™'] — Obsi (X)[n],

where ©x is the obstruction to solving the §y-equivariant quantization.
Recall that as a plain factorization algebra, there is an isomorphism

Ueo, §(X)[h™"] = Curd G(X)[n7'].

The explicit form of the obstruction is irrelevant in what immediately fol-
lows, but we discuss it in more detail in Section below.
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Combining the quasi-isomorphisms of Lemma and Equation (4.6]),
we obtain a commutative diagram

Ve, (§)(X)[A~] =2 Obsg (X)[A~]

! :

Hoch, (Ug)[i~Y] Y C[h, k1)

The dotted map exists since the quantum Noether map preserves the pro-
jection onto the harmonic forms from which both quasi-isomorphisms are
constructed. At the level of H we obtain the following.

Proposition 4.17. The §x-equivariant quantization of the bc system on
X walued in the g-representation IL(V') determines a map

chy v : HHo(Ug)[h™'] = Sym(g)g[h '] — Clh, A7)
This map is natural in the representation V.

As discussed earlier, a character of g is a linear functional on HHy(Ug),
so we have produced an h-dependent character from each Hopf manifold X
and finite-dimensional g-representation V. Although we will not pursue an
explicit formula here, this character chx y varies in a beautiful way over the
moduli space of Hopf manifolds, so that one can obtain g-character formulas.

4.2.3. A remark on the anomaly. The bc system on any manifold X is
free, and the anomaly © x to solving the §x-equivariant QME parametrizes
the central extension of Gx that acts on the quantum theory.

We stress that these constructions work for any complex d-fold X, so we
can consider the higher bc system on X with values in the g-representation
I1(V'). Furthermore, this theory is natural in the complex manifold X, in the
sense that any holomorphic embedding of complex d-folds f : X — X’ pulls
back the bc system on X’ to the be system on X. There is thus a “universal”
be system on a site Holy of complex d-folds and local biholomorphisms (maps
that are locally holomorphic isomorphisms). The construction G also deter-
mines a sheaf on this site, sending X to Q%*(X,g), and so we can consider
the universal equivariant bc system of G acting on Ep..
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The anomaly ©x to solving the one-loop §x-equivariant QME is en-
coded by a local functional of the form

To (¢(X)) = / o(X) Aj(o),

X

where ¢(X) € Q*(X) and where j is a linear map of the form
j: Sym(Gx[1]) — Q(X).

Universality then puts restrictions on the differential forms that can appear
in the one-loop anomaly.

Indeed, since the anomaly © x must be natural with respect to holomor-
phic embeddings, we see that ¢(X) must be some polynomial in the Chern
classes of X. Indeed, since © x must also be natural with respect to holomor-
phic embeddings, we see that ¢(X) must be some polynomial in the Chern
classes of X.

For a Hopf manifold X, the Chern classes ¢;(X) vanish when i =1,...,
d — 1 for degree reasons. Also, if we consider a local biholomorphism of the
form C? < X, we see that the anomaly © x must pull back to the anomaly
on C¢ computed in Section [3 Thus, for X a Hopf manifold, the anomaly
©x must be proportional to a functional of the form

/0(04/\805/\‘--/\804)
X

where 0 € Sym?!(g*)9 and a € Gx. In other words, we know the anomaly
up to a scalar factor, which depends in some way on the representation V.

To summarize, we have argued that the local class representing the ex-
tension of Gx acting on the quantization of the bc system on any Hopf
manifold must be of a multiple of jx(chj, ,(V)). To fully identify this class,
we need machinery that we hope to develop in future work.

4.3. The Kac-Moody vertex algebra and compactification

We turn briefly to the variant of the Kac-Moody factorization algebra asso-
ciated to the cocycles from Section This class of cocycles is related
to the ordinary Kac-Moody vertex algebra on Riemann surfaces through
compactification, as we now show.

Consider the complex manifold X = ¥ x P4~! where ¥ is a Riemann
surface and P4~! is (d — 1)-dimensional complex projective space. Let w €
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Qd—1d=1(Pd=1) be the natural volume form, which clearly satisfies the condi-
tions of Lemma and so determines a degree one cocycle ¢, €
Ci .(Gxnxpi—1) after a choice of g-invariant bilinear form  : g x g — C. Con-
sider then the twisted enveloping factorization algebra of Gsypa—1 by the
cocycle ¢ .

Recall that if p: X — Y and J is a factorization algebra on X, then the
pushforward p,J on Y is defined on opens by p,F: U C Y + F(p~1U).

Proposition 4.18. Let 7: % x P41 — 3 be the projection. There is a
quasi-isomorphism between the following two factorization algebras on X:

1) m Uy, , (Gnxpi-1), the pushforward along m of the Kac-Moody factor-
ization algebra on ¥ x P41 of type D, and

2) Usol(w)x(9s), the Kac-Moody factorization algebra on ¥ associated to

the invariant pairing vol(w) - K.

The twisted enveloping factorization on the right-hand side is the famil-
iar Kac-Moody factorization alegbra on Riemann surfaces associated to a
multiple of the pairing k. The twisting vol(w)k corresponds to a cocycle of
the type in the previous section

J(vol(w)k) = Vol(w)/Eﬁ(a,aﬁ)
where vol(w) = [pu-r w.

Proof. Let U C¥ be an open subset. The factorization algebra
U, o (Guxpe-1) assigns to U, the cochain complex

@1 (Sym (001U x P LK)+ Kulonee )

where ¢ o |yxpa—1 is the restriction of the cocycle to the open set U x
P?=1, Projective space is Dolbeault formal: its Dolbeault complex is quasi-
isomorphic to its cohomology. Thus, we havd']]

QO (U x P = QO (0)@Q% (P11 ~ QO (U)RH* (P41, 0) = Q% (U).

Under this quasi-isomorphism, the restricted cocycle has the form

brs (a®1,5®1)—/{}&(a,85)/ w

UxPpd-1 Prn—1

"Here, @ is the completed projective tensor product.
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where a, 3 € Q%*(U) and 1 denotes the unit constant function on P4~!. But
the right hand side is precisely the value of the local functional vol(w)Jx (k)
on the open set U C X. Thus, the cochain complex (4.7)) is quasi-isomorphic
to

(4.8) (Sym (Q%*(U)) [1][K], 0 + Kvol(w)Js(k)) .

We recognize this complex as the value of the Kac-Moody factorization
algebra on ¥ of type vol(w)Jx (k). It is immediate to see that identifications
above are natural with respect to maps of opens, so that the factorization
structure maps are the desired ones, completing the proof. O

Now, pick Riemann surfaces Y1, 39 and let wy, ws be their Kahler forms.
Consider the two projections

21X22

21 Z2

Consider the closed (1,1)-form w = mfw; + Thwe € QM2 x Xg). Accord-
ing to the proposition above, for any symmetric invariant pairing x €
Sym?(g*)® this form determines a bilinear local functional

Drw(a) = /2 - w A Kk(a, da)

on the local Lie algebra Gy, «y,. A similar calculation as in the previous
example implies that the pushforward factorization algebra Uy G, 1 =
1,2, is isomorphic to the Kac-Moody factorization algebra on the Riemann
surface 3; with level equal to the Euler characteristic x(3;), where j # i.
This result was alluded to in Section 5 of Johansen [Joh95|, where it is shown
that there exists a copy of the Kac-Moody chiral algebra inside the operators
of a twist of the N/ = 1 supersymmetric multiplet (both the gauge and matter
multiplets, in fact) on the K&hler manifold 31 x ¥s. In Sectionwe saw how
the d = 2 Kac-Moody factorization algebra embeds inside the operators of
a free holomorphic theory on a complex surface. This holomorphic theory,
the By system, is the minimal twist of the N' = 1 chiral multiplet. Thus, we
obtain an enhancement of Johansen’s result to a two-dimensional current
algebra.
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5. Large N limits

We take a detour from the main course of this paper to examine the case
that the ordinary Lie algebra underlying the current algebra is gly, and
study the behavior as IV goes to infinity. This provides a clean explanation
for the nature of the most important local cocycles that we have studied
throughout this work.

The essential fact is the remarkable theorem of Loday-Quillen [LQ84]
and Tsygan [Tsy83|, which yields a natural map

£g1(A) - colim CH (gl (4)) 2 CH(gle(4)) — Sym(Cye, (4)[1)

for any dg algebra A over a field k of characteristic 0. Naturality here means
that it works over the category of dg algebras and maps of dg algebras. (This
construction works even for A, algebras.) When A is unital, this map is a
quasi-isomorphism.

This construction makes sense even when working with the local Lie
algebra cochains, once we introduce a local version of the cyclic cochains.
In consequence we obtain natural local cocycles for all §/y = gly ® QO*
from cyclic cocycles of Q¥*. This uniform-in-N construction illuminates the
simplicity of the chiral anomaly.

Our approach here is modeled on prior work of Costello-Li |[CLa] and
Movshev-Schwarz [MS15], but it is also satisfyingly parallel to the approach
of [FHK19], as we explain below.

5.1. Local cyclic cohomology

We need a local notion of a cyclic cocycle. Our approach is modeled on the
work we undertook earlier in this paper, where we used the concept of a
local Lie algebra earlier as a natural setting for currents. In practice, we
replace a (dg) Lie algebra with a (dg) associative algebra and replace Lie
algebra cochains with cyclic cochains, always keeping locality in place.

Definition 5.1. A C*-local dg algebra on a smooth manifold X is:

(i) a Z-graded vector bundle A on X of finite total rank, whose sheaf of
sections we denote A"

(ii) a degree one differential operator d : A" — A%";

(iii) a degree zero bidifferential operator - : A" x ASh — Ash
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such that the collection (A*",d,-) has the structure of a sheaf of associative
dg algebras.

Remark 5.2. It’s perhaps abusive to use the term “local algebra” here,
since in the conventional mathematical sense a local algebra refers to an
ordinary algebra with a unique maximal ideal. We choose the terminology
in analogy with the concept of a local Lie algebra on a manifold but stress
the difference with the usual commutative algebra definition by adding the
adjective C*°.

We reserve the notation A for the cosheaf of compactly supported sec-
tions of the bundle A — X. By the assumptions, this is a cosheaf of dg
associative algebras. We will abusively refer to a C*-local algebra (A,d, )
simply by its cosheaf A.

Example 5.3. The sheaf of smooth functions provides a trivial example
of a C*°-local algebra on any manifold. On a complex manifold, the basic
example for us is the Dolbeault complex Qg{k. This example is, of course,
also commutative.

Any bundle of finite dimensional associative (dg) algebras defines a C'*°-
local algebra where the structure maps are differential operators of order
zZero.

There is a forgetful functor from C'*°-local algebras to local Lie algebras,
by remembering only the commutator determined by -. Thus, every C*°-local
algebra is a local Lie algebra (with same underlying bundle).

For C"*°-local algebras, there is an appropriate notion of cohomology re-
specting the locality, analogous to local Lie algebra cohomology. To define it,
first consider the underlying Z-graded vector bundle A of a C'*°-local alge-
bra. The oo-jet bundle J A of A is a graded left D x-module via the canonical
Grothendieck connection on oco-jets, as is true for any graded vector bundle,
but it has additional structure as well. Because the differential and product
on A are differential operators, they intertwine with the Dx-module struc-
ture on JA. Hence JA is also a dg associative algebra in the category of dg
D x-modules, using the symmetric monoidal product — ®cg —.

In this symmetric monoidal dg category, one can mimic many standard
constructions from homological algebra. For our current purposes, we are
interested in cyclic cohomology, and hence as a first step, in Hoch*(R, R*),
the Hochschild cohomology of an algebra R with coefficients in its linear
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dual R*. The usual formulas apply verbatim in the dg category of dg Dx-
modules. Hence, the dg D-module of Hochschild cochains on JA is

Hoch*(JA, JAY) = H Homce (JA®", CF)[—n]
n>0

with the usual Hochschild differential. (We note that the superscript ®n
means ®cz iterated n times.)

The reduced Hochschild cochains is the product without the n = 0 com-
ponent.

Definition 5.4. The C*-local Hochschild cochains of a C'*°-local algebra
A on X is the sheaf

Hochl, (A) = Q% [2d] ©p, Hoch’,,(JA, JAY).

red

We denote the global sections of this sheaf of cochain complexes by
Hochy  (A(X)).

The reader will observe its similarity to its counterpart in local Lie al-
gebra cohomology introduced in Section Just as in local Lie algebra
cohomology, we can concretely understand an element in Hochy, (A(X)) as
follows. It is a power series on A(X) that is a sum of functionals of the form

a1®"'®04k'—>/ Di(an) -+~ Do) wx
X

where each D; is a differential operator from A to C*(X) and wx is a
smooth top form on X.

There is a cyclic version of this cohomology. For each n, there is an
action of the cyclic group C,, on JA®" and hence on the nth component
of the reduced Hochschild complex Hoch’,;(JA, JAY). Taking the termwise
quotient Dx-module, we obtain the reduced cyclic cochains

Cycreq(JA, JAY) = [ [ Homeg (JA®",CF)/Ch.

red
n>0

The Hochschild differential restricts to this subspace to yield a dg Dx-
module. We mimic Definition for the C'*-local version of cyclic coho-
mology of a C'*°-local algebra A.
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Definition 5.5. The C*°-local cyclic cochains of a C*°-local algebra A on
X is the sheaf

Cyclpc(A) = Q% [2d] @p, Cycroq(JA).

red

We denote the global sections of this sheaf of cochain complexes by
Cycioe (A(X)).

To make things concrete, consider the most relevant C'°°-local algebra
for us: the Dolbeault complex Qgé* on a complex manifold X. For this C'*°-
local Lie algebra, there is a natural degree zero cocycle in C*°-local cyclic
cohomology.

Lemma 5.6. In complex dimension d, the functional on Q%* defined by
O (ap® - ®ag) =agANday -+ A day
is a degree zero cocycle in Cyci .(Q%*).

This cocycle is “universal” in the sense that it only depends on dimen-
sion.

Proof. The proof is similar to that of Proposition Note that the differ-
ential on C™-local cochains consists of two terms: the 0 operator and the
ordinary Hochschild differential. It follows from graded commutativity of
the wedge product that the cochain is cyclic and closed for the Hochschild
differential. To see that it is closed for the other piece of the differential,
observe that

007 (ap, -+ ,aq) = OF(0ag, at, . . ., ag)
+ 0P (ap, 0y, ... aq) £ - £ OF(ap, aq, . .. Oag).

The right hand side is the cocycle ©5° evaluated on the derivation 0 applied
to the element oy ® --- ® ag. The left hand side is a total derivative and
hence vanishes in the C'"*°-local cochain complex. O

5.2. Local Loday-Quillen-Tsygan theorem and the chiral anomaly

We now turn to the relationship between cyclic cocycles for a C*°-local
algebra A and cocycles for the local Lie algebras gly(A) and gl (A). The
Loday-Quillen-Tsygan theorem implies the following, since the map fqt is
natural and hence respects locality everywhere.
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Proposition 5.7. Let A be a C*-local algebra. For every positive integer
N, there is a map of sheaves

éth](\f : CyCToc(‘A)[_l] - CTOC(g[N(‘A’))
that factors through a map of sheaves
{at” : Cycioe(A)1] = Chclalo()) = lim_ Cioc(aly(A))

Remark 5.8. A version of this result was given in [CLa] for A = Q%*(X),
where X is a Calabi-Yau manifold. They interpret C'*°-local cocycles for
Q%*(X) ® gl as the space of “admissible” deformations for holomorphic
Chern-Simons theory on X, and they identify the cyclic side in terms of
Kodaira-Spencer gravity on X.

Proposition sends a degree zero C*°-local cyclic cocycle to a de-
gree one local Lie algebra cocycles for gly(A). Of particular interest is
the case Gly = gly ® Q%*. The degree zero cocycle OF € Cyci..(2%*) from
Lemma thus determines a degree one cocycle

eqt}k\/(ego) € Cikoc(glN)
for each N > 0. In fact, we have already met this class of cocycles for Gly.

Definition 5.9. For each N and k, the functional 0y y(A) = trg, (A¥) de-
fines a homogenous degree k polynomial on gl that is gly-invariant.

Lemma 5.10. For every N,

gty (07°) = j(0a41,n)
where j from Definition|1.19

In a sense ©F° is the “universal” cocycle — in that it only depends on
the complex dimension and not on any Lie algebraic data — that determines
the most important local cocycles we have encountered before.

This universality is perhaps most apparent when we view cocycles as
anomalies to solving the quantum master equation. For concreteness, con-
sider the B system with values in V' as in Section [3] This theory is natural
in the vector space V in the sense that if V' — W is a map of vector spaces,
then there is an induced map of theories from the theory based on V to
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the theory based on WE Formal aspects of BV quantization implies that
anomalies to solving the QME get pulled back along such maps between
theories.

If we choose an identification V' 22 CV, this implies the the anomaly to
solving the gly = gl(V)-equivariant QME is pulled back from the anomaly
to solving the gls-equivariant QME. For the By system on C? with val-
ues in C® = Upn+oCY, the anomaly to solving the gly-equivariant QME is
precisely the class ©5°.

This is consistent with our calculations in Section Bl and this Lemma
Indeed, if V' is additionally a g-representation, we can further pull-
back the anomaly along the map of theories induced by the defining map
p:g— gl(V) of the representation.

Proof. (of Lemma [5.10) Let A be a dg algebra. Consider the Lie algebra
gl (A) and the colimit gly,(A) = colim gl(A). At the level of homology, the
ordinary Loday-Quillen-Tsygan map is of the form

CI{Jirel (aly(A)) — Cyc,(A)
XO/\/\Xn — ZUGSn(_l)Utr (XO®XO-(1)®"'®X(T(TL))7

which induces a dual map in cohomology Cyc*(4, AY) — Cil(gly(4)). In
the formula, we have used the generalized trace map

tr : Maty (A)2 ) 5 480+
that maps an (n + 1)-tuple Xo® --- ® Xy to

D (X0)igis ® (X1)igi, ® -+ ® (Xn)iig

205-+5tn

where (X}j)i; € A denotes the ij matrix entry of Xj.

The map on local functionals is essentially this ordinary (dual) Loday-
Quillen-Tsygan map applied to the oo-jets of the commutative algebra Q0.
Since Q%* is commutative, the generalized trace is simply the trace of the
product.

12This means, for instance, that there is an induced map between the spaces of
solutions to the equations of motion.
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We can thus read off the image of ©3° under the /qt}; as the local Lie
algebra cocycle

Lgtn (OF) (ao, s ag) = trg (g Adag A A 8ad) ,
which is precisely j(0g41,n7)- O
5.3. Holomorphic translation invariant cohomology

We turn our attention to C'°°-local cyclic cocycles defined on affine space
C4 that are both translation invariant and U (d)-invariant. We show that up
to homotopy there is a unique such cyclic cocycle on the C*°-local algebra
QY%*(C?) given by ©F.

Proposition 5.11. The class ©F spans the U(d)-invariant, holomorphic
translation invariant, C*-local cyclic cohomology of Q%*(C?) in degree zero.
Thus

HO (Cycj,o (0 (€h)V0Ch) = .

For a definition of the notation used in the proposition we refer to Ap-
pendix [A]

Proof. The calculation is similar to that of the holomorphic translation in-
variant local Lie algebra cohomology of G4 given in Appendix[A]l We list the
steps of the calculation first, and we will justify them below.

(1) There is an identification of the holomorphic translation invariant de-
formation complex

(5.1) Cycioe(Q(C)) = C - d2 &) Cyerea(Cllen, - - zall)ld).

Notice the overall shift down by the dimension d.
(2) We can recast the right-hand side as the Lie algebra homology of the

d-dimensional abelian Lie algebra C? = span {3.,} with coefficients in
the module

Cyct g(Cllz1, - - ., zq)])d%2[d] :

red

C- ddZ ®%[3z’i] CYC* (C[[zla ceey Zd]])[d]

red

o L (cd; Cyc,y(Cllz, - ., zd]])ddz) [d].
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(3) The U(d)-invariant subcomplex is quasi-isomorphic to (C[t]/C) [2d],
where ¢ is a formal variable of degree 4+2. From this, the claim follows.

Step (1) follows from a result completely analogous to Corollary 2.29 in
[Wila] for local Lie algebra cohomology. The commutative algebra C[d,,] is
equal to the enveloping algebra of the abelian Lie algebra C? = span{d.,}.
Hence, the right hand side of Equation is precisely the Lie algebra
homology in step (2).

We now justify Step (3). First, we apply the Hochschild-Kostant-
Roesenberg theorem to the cyclic homology of the ring C[[z1,...,24]]. It
asserts a quasi-isomorphism

Cyc,(Cllz1, -+, za)]) = (Cl[z]][d=i][t "], tdar)

where the dz; have degree —1 and t is a formal parameter of degree +2 (note
that the operator tdyp is of degree +1). The formal Poincaré lemma applied
to D¢ then implies a quasi-isomorphism

Cyc,(Cllz1, .., zd]]) ~ C[t™'].
Thus, the holomorphic invariant subcomplex is quasi-isomorphic to
(5.2) CL(C% (Clt)/C) - d?2)d).

Here, we have identified the dual of C[t~!] with C[t] and quotiented out
by the constant term since we are taking reduced cohomology. Notice that
(C[t]/C) - d?% has a trivial C?-action.

We have yet to take U(d)-invariants. The complex is equal to

Sym* (cdm) ® (C[]/C) - d%2)]d].

A U(d)-invariant element must be proportional to the factor 0,, ---0,, €
Sym?(C¥%[1]). Hence, the U(d)-invariant subcomplex is

C- (s, -+ 0:,) ® (C[t]/C) - d%)[2d] = (C[t]/C) [2d]
as desired. The class of ©F° corresponds to the element t¢ in this presenta-

tion. O

Consider the dg algebra Ay that we have used as an algebraic model
for the Dolbeault complex of punctured affine space Q%*(C?\ 0). In Theo-
rem 2.3.5 of [FHK19], they show that there is a unique U(d)-invariant class
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in the cyclic cohomology of Ay in degree one given by the functional
a0®-~®adr—>jl{ao/\ﬁal--%\@ad.

Up to our conventional degree shifts, we are seeing the analogous uniqueness
result at the level of local functionals.

5.4. A noncommutative example

The main objects that have appeared in this section so far are the cyclic
chains and cochains of the commutative dg algebra Q%*(X). In this sub-
section, we display a variant of the above examples where we introduce a
noncommutative deformation of this algebra. Specifically, we assume X is a
holomorphic symplectic manifold and assume we have a deformation quanti-
zation of holomorphic functions. This introduces a dg algebra deformation of
the Dolbeault complex, and we can consider the resulting deformation of the
current algebra. We display the flexibility of our techniques by exhibiting a
free field realization of the resulting current algebra using a noncommutative
version of the v system.

Noncommutative gauge theories appear in the description of the open
sectors of superstring theories [Wit86], and our primary interest in this class
of examples is that we expect them to appear as a symmetries in the cor-
responding sectors of supergravity and M-theory. More definitive results in
this direction have appeared in the program for studying the superstring
theory through its holomorphic twists developed in the papers of Costello
and Li in [CLb] and by Costello in [Cosc| [Cosb].

As usual, suppose X is a complex manifold, and as above, consider the
local Lie algebra Gly = Q"*(X)® g on X for every N > 0. If X is addi-
tionally holomorphic symplectic, we obtain a deformation of this family of
local Lie algebras described in the following way. Suppose that * is a for-
mal holomorphic deformation quantization of (X, w). This is an e-dependent
associative product on holomorphic functions

*e 1 OML(X) % 0" X) — O (X)[[€]]

where, term-by-term in €, the product is given by a holomorphic bidifferential
operator. This associative product on O"!(X)[[e]] extends to one on the
Dolbeault complex, giving the following definition.
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Definition 5.12. Define the sheaf of associative dg algebras
Ae = (% (X)[[€]], 9, %)

where the differential is the usual 9 operator, and %, is the Moyal product
induced from the deformation quantization.

In fact, A, is essentially a C'*°-local algebra in the sense of Definition [5.1
The only subtlety is that A. is not given by the sections of a finite rank
vector bundle. However, it is a pro-C°°-local algebra in the sense that it can
be expressed as a limit of C'*°-local algebras

Ac = lim A /eF
k—o00
This algebra allows us to define a non-commutative variant of the current
algebra. Namely, we can consider the Lie algebra of N x N matrices with
values in A, that we denote by gln(A¢). Again, this is not a local Lie algebra
in the strict sense, since the underlying vector bundle is infinite dimensional.
However, it is finite rank over the ring C[[¢]], and all of the same construc-
tions of local Lie algebras still make sense in this context. Note that this
current algebra reduces modulo € to the local Lie algebra Siy = Qgé* ® gln:

9[]\[ = lim g[N(Ae)-
e—0

5.4.1. Classical Noether current. Just like in the case of the ordinary
current algebra associated to Gl , we can contemplate a free field realization
of gln(Ae). The simplest way to do this is to consider the analogue of the vy
system in this noncommutative context. The v system was built from the
Dolbeault complex on the complex manifold X. The non-commutative vari-
ant is obtained by replacing the Dolbeault complex with the dg algebra A..

Let V be a finite dimensional C-vector space. The free theory we consider
has fields

(7,B) EARV ® A @ V*d — 1]

and action functional
S(B,7) = /XTrv(B *e 07)

By trace we mean the usual map Try : End(V) =V ® V* — C. We will refer
to this as the “non-commutative 8y system” on X with values in V.
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Remark 5.13. Note that this is not a classical theory in a strict sense
because the space of fields is not the sections of a finite rank vector bundle.
We can make sense of this rigorously by considering our theory as one defined
over the base ring C[[¢]]. In other words, we have defined a family of field
theories over the formal disk with coordinate e.

Lemma 5.14. As a classical BV theory, the non-commutative By system
with values in V is equivalent to the ordinary B~ system with values in V
(considered as a trivial family of field theories over the formal disk with
coordinate €).

Proof. Locally, on C%, the %.-product has the form

_ Of 09
f*eg—ngreamaZiaZj +

From this, we see that 3%, 0y and S0~ differ by a total derivative. Thus,
locally, this non-commutative 57 system is equivalent to the usual one (up
to adjoining the formal parameter ¢). O

It appears that adding the non-commutative deformation does not de-
form the free holomorphic field theory. Once we consider symmetries, how-
ever, we see a deformation of the usual free field realization.

Fix an identification of V = C¥, for some N >1. As in the non-
commutative case, there is a symmetry of this 5+ system by the current al-
gebra built from the ordinary local Lie algebra Gy, but this does not use the
symplectic structure on X. However, once we turn on the non-commutative
deformation, we see that the 8y system has a symmetry by the deformed
current algebra built from gl (A.).

Indeed, there is a Noether current in this setup given by

Ix(a, B,7) = / Try (B A (e 7))

where « € gly(Ae). By a %y we mean the algebra action of gly(A¢) on
A @ V.

Lemma 5.15. This Noether current determines a map of factorization al-
gebras on X

J& U(gln(Ae)) — Obsly
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where Obsg}N 1s the factorization algebra of classical observables of the non-
commutative By system with values in V = CN. Modulo €, this map reduces
to the map of factorization algebras in Proposition[3.4)

5.4.2. Equivariant quantization. Since the noncommutative 5 system
is still free, there exists a unique quantization Obsg y as a factorization
algebra on X for each NV.

Let’s turn to the quantization of the classical gly(Ac) symmetry, where
the situation is similar to the Gx-equivariant 8y system studied in Section
Although the global case is interesting, we will restrict ourselves to the
simplified local situation where

xX=ci=c>

and w is the standard symplectic form. We can employ analogous Feyn-
man diagrammatic methods to contemplate quantum equivariance in the
noncommutative context.

We ask that the Noether current I,y solves the gly(Ac)-equivariant
quantum master equation. Locally, on C%, the obstruction to satisfying the
QME is given by the following local cocycle

(5.3) / Trgr, (ke Dt e - - ke D) € Chog (gl (o).

In the ordinary commutative case, we were able to characterize this anomaly
as being determined by an element in Sym?*! (g"). For the noncommutative
situation, we do not have a direct way of identifying this local cocycle.

We arrive at an explicit characterization by taking the large N limit,
where we are able to identify this anomaly algebraically. Indeed, we have
the Loday-Quillen-Tsygan map for local functionals

eq* : Cycikoc(‘AE)[_l] - Cikoc(g[oo(‘/qa) = ]\}gnoo Cikoc(g[N(‘A))

Thus, the large N anomaly must come from a class in Cycy,.(Ae) of coho-
mological degree zero.

By a similar proof as in Proposition [5.11} one can show that the coho-
mology of the translation invariant subcomplex of Cycj  (Ae) is equal to (a
shift of) the cyclic cohomology of the formal Weyl algebra

CyC* (;{\2n7 121\2/n> [QTL] .
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Here, //l\gn is the formal Weyl algebra on generators {xi,...,Zn,Y1,...-Yn}
satisfying the commutation relation

(75, y;] = €dj.

This cyclic cohomology is studied in depth in [Wilc], where it is shown that
there is unique, up to scaling, nontrivial class in the cyclic cohomology

@SO S HCQn(Aan 121\2/n)

For us, a multiple of this class represents the anomaly to the equivariant
quantization the noncommutative v system at large N.

We can now use the universal nature of this class to characterize anoma-
lies at finite N to obtain the following quantum Noether map.

Proposition 5.16. The gly(Ac)-equivariant quantization determines a
map of factorization algebras on C* = C2":

J& : Uge, x(gln(Ac)) — Obs?,N

where a® n € HL (gly(Ac)) is scalar multiple the class obtained from the
universal cyclic cocycle O under the Loday-Quillen-T'sygan map

lqt™ - Cycioe(Ae)[=1] = Cioe(aln (A))-

Remark 5.17. In order to nail down the constant a would require a te-
dious, albeit seemingly straightforward, Feynman diagram analysis akin to
Section Bl

By Lemma we see that on C2" the factorization algebra of the non-
commutative 87y system Obsg1 n is actually isomorphic to the factorization
algebra

Obsd @¢ C[[¢]

where Obs((q:N is the ordinary Bv system of maps C?>* — CV. Thus, as an
immediate corollary, we see that the quantum Noether map is of the form

Uao, » (8ln(Ac)) = Obsty @c Clle]].

This means that inside the v system we have two different free field real-
izations: (1) the one from Section [3| where we realized the ordinary current
algebra at some central extension in Obs{y, and (2) the one we have just
exhibited, which realizes a central extension of the algebra gl (Ae).
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Appendix A. Computing the deformation complex

In this appendix we prove Proposition That is, we compute the holo-
morphically translation invariant component of Hj,.(G4), the Lie algebra
cohomology of the local Lie algebra G5 = 0% ® g on C%.

A.1. Holomorphic translation invariance

We have already discussed the local cohomology cochain complex Cj (Gq)

in Section To pick out the subcomplex of holomorphically transla-
tion invariant elements, we introduce yet another dg Lie algebra Cﬁol whose
invariants are precisely this subcomplex.

Definition A.1. Let (Cﬁol = C? @ C7[1] be generated by the partial deriva-
tives 9/0z; and 9/0%; in degree 0 and by elements {7;}¢, in degree —1.
Equip it with a trivial bracket and with a differential that »; to 6%1'

There is a canonical inclusion of dg Lie algebras

C{9/0z,...,0/0z4} — Ci.,

so that any representation “forgets” down to an action of holomorphic in-

finitesimal translations. But a dg representation of this abelian dg Lie al-

gebra has an action of all the partial derivatives, but where the actions of

the 9/0z; are trivial homotopically. In this sense C{ | encodes the idea of

infinitesimal translations that are purely holomorphic up to homotopy.
Directly from these definitions one can verify the following.

Lemma A.2. The canonical inclusion of enveloping algebras
C[0/0z1, ..., 0/024) = U(Cily)
1S a quasi-isomorphism.

In other words, U ((Cﬁol) is quasi-isomorphic to the algebra of constant
coefficient holomorphic differential operators on C%.

A.2. Language to phrase the main result

We now turn to the main objects of interest here.
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Definition A.3. Let CI‘OC(Qd)Cﬁol denote the subcomplex in Cj, (G4) con-

. . . . . d
sisting of elements strictly invariant under Cj ;. Let
Cikoc(gd)U(d)'xCﬁol

denote the subcomplex of elements that are invariant under both translation
by (Cﬁol and rotation by the unitary group U(d).

We are interested in the map j, from Section for the affine space
C¢. We will use this map to completely characterize the degree one U/(d)-
invariant, holomorphically translation invariant local functionals on Gg.

The degree one result will follow from a stronger, general result on the
cochain level. To formulate it, we introduce some notation.

A.2.1. De Rham forms for dg Lie algebras. Let £ denote an arbitrary
dg Lie algebra. Interpret the dg commutative algebra given by the Chevalley-
Eilenberg cochains Cf,;,(£) as functions on a formal moduli space BL:

O(BL) = Crje(£).
In the same line of thought, define the k-forms on BL by

QF(BL) == Cf (L5 A (LY[-1]))
= Cf (L5 Sym™ (L)) [—k].

Here, £V denotes the coadjoint representation of L.

Example A.4. A simple example gives evidence that this interpretation
is not so far-fetched. Consider the case £ = C"[—1], a purely abelian Lie
algebra. Then

O(BL) = Cre(£) = Cl[t1, - -, tn]]

with generators ¢; in degree 0. (These generators are the coordinates on the
formal n-disk.) Similarly, the de Rham forms are

OF(BL) = O(BL) @ A*F(LY)
=C[[t1,- .., tn]] ® AF[dty, - -+, dty],

where we use dt; to denote a basis for the coadjoint representation LV.
(We use A* denote the kth exterior power of the vector space spanned by
those generators.) Everything is in cohomological degree zero. Manifestly
everything agrees with the usual constructions of algebraic de Rham forms.
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Let 0 : Q¥(BL) — Q*1(BL) denote the de Rham operator for BL. The

space of closed k-forms is defined by the totalization of the double complex
Ok (BL) = Tot <Qk(BL‘) 5 QM Y(BL)[-1] — ) .
The case where k = 0 is the usual de Rham complex, which we will denote

by DR(BL).
The constant functions on Bg can be appended to obtain a complex

DRug(BL) = Tot (C[1] - Q°(BL) % Q' (BL)[-1] = -+ ),

which is acyclic. (Consider the spectral sequence for the underlying dou-
ble complex where one uses the de Rham differential first. The Poincaré
lemma ensures the cohomology vanishes on this page.) The inclusion map
Q’C“l(Bﬁ) — DR,us(BL) has quotient given by the opposite truncation

Tot (cm So'BL) L. 4 Qk_l(B£)> .

We denote it by 7D Raug(BL). The de Rham differential 0 : Q¥~1(BL) —
QF(BL) determines a cochain map

7D Raung(BL)[d] & QF(BL),

whose cone is the augmented de Rham complex. This observation implies
that the map determines a quasi-isomorphism from the truncation to the
closed k-forms.

A.2.2. Improving j. Before stating the main result of this appendix, we
note that there is a natural enhancement of the cochain map

j : Sym™(g*)°[-1] = Cie(Sa)
from Section to a cochain map
(A1) j - Q" (B)ld] = Cloe(Sa)

that we now describe.
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Because Q%(Bg) = Ciie(g, A%gY), a d-form 7 of cohomological degree m
determines a linear map

n: A% — Cie(o)-
We can extend this map over Q2%* to obtain a linear map
7: AGq = Cfie(Sa),

and an element of C7;,(G4) can be evaluated on an element of G4 to obtain

a de Rham form. Hence, we define the element j(n) in Cj,,(94) by

() (@) =10 A --- A da)(a).

We extend j to forms OF(Bg) with k < d as the zero map.
Direct computation then shows the following.

Lemma A.5. The construction above determines a cochain map
17: T<d+1D Raug (Bg)[2d] — Cjoo(Sa)-
As this truncated de Rham complex 7 441D Raug (Bg) is quasi-isomorphic

to le(Bg), we obtain the existence of the desired map (A.1)), although we
do not provide an explicit formula.

A.3. The main result

We now state the main result.

Proposition A.6. The mapj factors through the subcomplex of invariants
under rotation and holomorphic translation:

(A.2) i+ Q4 (Bg)[d] — Cf(Ga)V @ Chor,

In particular, if g is an ordinary Lie algebra (i.e., concentrated in degree
zero), then we obtain an isomorphism

H'() : Sym**(gV)® = H' (Cloe(9a)) 7"
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Note that this result contains Proposition [I.25] since for an ordinary Lie
algebra one has

HY Qg (B)ld) = HTH Q4™ (Bg)) = H (g, Sym™ ! (g")).

In brief, the proof involves two central ideas. The first is that the
translation-invariant local functionals ought to be built from translation-
invariant differential operators and translation-invariant measures, and such
functionals are thus pinned down by their behavior at one point. The second
is that rotation invariance then drastically cuts down the remaining possibil-
ities. Indeed, as the proposition indicates, the only freedom is concentrated
in the dependence on the Lie algebra g and not on the spatial directions
along C¢.

We start by ignoring the differentials and simply figure out the graded
subspaces of invariant elements. Note that for a complex V, we use V# to
denote the underlying graded vector space.

Lemma A.7. The subspace Cﬁc(gd)cd of elements invariant under trans-
lation along C% is isomorphic to

(Q*(C)[2d) @ CF pea(ll21, - 2071, - Zg A7, ., dZ,]]).

Note the overall downward shift by degree d. The translation-invariant
differential forms are

(C[dzl, eo.,dzg,dzy, ... ,dfd].

The graded Lie algebra underlies the dg Lie algebra of Dolbeault forms on
the formal d-dimensional disk with values in g, which we interpret at the
fiber at the origin of the jet bundle of Gg.

Proof. Here we are just noting a simple fact: for any trivial bundle on C¢,
translation-invariant sections are thus determined by their value at a single
point, which we can take to be the origin.

Each bundle A’“T(f:k — C%, whose sections are complex-valued k-forms,
admits a natural trivialization by the frame arising from the choice of linear
coordinates. For instance, the complexified cotangent bundle Tt — C? has
the frame {dz,...,dzq,dz1,...,dzq}; for other k, take wedge powers of
that frame. The bundle g x C¢ — C? is likewise trivial, and hence the jet
bundle inherits a trivialization. The trivialization is explicitly given by using
the linear coordinate system arising from identifying the manifold with the
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vector space C%; it gives a natural basis for differential operators and hence
for jets.

Putting these observations together, the fiber at the origin of the jet
bundle for G, can be seen as Dolbeault forms on the formal d-dimensional
disk with values in g. As Cj_ is a version of reduced Lie algebra cochains,
we obtain the claim. [l

We would now like to trivialize homotopically the action of the antiholo-
morphic derivatives. On the formal d-dimensional disk, there is a natural
trivialization (by contraction with the vector fields dz,), which also makes
sense on C? globally. The strict invariants for the extended Lie algebra (Cﬁol
are thus expressions that have no dependence on the antiholomorphic coor-
dinates Z;.

Lemma A.8. The wunderlying graded subspace of the Cﬁol—mvam'ants
C;(Ga)Cher is isomorphic to

Cldz1, ... dzg][2d] ® CF, q(allz1, - zal)),
the reduced Lie algebra cochains of the Lie algebra g|[z1, ..., zn]].

Here Cldz1,...,dz4][d] forms the translation-invariant holomorphic dif-
ferential forms, shifted down by degree d. This is the underlying associated
graded of the translation invariant subcomplex of the de Rham complex

(€, M)

where M is the D-module C};___,(JO"!(C%)). The flat connection on this
D-module is induced from the canonical one on the oo-jets of the trivial
bundle.

Thanks to some standard results in invariant theory, there is then a
simple answer for which such elements are U(d)-invariant.

Lemma A.9. TheU(d) x C¢_,-invariant subspace Cﬁc(gd)U(d)“Cd is canon-
ically isomorphic to the (shift of the) reduced de Rham forms

0 .q(Bg)[2d] = Orea(Bg)[2d) & Q' (Bg)[2d — 1] & - -- & Q(Bg)]d].

Here we mean that there is no de Rham differential, but the k-forms
are put in their “usual” place (i.e., in our motivating example, the k-forms
would sit in degree k). By O,.q4(Bg) we mean that we quotient out the copy
Sym®(g¥) of the constants from Ciio(9).
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Proof. Sitting inside of U(d) is its center, a copy of U(1) as multiples of
the identity. This group equips the (Cz o-invariant subcomplex with a weight
grading, as follows. The group U(d) acts in the defining way on C¢, so
each coordinate z; has weight 1 and so dz; also has weight 1. Each k-
form has weight k; for instance, the volume element d%z has weight d. Let
AP [dz1,...,dz4) denote the vector space of translation-invariant holomorphic
k-forms. Every element in this space has weight k.
On the other hand, z has weight —1. Let

Sym>0 (gv[zi/, e 25][—1])(7]6)

denote the subspace of elements with weight —k. This space is spanned
by symmetric words built from monomials of the form z @ (27)% - - (2))%,
where x € gV, and the sum of the zV-degrees over all the monomials must
add to k.

Our complex is built from both kinds of elements. To have total weight
zero, a monomial in these terms z;” and dz; must have an equal number of z
and dz;. In other words, the weight zero elements of our complex decomposes
as a direct sum

(A.3) kG_BOAk[dzl, ...,dzg) ® Sym™° (gv[zlv, - zg}[—l])(_k) )

But we wish to go a step further and pick out the invariants under the action
of the entire group U(d).

We will denote by V the fundamental U (d)-representation, and V'V its
dual. W can rewrite the decomposition as

k@o AR(V) (K] @ Sym™® (g¥[-1] @ Sym(VY)) _,,

We expand the term Sym~° (g¥[—1] ® Sym(V")) as
(A.4) Sym>’ (g"[-1]® (Ca VY eSym*(VV)@--+)).
Using the relation

(A.5) Sym>*(W @ Z) = Sym™*(W) & (Sym(W) @ Sym>°(Z)),
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we see that this expression (A.4]) is equal to

(A.6) Sym™° (gv[—l] ©g'[-1]® VV)
(A7) @Sym (g¥[-1@g'[-1]oV")®@Sym™° (g¥[-1]® (Sym*(V¥)®:--))

In fact, we want to the U(d)-invariants of the tensor product of this enormous
mess with the totally antisymmetric representation A*(V'). Thus, none of the
terms Sym” (V") can contribute, so we can forget about the second line
when we taking U (d)-invariants.

Using the relation again, we expand the first line as

Sym>? (g"[~1]) ® Sym (g"[~1]) © Sym™° (gV[-1] @ V") .

Note that the first term has U(d)-weight zero. Thus, we find that the space
of U(d)-invariants is equal to the U(d)-invariants of

Sym™° (gV[~1]) & @ A*(V)[—K]
k=1
® (Sym (gv[_l]) ® Sym>0 (QV[_l] ® VV))(_k) .

Once we turn on the Lie differential, the first term above (corresponding to
k = 0 in our original notation) is precisely

(Sym>0(gv[_1])7dCE) - Ored(Bg)‘

Note that U(d) acts trivial here.
The k£ = 1 term is of the form

V[-1] ® Sym(g’[-1]) ® (" ® V[-1]).

We are left to compute the U(d)-invariants of V' ® V'V, which is one dimen-
sional generated spanned by the identity idy € V ® V. Thus, the space of
U (d)-invariants corresponding to the k = 1 term is equal to

Sym(g”[-1]) ® g"[-2]

which we identify with Q!(Bg)[—1] once we turn on the Lie differential.
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In general, we see that for each k we are looking at the U(d)-invariants
of

A*(V) @ Sym(g"[~1]) ® Sym*(g") © A*(V'Y)[-24].

Extracting the dependence on V', we must compute the U(d)-invariants of
AR(V) @ AR(VY).

It is a standard fact in invariant theory that the U(d)-invariants of V& ©
(VV)®Z is zero unless k = [, in which case the space of invariants is spanned
by permutations of the identity morphism V&% — V®  See, for instance,
Theorem 2.1.4 of [Fuk86]. Since we are taking the antisymmetric product,
each permutation is equal to some multiple of the identity. Thus, the U(d)-
invariants of A¥(V) @ A¥(VV) is one-dimensional spanned by the identity.

It follows that once we turn on the Lie differential, the U(d)-invariants
of the degree k piece in the decomposition is equal to

Sym(g”[~1]) ® Sym"*(g")[-2k] = Q" (Bg)[k].

Accounting for the overall shift by 2d, we obtain the result. O

Proof of Proposition[A.6. We have observed that before turning on the ex-
ternal differential, the graded vector space of U(d)-invariant, holomorphic
translation invariant local functionals is equal to

—2d —d—1 —d

Orea(Bg) = Q~'(By) Q%(Bg).
The differential is the restriction of the de Rham differential on the de Rham
complex Q*(C?, M) as we pointed out following Lemma This is precisely
the de Rham differential, as one can immediately verify, on Bg
dpg - OV (Bg) — Q" (Bg)
which completes are proof. ]
Appendix B. Normalizing the charge anomaly
In this section we conclude the proof of Proposition by an explicit calcu-

lation of the Feynman diagrams controlling the charge anomaly for the 3~
system on C?. We have already identified the algebraic piece of the anomaly
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with the (d 4 1)st component of the Chern character of the representation.
The only thing left to compute is the analytic factor. We can therefore as-
sume that we have an abelian Lie algebra, and simply compute the weight
of the wheel I" with (d + 1)-vertices where the external edges are labeled by
elements o € Q2" (C%). After choosing a numeration of the internal edges
e=0,. d we can label the edges e = 0,...,d — 1 by the analytic propaga-
tor by ?”;, and the label the edge e = d by the analytic heat kernel K2".
We recall the precise form of these kernels in the proof below. The vertices
are labeled by the trivalent functional 1°"(c, 8,7) = [ ‘@ A B A~ (there is no
Lie bracket since the algebra is abelian). Denote the resulting weight, which
is a functional on the space QU (C%), by

Wﬁn(Pe<L7 KE’ Ian)'

The main computation left to do is the ¢ — 0, L — 0 limit of this weight.

For more details on the notations, such as the explicit forms of the heat
kernels and propagators, we use in the proof below we refer the reader to
[Wilb], where the general prescription for quantizing holomorphic theories
has been written down.

Lemma B.1. As a functional on the abelian dg Lie algebra Qg’*((Cd), one
has

lim lim Wp" (P2, K&, 197) (o © . D)

L—0e—0

Proof. We enumerate the Vertlces b mtegers a =0,...,d. Label the coor-
dinate at the ith vertex by z(¢ , . ) The incoming edges of the
wheel will be denoted by homogeneous Dolbeault forms

2 =3 AP e ol (cd).
J

where the sum is over the multiindex J = (ji,...,Jx) where j, =1,...,d
and (0, k) is the homogenous Dolbeault form type. For instance, if « is a
(0,2) form we would write

o = Z A(jl,jz)dzjddgjz'
71<J2
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Denote by W™ weight € — 0 limit of the analytic weight of the wheel with
(d + 1) vertices. The L — 0 limit of W™ is the local functional representing
the one-loop anomaly ©.

The weight has the form

W (. o) = lim (a(o)(z(o)) . .a(d)(z(d))>
e—0 Cd(d+1)
d
x K20 2 T Pep (29, 2.
a=1

We introduce coordinates
w©® = 0

w@ =@ _ e 1 <4 <q.

The heat kernel and propagator part of the integral is of the form

Kan H Pan (a— 1) ( ))

1 /L dt;---d 1
N (27Ti€)d b1y ta=e (27‘(‘it1)d cee (27Titd)d t1---tg

d
x 4@ [T(a@) + - + dw?)
i=1
5 Hdd (a) Zw (a) Hdw e_ S Mapw® w®

i=1 Jj#i

Here, M, is the d x d square matrix satisfying

2
Zd: Mabw(a) w0 = Zd:w( ) (“)\Q/ta.
a,b=1 a=1
Note that
d d d
H(dw( R dw H Z H dw(a)
i=1 a=1 \i= J#i
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In particular, only the dwl(-o) components of a(® ... (@ can contribute to
the weight.

For some compactly supported function ® we can write the weight as

d
0 d)\y _ 1; d, (a) 1d=—(a
W, ... af ))—}g% s (Clljod w4 )> o

L] /L dty - --dty 1
(27ri€)d t1,...,ta=e€ (27Titl)d T (27Titd)d t1-- 'td
XD iy, ) ) € D Mo

i1,oia

Applying Wick’s lemma in the variables w®,... w(® together with
some elementary analytic bounds, we find that the weight above becomes
to the following integral over C¢

0 0
d, (0) 3d=(0) o ) s
f(L) /w<°>e<cdd w\Yd%w g €iyoniy (8 ) @ 613) [P —r—

1
115een5ld wzg 8“)7,
where
fL) = i / ! ‘ dét
= —— |1 .
(27Ti)d e—0 trrta=c (6 +t+---+ td)d+1
In fact, f(L) is independent of L and is equal to ﬁ after direct com-
putation. Finally, plugging in the forms a9, ..., a(® we observe that the

integral over w(®) € C simplifies to

1 1
©ga® ... 5o @
(2ri)d (d+ 1) /(C a0al- - o

as desired. O
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