
HOLOMORPHIC FIELD THEORIES AND HIGHER ALGEBRA

OWEN GWILLIAM AND BRIAN R. WILLIAMS

In memory of Yuri Manin, with gratitude and admiration.

The mathematical language of classical physics is based upon real numbers
. . . . The mathematical language of quantum physics is based upon complex
numbers, and it would be natural to expect that the complex analytic and the
algebraic geometry should replace the differential geometry of the classical
period.

Yuri Manin from the introduction of Frobenius Manifolds,
Quantum Cohomology, and Moduli Spaces

Abstract. Aimed at complex geometers and representation theorists, this survey ex-
plores higher dimensional analogues of the rich interplay between Riemann surfaces, Vi-
rasoro and Kac-Moody Lie algebras, and conformal blocks. We introduce a panoply of ex-
amples from physics — field theories that are holomorphic in nature, such as holomorphic
Chern-Simons theory — and interpret them as (derived) moduli spaces in complex geom-
etry; no comfort with physics is presumed. We then describe frameworks for quantizing
such moduli spaces, offering a systematic generalization of vertex algebras and conformal
blocks via factorization algebras, and we explain how holomorphic field theories generate
examples of these higher algebraic structures. We finish by describing how the conjecture
of Seiberg duality predicts a surprising relationship between holomorphic gauge theories
on algebraic surfaces and how it suggests analogues of the Hori-Tong dualities already
studied by algebraic geometers.
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1. What is a holomorphic field theory? Why study them?

The most important field theories in physics involve a metric on a manifold (whether
Riemannian or Lorentzian), and hence geometry has long had a clear role in physics. In
recent decades attention has expanded to include topological field theories (or TFTs), in
which — to simplify — only the underlying smooth topology of the manifold matters.
There are, however, theories that depend on a complex structure on the manifold, and as
one might hope, these are particularly beautiful, just as complex variables is a particularly
beautiful wing of analysis. In essence, such holomorphic field theories have variational
partial differential equations (i.e., “equations of motion”) that are holomorphic. These
theories admit independent motivations from mathematics and physics, which we sketch
before giving more careful definitions.

The mathematical motivation is simple: for most classical holomorphic field theories, the
solutions to the equations of motion form a moduli space of natural interest to complex
geometers, and one might hope that the quantization of this moduli space is equally in-
teresting. A well-known example is holomorphic Chern-Simons theory, which lives on a
Calabi-Yau 3-fold X and involves the moduli space RBunG(X) of holomorphic principal G-
bundles on X. (We add the prefix R because it is best to use the derived moduli space. We
do not assume the reader is versed in derived geometry and will offer motivations, glosses,
and references throughout the survey. See Section 2.2 for a start.)

As a more mundane example, let RHol(X,Y ) denote the derived moduli space of holo-
morphic maps from some complex manifold X to another complex manifold Y . For
Y = V a complex vector space, this “derived” enhancement is simply the entire cohomology
H∗(X,O) ⊗ V , and not just the global functions H0(X,O) ⊗ V . There are holomorphic
theories whose derived moduli spaces are encoded by cohomology groups of holomorphic
vector bundles. (A physicist might view them as analogs of scalar field theories.)

A physical motivation comes from supersymmetric field theories, which (loosely speaking)
are theories on Rn whose symmetries include not only the isometries of Rn, but an ex-
tension to a super Lie group known as a super Poincaré group. Thanks to the enhanced
symmetry, such theories can often be understood in greater detail than non-supersymmetric
theories. The relevance to this survey is that supersymmetric theories admit “twists” (in
essence, deformations) that are holomorphic field theories, even when they do not admit
twists to TFTs [Cos13a]. (The famed A- and B-models of mirror symmetry are TFTs pro-
duced by twisting supersymmetric thories.) As an example, four-dimensional minimally
supersymmetric Yang-Mills theory admits no topological twist, but it does admit a twist
to holomorphic field theory whose moduli space is described, in part, by the moduli space
of holomorphic G-bundles RBunG(X).

It is natural to wonder how the myriad tools and computations deployed on a supersym-
metric theory carry over to this holomorphic twist and, conversely, whether information
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can flow back from a holomorphically twisted theory to the original supersymmetric the-
ory, much as TFTs have enriched physicists’ understanding of supersymmetric theories. In
short, a holomorphic twist contains the “holomorphic sector” of the untwisted theory just
as a topological twist contains its “topological sector.” To aid translation between math-
ematics and physics, it may be helpful to know that the role of derived geometry on the
mathematical side is mirrored by the use of the BRST/BV formalism on the physics side;
they are closely related and serve similar purposes.

As a final motivational remark, we note that in one complex dimension (i.e., working
on Riemann surfaces), holomorphic field theories appear as chiral conformal field theories
(CFTs) on Riemann surfaces. The study of CFTs — whose manifestations in mathematics
include vertex algebras, affine Lie algebras, nonabelian theta functions, and loop groups —
have had a strong impact in mathematics, so it is natural to explore higher-dimensional
analogs. So far, most mathematical effort in this direction has focused on (essentially)
classical aspects of gauge theory, but the quantum aspects are profoundly interesting. We
expect that these holomorphic examples will be particularly tractable and beautiful but
also useful in offering insights even for non-holomorphic theories.

1.1. The aims of this survey. Over the last few decades there has been a vigorous
dialogue between complex geometry and theoretical physics, around topics like mirror sym-
metry, enumerative algebraic geometry, moduli of Calabi-Yau manifolds, the geometric
Langlands program, and integrable systems, among others. Covering all these topics would
be difficult. Our survey’s focus will be narrow: it is upon higher dimensional versions
of the relationship between complex geometry and algebraic structures like Lie algebras,
Poisson algebras, and vertex algebras. We will emphasize analogies to TFTs (such as the
Gerstenhaber algebras appearing in mirror symmetry) and CFTs (such as the affine Lie
algebras relating to moduli of G-bundles on Riemann surfaces), but our primary interest
is on complex manifolds above dimension one. Experience suggests that higher dimensions
require higher algebra, i.e., algebraic methods that involve cochain complexes. Thus differ-
ential graded (dg) algebras and categories, as well as fellow travelers like derived geometry,
appear.

A community has formed, involving both mathematicians and physicists, to explore and
exploit these relationships, and it continues to grow as there is a lot to explore. Exam-
ples of efforts in this direction include [Pan+13], [FHK19; HK23], [CL12; Li23], [CG21a;
Bud+23], [CP21], [Bee+20], and [AY23a], where our own background and interests (and
unfortunately, our ignorance) have shaped this list.

The material below focuses on connections with this work, and the examples from physics
have a perturbative flavor. We will not discuss important directions like mirror symme-
try, the geometric Langlands program, the BPS/CFT correspondence, Donaldson-Thomas
theory, or other areas that are more global or more directly geometric, although we expect
there are rich connections with the topics we do discuss. Not including these topics is
primarily because our core theme already swelled to more pages than we expected, because
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a concise discussion of any of those topics does not yet seem possible with respect to our
theme, and because of our lack of background in these areas. We hope the ideas surveyed
here do connect profitably to these topics.

As complementary perspectives to that offered here, we recommend

• Kapranov’s lectures [Kap21] on factorization algebras in algebraic geometry,

• Costello’s lectures [CS15] on how holomorphic field theories emerge from supersym-
metric theories, and

• a recent survey [GKW] for physicists on how higher algebra appears in perturbative
QFT, with a strong emphasis on the holomorphic examples.

Reading these would give a more well-rounded view of the subject and its possibilities.

1.2. How to read this paper. Section 2 is devoted to describing holomorphic field the-
ories, primarily by offering a bounty of examples, including holomorphic analogs of gauge
and gravity theories. We outline as well how to obtain holomorphic field theories from
supersymmetric field theories, a rich source of examples to explore.

The next three sections are, in a sense, the core of the survey, as they describe increasingly
general types of higher algebras and how these capture the observables of holomorphic field
theories. Section 3 revisits the relationship between quantum mechanics and associative
algebras, chiral conformal field theory and vertex algebras, and holomorphic field theories
and higher-dimensional generalizations of vertex algebras. Section 4 offers a useful frame-
work for studying these higher vertex algebras, using operads, and it develops powerful
analogies to the little n-disks operad En that plays an important role in contemporary
topology. Section 5 introduces factorization algebras, providing a local-to-global principle
to describe the observables on complex manifolds beyond affine spaces. In particular, by
pushing forward factorization algebras, one can relate field theories of different dimension,
i.e., a version of the physicist’s “compactification.”

A reader could read this core portion independently of the rest of the paper, as it focuses
on algebra and geometry and requires no substantial knowledge of field theory per se.

Section 6 describes recent work that allows one to produce examples: there is now a con-
venient framework for renormalization of holomorphic field theories on Cn, and so the field
theories of Section 2 generate higher algebras of the form described in Sections 3, 4, and 5.
The reader could skip to this section directly from Section 2.

We conclude the paper by describing the kind of fascinating mathematical questions that
arise by taking physical conjectures (e.g., dualities of supersymmetric theories) and twisting
them into conjectures about holomorphic field theories. Section 7 explores the holomorphic
cousin of Seiberg duality, which suggests a remarkable correspondence between a gauge
theory with group SL(N) and a gauge theory with group SL(M), where M ̸= N . It is a
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kind of enhancement of Weyl’s invariant theory and has close connections with topics like
homological projective duality.

1.3. About Manin and his influence. Yuri Manin was a pioneer into this intellectual
region where field theory, complex geometry, and homotopical algebra meet, and his work
— beyond the beautiful results — also gestured at rich possibilities for novel and powerful
forms of geometry and physics and algebra. His writing summoned these possibilities out
the realm of dreams and towards their current unfolding today into derived geometry and
higher operadic structures. To whit, our epigraph comes from [Man99], which synthesizes
stacks and operads and Frobenius structures into a beautiful and coherent view on mirror
symmetry. But we could equally well have quoted his [Man97], which is rich with deep
reformulations of supersymmetric field theory that connect it to complex geometry, or his
[BM86; Man85] from roughly the same era. Anyone interested in mathematics and physics,
and especially their relationship, will delight in [Man81].

Beyond his writing, however, we have also benefited throughout our careers from the at-
titudes and atmosphere that his persona modeled and spread among mathematicians: a
generosity with mathematical ideas but also the sharing of poetry and literature, an ex-
quisite care and sensitivity to organizing and explaining mathematics (and much else), and
a kindness in conversation, where he brought his whole attention to you. While a graduate
student at Northwestern, OG had the unbelievable luck to overlap with Manin and thus to
take several courses and have many conversations with him, getting to witness his person-
ification of the Platonic idea of mathematician as intellectual in the broadest sense. We
also both spent extensive time, for example, at the Max Planck Institute for Mathematics,
which is suffused with his spirit. We wish we had the chance to discuss the ideas from this
survey with Manin; we offer it as a small gift in gratitude for all he shared with us.

1.4. Acknowledgements. This survey attempts to summarize the efforts and insights of
a large body of researchers. So much of our understanding is shaped by conversations and
interactions with them, and we thank them for their generosity with ideas and examples.
We owe particular thanks to Kasia Budzik, Dylan Butson, Kevin Costello, Richard Eager,
Chris Elliott, Davide Gaiotto, Nik Garner, Vasily Gorbounov, Zhengping Gui, Benjamin
Hennion, Mikhail Kapranov, Justin Kulp, Si Li, Natalie Paquette, Surya Raghavendran,
Nick Rozenblyum, Ingmar Saberi, Pavel Safronov, Matt Szczesny, Ed Segal, Johannes
Walcher, Minghao Wang, Jingxiang Wu, Philsang Yoo, and Jie Zhou.

The prompt to write this survey came from Andrey Lazarev, and we thank him for his
patience and encouragement during the long period of putting it together.

The National Science Foundation supported O.G. through DMS Grant 2042052 during the
writing of this paper. The Max Planck Institute for Mathematics has hosted both O.G. and
B.W. throughout their careers, and it provided a wonderful environment for O.G. during
the last stages of writing.
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2. Holomorphic field theories

We begin by explaining the basic framework of classical field theory, with a few examples.
For a mathematician, the key point might be that physics suggests certain systems of
equations are particularly important and studies their spaces of solutions, often unearthing
aspects that might not catch a mathematician’s eye. In other words, physics can be a
source of interesting moduli spaces.

We then offer a quick overview of derived geometry, aiming to motivate and not to give a
systematic treatment. For this survey, comfort with basic homological algebra and sheaf
cohomology will suffice, so we will explain how our terminology relates to those notions. In
Section 2.3 we offer a sharp definition well-suited to perturbative field theory (i.e., studying
formal deformations of a fixed solution to the equations of motion), which we will use to
produce examples of higher algebras.

2.1. A first pass. In physics, a classical field theory is usually described in terms of a few
pieces of data:

• a manifold M that plays the role of “spacetime,”

• a space of “fields,” typically the sections of some fiber bundle F →M or connections
on a principal bundle on M , and

• a system of partial differential equations (PDE) for the fields, known as the “equa-
tions of motion.”

These equations of motion are variational: the solutions to these PDE are the critical points
of some function on the space of fields, called an “action functional,” and such PDE are
often called Euler-Lagrange equations. (One must take a little care in interpreting the claim
of taking critical points.) In practice an action functional is a formal expression, written
as an integral over M of some polydifferential operator on the fields that takes values in
densities of M .

A few examples will illuminate this sketch. We begin by giving two examples that depend
on Riemannian geometry, then give an example of a topological field theory, and finally give
an example of a holomorphic field theory. All the equations that show up are well-known
to geometers.

Example 2.1 (Massless scalar field theory). Let M be a smooth manifold and equip it with
a Riemannian metric g. Let ∆g denote the associated Laplace-Beltrami operator, and let
dvolg denote the associated volume form. In the case M = Rn with the Euclidean inner
product, the Laplace-Beltrami operator is the differential operator

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
.
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Let the space of fields be the smooth functions C∞(M). A smooth function ϕ is called, in
physics, a scalar field. The action functional

S(ϕ) =

∫
M
ϕ∆gϕ dvolg

yields the equation of motion ∆gϕ = 0. Thus this scalar field theory has the moduli space
of harmonic functions as its space of solutions.

The preceding example exhibits how a moduli space of central interest in differential ge-
ometry — the harmonic functions — appears naturally as a basic example in physics (the
“free massless scalar field”). More complicated moduli spaces show up too.

Example 2.2 (ϕ4 theory). As a small variant of the example just given, consider the action
functional

S(ϕ) =

∫
M
ϕ∆gϕ+

1

4!
ϕ4 dvolg.

Its equation of motion is the nonlinear PDE

∆gϕ+
1

3!
ϕ3 = 0.

Thus this scalar field theory has a more complicated, nonlinear moduli space of solutions.

We now describe an example of a theory whose space of solutions is a moduli space of
interest in geometric topology: character varieties.

Example 2.3 (Chern-Simons theory). Pick a compact Lie group G and equip it with an
invariant metric, which induces a G-invariant inner product κ on its Lie algebra g. (The
standard choice is the Killing form.) Take an oriented smooth 3-manifold M , and consider
the space of connections on the trivial principal G-bundle on M . This space of fields is
isomorphic to Ω1(M, g), the g-valued one-forms, by viewing d + A as a connection where
A ∈ Ω1(M, g). The equation of motion is the zero-curvature equation

FA = 0,

which can be expressed equivalently as the Maurer-Cartan equation

dA+
1

2
[A,A] = 0.

These equations arise as the Euler-Lagrange equation for the action functional

S(A) =

∫
M
CS(A)

where CS denotes the Chern-Simons form

(1) CS(A) =
1

2
κ(A, dA) +

1

6
κ(A, [A,A]).
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Hence this theory is known as Chern-Simons theory.1 These equations do not depend on a
metric on M or any other geometric structure, and hence define a “topological” field theory
in the sense that they are independent of geometry. This theory is interesting because the
moduli space of solutions consists of the flat G-bundles on M , a topic of deep interest in
geometry and topology. For physicists, it is interesting because it does not involve geometry,
by contrast to earlier examples of field theories, and yet exhibits rich phenomena (notably
applications to the quantum Hall effect and 3-dimensional gravity).

Remark 2.4. In the Chern-Simons example, there is an important aspect we did not yet
acknowledge: we need to identify different solutions related by gauge transformations. In
other words, the correct moduli space is the quotient stack

[{A : FA = 0}/Map(M,G)] .

The usual mode of description of a field theory, by specifying fields and an action functional
(or equations of motion), must be supplemented by specifying whether to quotient by some
group of symmetries of the space of solutions. More generally, a field theory ought to
present some kind of derived moduli stack.

We are now in a good position to offer an example of a holomorphic field theory: the
holomorphic analog of Chern-Simons theory.

Example 2.5 (Holomorphic Chern-Simons theory). Pick a complex Lie group G, and equip
its Lie algebra g with a complex-linear, G-invariant nondegenerate symmetric bilinear
form κ. Let M be a three-dimensional complex manifold equipped with a holomorphic
volume form Ω ∈ Ω3,0(M); in other words, M is a Calabi–Yau manifold. (This condi-
tion is analogous to being an oriented 3-manifold.) Given a smooth principal G-bundle
P → M , there is a moduli space of holomorphic structures on P . Suppose there exists
at least one holomorphic structure P → M , which has an associated Dolbeault operator
(or ∂-connection) ∂P. Any other holomorphic bundle structure determines a Dolbeault
operator, but our reference point ∂P provides an isomorphism

Conn∂G(P )
∼= Ω0,1(M, gP ),

i.e., we express another ∂-connection as ∂P+A where A is a (0, 1)-form valued in the adjoint
bundle. The equation of motion is again a Maurer–Cartan equation

(2) ∂PA+
1

2
[A,A] = 0,

or equivalently the (0, 2)-term of the curvature vanishes. This PDE is the Euler–Lagrange
equation for the action

(3) ShCS(A) =

∫
M

Ω ∧ CS(A)

1Note that M needs to be an oriented 3-manifold for this action functional to make sense. The equation of
motion exists for a principal bundle on any manifold of any dimension, but it is only variational for oriented
3-manifolds.
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where CS(A) is exactly as in (1).2 As in the case of Chern-Simons theory, one must
quotient by the appropriate group of gauge transformations to obtain the correct moduli
space, which is here the moduli stack of holomorphic principal G-bundles whose underlying
smooth structure is given by P →M .

For a systematic introduction to classical field theory, in a style amenable to a complex
geometer, we suggest [DF99]. In the appendix (see Section 8) we describe many more
examples of holomorphic field theories and describe their spaces of solutions using the
language of derived geometry, which we discuss next.

Remark 2.6. Recently there is a substantial effort to revisit field theory with insights from
derived geometry. See [AY23b] for motivation and overview, but for a detailed development,
see [Ste23; Ste24].

2.2. A dose of derived geometry. Derived geometry is a sophisticated subject but the
motivations and first steps are surprisingly simple, as we now attempt to explain. In this
paper we only need the reader to understand the rough outline of derived geometry to follow
our discussion, but there are several, much more substantial expositions now available. (For
algebraic geometers consider [Toë09; EP24]; for symplectic or Poisson geometers consider
[Pan+13; Saf21]; for differential geometers consider [Joy14]; and for representation theorists
consider [GR17].)

Before saying anything technical, we indicate how derived geometry generalizes more fa-
miliar bits of mathematics. The starting place is the theory of vector spaces, which is very
concrete and provides a rich source of both geometric intuitions and algebraic tools. This
linear setting generalizes in two directions:

• the geometry of nonlinear spaces, whether in the style of algebraic geometry or in
the style of differential geometry, and

• homological algebra, or differential graded vector spaces (and modules, sheaves, and
so on).

Both of these generalizations pass back to linear algebra in natural ways:

• at a point x on a manifold M (or variety), the tangent space TxM offers the best
linear approximation to the space at that point (where it makes sense), and

• given a cochain complex (V, d), a cohomology group H0(V ) is a vector space en-
coding essential information about the complex.

As a first pass at derived geometry, one might say that it seeks a common generalization of
nonlinear geometry and homological algebra. With slightly more precision, one might ask
for a notion of derived space M such that

2Notice that due to the presence of the holomorphic volume form Ω, only the ∂A component of dA con-
tributes to the integrand of the action functional, because Ω ∧ ∂A vanishes.
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• each point x in M has a tangent complex TxM , i.e., the linearization of a point
yields a cochain complex, and

• M should have a truncation τ(M) to an ordinary space.

Note that there will be different versions of derived geometry, depending on the kind of
nonlinear geometry concerned: there is derived algebraic geometry, derived differential
geometry, derived symplectic geometry, and so on.

linear algebra

homological algebra nonlinear geometry

derived geometry

H0 T

T τ

A related desideratum of derived geometry is that

• an ordinary scheme or manifold (or whatever class of underived space) should pro-
vide an example of a derived space, and

• any cochain complex should provide an example of a derived space.

That is, derived geometry contains both the domains it seeks to generalize.

There is an interesting subtlety here: quasi-isomorphic cochain complexes should present
the same derived space, just as they present the “same” object in homological algebra. This
requirement means that the true home for homological algebra is the derived category,
obtained by localizing cochain complexes at quasi-isomorphisms. Similarly, the true home of
derived geometry is also typically presented somewhat indirectly, with different descriptions
provided of the same derived space. To do this carefully requires the theory of∞-categories
(or related tools like model categories). We will not dwell on this aspect of the subject, but
we hope the comparison with the derived category gives a sense of the issues involved. (It
also explains the terminology: it is the same use of “derived” for category and for geometry.)

To present a derived space, two approaches are used and they mimic familiar methods for
manifolds or schemes:

• a topological space equipped with a structure sheaf, here a sheaf of dg commutative
algebras, or

• a functor of points, i.e., as a moduli space.

The devil is in the details of pinning down, for example, what kind of sheaves appear as
structure sheaves or what the source and target categories appear for the functor of points,
but let us postpone dealing with the devil and discuss a few examples used in this paper.
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We will use complex algebraic geometry as our model for nonlinear spaces, for simplicity,
and we will emphasize the first style of describing a space.

2.2.1. Derived baby steps. Recall that the n-dimensional vector space V = Cn determines
a complex variety An called an affine space. All the essential information is encoded in its
algebra of functions

Γ(An,O) = C[x1, . . . , xn] = Sym(V ∗)

a polynomial ring in n generators, where the generators form a basis for the dual vector
space V ∗ to V . We can view An as a ringed space whose underlying topological space
is Cn with the Zariski topology and whose structure sheaf is obtained by localizing the
polynomial ring accordingly. In derived geometry, a Z-graded vector space

V = (. . . , V −1, V 0, V 1, . . .)

should likewise present a derived space. (We assume V has finite total dimension, for
simplicity.) The essential information is encoded in its graded algebra of functions

Sym(V ∗) =
⊕
n≥0

Symn(V ∗)

where V ∗ is the dual graded vector space with (V ∗)k = (V −k)∗ and where the symmetric
powers involve the Koszul sign rule. That is, if k is odd, then the nth symmetric power
Symn(V k) is concentrated in degree nk but it is isomorphic to the nth exterior power of
the ungraded vector space V k. In other words, Sym(V ∗) is a graded-commutative version
of a polynomial ring. One can view this derived “affine space” as a ringed space whose
underlying topological space is V 0 with the Zariski topology and whose structure sheaf is
obtained by localizing Sym(V ∗) accordingly.

Let’s complicate this example a little.

Let X be a smooth complex variety, and let V → X be an algebraic vector bundle. It can
be viewed as a family of complex vector spaces parametrized by X. Similarly, we could
pick an integer k and consider the graded vector bundle V [k] → X whose fiber V [k]x at
a point x ∈ X is the shift by k by the fiber Vx. (For us, V [k] is placed in degree −k so
that V [k]m = V k+m. In particular, V [1] is in degree −1.) But we can also talk about the
total space of a vector bundle V → X as a complex variety in its own right. In derived
geometry, we can view this graded vector bundle V [k]→ X as a derived space. Its graded
algebra of functions is (by definition)

Γ(X,SymOX
(V∗[−k])) =

⊕
n≥0

Γ(X,Symn
OX

(V∗[−k]))

where V ∗ is the dual vector bundle, V∗ denotes the sheaf of sections of this vector bundle,
and the symmetric powers again involve the Koszul sign rule. Notice that when k = 0, we
recover the usual ring of functions for the total space of V → X.
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This class of examples appears often throughout this paper. In particular, we often work
with T [k]X, the total space of the shifted tangent bundle TX[k] → X of a complex va-
riety X, or with T ∗[k]X, the total space of the shifted cotangent bundle of a complex
variety X.

These shifted cotangent bundles admit natural shifted symplectic structures, just as the
unshifted cotangent bundle T ∗X has a natural symplectic structure. The symplectic form
on T ∗[k]X is given by exactly the same formula, locally

ω =
∑
j

dpj ∧ dxj ,

where the xj are coordinates on X and the pj = ∂/∂xj are the associated coordinates for
cotangent direction. The difference with the standard case is that now the pj carry coho-
mological degree k, so ω is a 2-form (in the de Rham complex of T ∗[k]X) of cohomological
degree k. (Note that in a derived setting cohomological degree need not coincide with form
degree.) One says that T ∗[k]X is a k-shifted symplectic space. Implicit in this discussion
is the fact that one can construct a de Rham complex with dg commutative algebra3 and
that many maneuvers and definitions carry over mutatis mutandis.

So far we have only worked with graded-commutative algebras, as a stepping stone in the
derived direction. Let’s now see something fully derived.

2.2.2. Derived intersections and stacky quotients. Algebraic geometry has already experi-
enced a vast extension of the notion of space via stacks. These appeared, in essence, to
provide a more pliable and informative approach to taking a quotient of a scheme (or al-
gebraic space) by a group action, and this framework is the appropriate place for studying
important moduli spaces, like moduli of algebraic curves or vector bundles. From a rather
abstract point of view, we replace the category of schemes by a bigger category where
the colimits (a quotient is an example of a colimit) remember more information. Derived
geometry arises by asking for a (yet) bigger category where the limits remember more in-
formation. The key geometric example of a limit is the intersection of two subvarieties in
an ambient variety (i.e., the fiber product); derived geometry changes what the intersection
is.

The essential idea is very simple. In algebraic geometry, if we have two schemes mapping
to another scheme

Spec(A)→ Spec(C)← Spec(B),

then the fiber product, or intersection, is

Spec(A)×Spec(C) Spec(B) = Spec(A⊗C B).

3The 1-forms are built by taking the derived functor of Kähler differentials, and the rest follows the usual
process (e.g., take exterior powers over the dg commutative algebra, using the derived tensor product). The
de Rham complex will be bigraded, with a form grading and a cohomological grading.
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Derived algebraic geometry says that the derived fiber product should be encoded by the
derived tensor product A ⊗L

C B instead. Thus the underlying underived intersection is
encoded in

H0(A⊗L
C B) = A⊗C B

but there are sometimes “derived corrections” in negative cohomological degrees.

For example, given a nonregular sequence of irreducible polynomials f = (f1, . . . , fk) ∈
C[x1, . . . , xn], then the underived intersection of the hypersurfaces Vj = {fj = 0} is some
quite singular subvariety X of An. A resolution of its algebra C[X] over the polynomials is
very complicated. By contrast the derived intersection is encoded by the Koszul complex
determined by the sequence f , which is a very simple cochain complex (in fact, a semi-free
dg commutative algebra). It remembers information about the hypersurfaces (and hence
f), whereas the underived intersection only knows about the ideal generated by f . In this
sense it is a “smarter” or less “forgetful” limit.

Notice that such derived tensor products will naturally produce dg commutative algebras
concentrated in nonpositive degrees, as they have the nature of resolutions. We thus gener-
alize commutative algebras CAlg by nonpositively graded dg commutative algebras CAlgdg≤0,
rather than the bigger category of all dg commutative algebras CAlgdg. The category of
derived affine schemes is defined, then, as the category of nonpositively graded dg com-
mutative algebras, up to quasi-isomorphism.4 Each derived affine scheme dSpec(A) has a
truncation to an affine scheme, which is Spec(H0(A)). A derived scheme can be understood
as ringed space patched together from derived affine schemes.5

Derived stacks then arise from derived schemes by intelligently taking quotients and, more
generally, colimits. Recall that a scheme in algebraic geometry has a functor of points valued
in Sets while a stack has a functor of points valued in Gpds, the category of groupoids.6 More
accurately we work with groupoids localized at Morita equivalence (cf. quasi-isomorphism
of cochain complexes and the derived category). In derived geometry we push farther
and work with topological spaces up to weak homotopy equivalences (or simplicial sets up
to weak homotopy equivalence), which remembers more; every topological space has an
underlying fundamental groupoid. Thus the nature of derived geometry is indicated by the

4In fact, one works with the ∞-category, which is not just the localization at quasi-isomorphisms, but
remembers how quasi-isomorphisms relate up to homotopy, etc.
5Up to some subtleties, one can think of derived manifolds in terms of manifolds equipped with structure
sheaves that are nonpositively graded dg commutative algebras built from C∞-modules.
6Every equivalence relation determines a groupoid where the relation gives the morphisms. This groupoid
knows a lot more than the underlying quotient set, which is known as the “connected components” of this
groupoid. In this way, groupoids offer a refinement of traditional quotients.
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(co)domains of the functors of points:

CAlgdg≤0 Spaces

Gpds

CAlg Sets

H0

derived stack

Π≤1

π0

scheme

stack

(This diagram is purloined from Vezzosi’s wonderful (and short!) “What is . . . a derived
stack?” [Vez11].) A derived stack admits a truncation to an ordinary stack by restricting
the domain category and mapping down to groupoids as the codomain category.

To “derive” a notion from traditional geometry, one typically needs to recast it using the
functor of points and then ponder how its features might generalize to derived affine schemes
and Spaces. By now many such notions have received such a treatment, including analytic
geometry [Por19] and Poisson geometry [Cal+17].

2.2.3. On deriving classical field theory. The basic ingredients of classical field theory are
a “spacetime” manifold M , the “fields” given by sections of some fiber bundle E →M , and
a system of PDE on the fields known as the “equations of motion.” The essential goal is
to describe the space of solutions to these equations of motion. All these features admit
derived versions: one can replace the manifold M by a derived space M of some kind and
the fiber bundle by a map of derived spaces E → M and the fields by sections thereof.
The theory of differential equations admits a generalization too (perhaps most cleanly by
using the perspective of D-modules and its outgrowths). In practice, as we’ll see in this
paper, many of the moduli spaces are variants of spaces already studied by geometers. In
fact, they are often “derived enhancements” of well-known moduli spaces: we work with
a derived stack whose truncation is a stack already known.7 For example, holomorphic
Chern-Simons theory is best viewed as studying the derived enhancement of the moduli
space of G-bundles on a Calabi-Yau 3-fold M , where G is a reductive complex algebraic
group.

There is an important feature that we have not discussed so far: the equations of motion
arise from “variational calculus.” Loosely speaking, these equations identify the critical
points of some function on the space of fields. When approached from a derived perspective,
the space of solutions typically obtains a natural −1-shifted symplectic structure.8 Hence

7In [STV15] a number of important moduli spaces, like moduli of stable maps of curves or moduli of perfect
complexes, receive derived enhancements.
8The derived critical locus of a function f on an ordinary smooth variety X is the derived intersection
inside T ∗X of the graph of df and the zero section. The structure sheaf can be modeled by functions
O(T ∗[−1]X) equipped with a differential determined by f . The shifted symplectic structure on T ∗[−1]X
carries over to this derived critical locus. See [Vez20] for more discussion.
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derived field theories lead to −1-shifted symplectic derived stacks, and we have examples
like T ∗[−1]BunG(M) or T ∗[−1]RMap(M,X).

2.3. Perturbative field theory as derived deformation theory. We now turn to
giving a mathematical definition that incorporates insights from derived geometry. We
will stick with studying perturbative field theory: we fix a solution ϕ0 to the equations of
motion and study formal deformations of it. In other words, we want to study the formal
derived geometry of the moduli of solutions to the equations of motion.

Here we can exploit the heuristic principle that every derived deformation problem (in
characteristic zero) is described by a dg Lie algebra.9 That is, if M is a derived stack and
p : Spec(C) → M is a point, then the formal neighborhood M∧

p of p is modeled by the
Maurer-Cartan locus of some dg Lie algebra gp.10 This idea goes back to Deligne, Drinfeld,
and Schlessinger-Stasheff, and perhaps farther, but Hinich, Lurie, and Pridham have given
a precise articulation of the fundamental theorem of derived deformation theory: there is
an equivalence of ∞-categories between formal moduli spaces and dg Lie algebras.

Applying this perspective to classical field theory was prominently and successfully ad-
vocated by Kontsevich, and it is an essential component of the formalism developed by
Costello. The idea is that if want to study the perturbation theory around some solution ϕ0
on the whole spacetime manifold X, then on each open set U in X, there is a formal moduli
space describing deformations of the restriction ϕ0|U . In other words, there is a sheaf on M
with values in formal moduli spaces, and this sheaf describes the perturbative field theory.

By the fundamental theorem, we can describe this sheaf of formal moduli spaces by supply-
ing a sheaf of dg Lie algebras, which can often be quite convenient. We follow this approach
here.

Definition 2.7. A holomorphic local Lie algebra on a complex manifold X is

• a graded holomorphic vector bundle V on X whose sheaf of holomorphic functions
is Vhol, and

• a holomorphic differential operator Qhol : Vhol → Vhol of cohomological degree one
and a holomorphic bidifferential operator [·, ·] : Vhol × Vhol → Vhol.

This data is required to endow (Vhol, Qhol, [·, ·]) with the structure of a sheaf of dg Lie
algebras.

In quantum field theory, it is essential that the operator Qhol be elliptic. We will not
explicitly mention any consequences of ellipticity in this note, so we will not emphasize this
condition.
9Or, sometimes more conveniently, by an L∞ algebra.
10More technically, the shifted tangent complex TpM[−1] comes equipped with a homotopy-coherent Lie
algebra structure, and this determines a functor from small (i.e., artinian local) nonnegatively-graded dg
algebras to the ∞-category of spaces.
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Here is a quick example, as motivation. Let X be a Calabi-Yau 3-fold equipped with a
holomorphic principal G-bundle P → X. There is an associated adjoint bundle gP → X,
and hence a coherent sheaf GP of holomorphic sections of the adjoint bundle. Note that
GP is a holomorphic local Lie algebra, using the fiberwise Lie bracket, and it describes
the formal neighborhood of P inside the space BunG(X). In other words, it encodes the
perturbative part of holomorphic Chern-Simons theory of Example 2.5.

We now rephrase this data in the style of complex differential geometry and then further
into more physical terminology.

Any holomorphic vector bundle has an associated Dolbeault complex Ω0,•(X,V ). If V is
a holomorphic local Lie algebra, then Ω0,•(X,V ) is a dg Lie algebra. The differential is
∂+Qhol, and the bracket is given by extending the bracket on Vhol with the wedge product
of differential forms. Notice that this dg Lie algebra has the appealing feature that it is the
C∞-sections of a smooth vector bundle on X.

In the case of our running example, we obtain the dg Lie algebra

Ω0,•(X, gP )

from the adjoint bundle of the holomorphic principal G-bundle on our Calabi-Yau 3-fold X.
A Maurer-Cartan element in this dg Lie algebra is a (0, 1)-form A such that

∂PA+
1

2
[A,A] = 0,

meaning that ∂P + [A,−] defines another ∂-connection, and hence holomorphic structure,
on the smooth bundle P → X.

The take-away message is that the Dolbeault complex of a holomorphic Lie algebra leads
to a PDE, by taking the Maurer-Cartan equation, and this PDE should be seen as the
equation of motion.

In this example the PDE arises from the variations of the action functional∫
X
Ω ∧

(
1

2
⟨A, ∂A⟩+ 1

3!
⟨A, [A,A]⟩

)
.

The PDE does not involve the choice of a holomorphic volume form Ω or a pairing on the
Lie algebra g, but the action functional does.

In general, for a holomorphic local Lie algebra to arise from a field theory, it is necessary
to provide more data so as to be able to write down an action functional.

Definition 2.8. A local cyclic structure on a holomorphic local Lie algebra is a degree −3
map

⟨−,−⟩ : V ⊗ V → KX

of holomorphic vector bundles11 such that

11Here ⊗ denotes the Whitney tensor product of vector bundles on X.
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• if f, g are holomorphic sections of V , then

⟨Qholf, g⟩+ (−1)|f |⟨f,Qholg⟩ = 0

so that the pairing is a cochain map, and

• if f, g, h are holomorphic sections of V , then

⟨f, [g, h]⟩ = (−1)|f |⟨[g, f ], h⟩

so that the pairing is invariant for the bracket.

Given a local cyclic structure, there is an action functional∫
X

1

2
⟨f, ∂f +Qholf⟩+ 1

3!
⟨f, [f, f ]⟩

whose equation of motion is the Maurer-Cartan equation

∂f +Qholf +
1

2
[f, f ] = 0.

Thus a holomorphic local Lie algebra with a local cyclic structure models a perturbative
holomorphic field theory.

The reader might notice that such Maurer-Cartan equations only ever involve quadratic
and linear terms in the field. To incorporate cubic and higher terms in the equations of
motion, one should define holomorphic local L∞ algebras and local cyclic structures, which
are a modest and straightforward generalization, if one knows what L∞ algebra means.
Such definitions can be found in [CG21b].

2.4. From supersymmetric field theories to holomorphic field theories. This sec-
tion offers a bridge from theories of physical interest to holomorphic field theories, and
hence may be of particular interest to physicists. Those without a strong interest in phys-
ical examples can skip this section without issue.

In his work on Donaldson invariants of four-manifolds, Witten introduced the idea of a
topological twist of a supersymmetric field theory [Wit88]. The topological twist of a
supersymmetric field theory (when it exists) can be attacked mathematically using the path
integral. A key feature, however, of topological field theories is that they are amenable to
a functorial paradigm. This firmly establishes their meaning and importance within pure
mathematics. Slightly after Witten’s work, the first shadows of what would later be called
holomorphic twists of supersymmetric field theories appeared, see [Joh95a; Joh95b; Nek96;
Los+97; Los+96; Joh03; ES19a]. Originally, this work did not garner the same attention
as the parallel works on topological twists; especially in mathematics. Much later, Costello
introduced the precise notion of a holomorphic twist, and focused on examples in dimensions
two and four [Cos13a]. The characterization of all holomorphic, topological, and mixed
holomorphic-topological theories of Yang–Mills type in dimensions 2 ≤ d ≤ 10 appears
in [ESW22]. Holomorphic twists of more exotic quantum field theories, such as theories
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of supergravity and higher form gauge fields, have recently been studied in [CL16; SW23;
SW24; RSW23; EH23; GRW23].

2.4.1. Holomorphicity as a symmetry property. When physicists describe a classical field
theory, they typically work with the “spacetime” manifold M = Rn, which is genuinely
a spacetime when equipped with the Minkowski (pseudo)metric and is a space (with no
time) when equipped with the Euclidean metric.12 There is, in either case, a group of
isometries (the Poincaré group or Euclidean group, respectively), and it is useful to work
with theories that are equivariant for this group. That means the fields are sections of
equivariant bundles, and the equations of motion must be equivariant as well. In fact, this
“covariance” is typically viewed as a condition required of a good theory.

It is possible to identify holomorphic theories on R2n in terms of this covariance. In fact,
it suffices to focus on how the subgroup of translations acts, as follows.

Equip R2n with a complex structure. Then the complexified Lie algebra of translations
decomposes into holomorphic and anti-holomorphic derivatives:

C⊗R R2n = C

{
∂

∂z1
, . . . ,

∂

∂zn

}
⊕ C

{
∂

∂z1
, . . . ,

∂

∂z1

}
.

We would like to say a translation-equivariant theory is holomorphic if the anti-holomorphic
vector fields ∂/∂zi act trivially. More carefully, we can say there is Lie algebra map from real
translations to vector fields on on the space of solutions to the equations of motion (i.e., to
derivations on the algebra of observables), and when complexified, every anti-holomorphic
translation ∂/∂zj acts by zero. In the derived world this condition is encoded by the data
of chain homotopy trivialization of the action by the anti-holomorphic translations.

Note that for the notion introduced in Section 2.3, it is straightforward to provide such
a homotopical trivialization: the fields are encoded by a Dolbeault complex on Cn, a real
translation ∂/∂xj acts by the Lie derivative L∂/∂xj

, and so we trivialize the action L∂/∂zj

by using the contraction ι∂/∂zj , thanks to Cartan’s formula.

We now turn to using this point of view in the setting of supersymmetric theories.

2.4.2. Supersymmetry and twisting. The goal of this section is to show that any even dimen-
sional supersymmetric field theory produces a holomorphic field theory through a process
called twisting. This process provides us with a wealth of examples that are intimately con-
nected to theories of genuine interest in physics.13 As we will explain later, many interesting
phenomena for supersymmetric theories have analogs in holomorphic field theory.

12A theory on Minkowski spacetime is called Lorentzian and on Euclidean space is called Euclidean, al-
though people also use those terms for theories on nonlinear manifolds with Lorentzian pseudometrics or
Riemannian metrics, respectively.
13Strictly speaking, twisting requires the existence of of more than two chiral supercharges.Thus, two-
dimensional theories with N = (n,m) supersymmetry, and n,m ≤ 1, do not admit holomorphic twists.
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By definition, a supersymmetric field theory on Rd is a theory that is acted upon by a super
Poincaré algebra. We focus on Euclidean field theories and work in Riemannian signature,
so for us the “super Poincaré algebra” is a super Lie algebra of the form so(d) ⋉ t where t

is the super Lie algebra of supertranslations whose even part t0 = Rd is the Lie algebra of
ordinary translations and whose odd part t1 is a sum of spin representations. While the Lie
algebra Rd of ordinary translations is abelian, the Lie algebra t carries a nontrivial (super)
Lie bracket, and this Lie bracket is defined in terms of a so(d)-equivariant non-degenerate
symmetric pairing

(4) Γ: Sym2(t1)→ Sym(t0) ∼= Rd

by the formula [Q,Q′] = Γ(Q,Q′).

By a supercharge, one means an odd supertranslation Q ∈ t, and a twist is a (nonzero)
supercharge Q such that [Q,Q] = Q2 = 0. The classification of twisting supercharges is a
completely algebraic question: see [ES19b] for a complete classification in dimensions from
1 to 10.

In even dimensions d = 2n, basic properties of the supersymmetry algebra guarantee that
there exists a twist that provides a complex structure to R2n.14 Indeed, so long as a twisted
supercharge Q is nonzero, one finds that the image of the map [Q,−] = Γ(Q,−) from (4)
is at least n-dimensional. A minimal or holomorphic supercharge is one for which the
dimension is exactly n, and we declare the image of Q as spanned by the anti-holomorphic
vector fields {∂/∂zi}.

If a classical field theory T has t as a symmetry, then a choice of twist Q determines a
deformation of the theory that we call a twisted supersymmetric theory TQ. If S denotes
the action functional of T, then the action functional SQ of TQ has the form

SQ(φ) = S(φ) +

∫
Rd

φ (Q · φ) + · · ·

where the deformation arises from how Q acts on the theory (the · · · leaves room for terms
non-linear in Q). For a systematic discussion of how the twisted theory is defined, we refer
to [Cos13a; ESW22].

Building upon the physical literature, Elliott, Safronov, and the second author have given
a complete characterization of the all twisted supersymmetric Yang–Mills theories in di-
mensions 2 ≤ d ≤ 10 [ESW22]. These twisted theories are BF theorires or Chern–Simons
theories, possibly along with other fields in associated bundle; depending on the twist, that
might mean a purely topological or purely holomorphic BF or Chern-Simons theory. In even
dimensions d = 2n, a minimal twist renders the theory holomorphic. Q itself determines

14This claim fails in exactly one example, namely for N = (1, 0) supersymmetry in two dimensions, as the
dimension and amount of supersymmetry are too small.
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the homotopies {ηi} such that

(5) [Q, ηi] =
∂

∂zi
,

recovering the characterization of holomorphic field theories mentioned at the beginning of
the subsection.

As a representative example of twisting, consider four-dimensional space R4 with N = 1

supersymmetry. The odd part of the supersymmetry algebra t1 is four-dimensional, and
every nonzero twist is minimal and gives us a copy of C2.15 That is, with this amount of
supersymmetry, there does not exist a topological twist. consider the fundamental example
of pure four-dimensional supersymmetric Yang–Mills theory with N = 1 supersymmetry. Its
holomorphic twist is equivalent to holomorphic BF theory on C2 described in Section 8.0.4.

There are many other appearances of holomorphic field theories in the context of super-
symmetry. Here is a (very) non-exhaustive list:

• Topological string theories yield rich classes of holomorphic field theories, as tar-
get space field theories. For instance, the topological B-model on a Calabi–Yau
threefold X leads to Kodaira–Spencer theory on X, as proposed in [Ber+94] using
the framework of closed string field theory. The perspective of Kodaira–Spencer
theory as a holomorphic field theory has been explored with great success by Kevin
Costello and Si Li [CL12; CL20].

• It is possible to make sense of Kodaira–Spencer theory outside of three complex
dimensions. In [CL16], Costello and Li have argued for conjectural descriptions
of twists of supergravity and superstring theories in terms of this more general
version of Kodaira–Spencer theory. Holomorphic field theory has also appeared in
applications to (twisted) holography through the lens of Koszul duality, see [CL16;
CG21a; CP21].

• The pure spinor formalism of Berkovits and Cederwall [CNT02; Ber05], see also
[ESW21; Eag+22], starts with a field theory or string theory defined on the (some-
times singular) nilpotence variety of the super Poincaré algebra and then uses
the action of supersymmetry to produce ordinary (non-twisted) supersymmetric
field theories. Often, the theory on the nilpotence variety is holomorphic [ESW22;
SW24].

• Similar in spirit to the pure spinor formalism is a systematic relationship between
holomorphic field theories on (super) twistor space and ordinary (Riemannian) field
theories. Such work can be viewed as extending (and enhancing) the original Pen-
rose correspondence which relates holomorphic BF theory on (super) twistor space

15And in a natural sense, they are all equivalent.
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associated to R4 to the self-dual limit of (super) Yang–Mills theory [Pen69; Pen76]—
see [Ada18] for a modern review. See [Mas05; MW09; Cos21; BSS23; GP24] for
recent work on the twistor correspondence in QFT.

We recommend [Bah+24] for more discussion and references.

3. Algebra and holomorphic field theories

In this section we describe associative algebras and their “homotopical” generalizations, like
A∞ algebras, related to holomorphic field theories, following the relationship of associative
algebras to quantum mechanics and of vertex algebras to chiral conformal field theory. A
particular focus is upon higher Kac-Moody algebras [FHK19], as these offer a tantalizing
direction to explore in search of analogs of the rich connections between representation the-
ory, algebraic geometry, and physics familiar to those who have worked with loop groups.
In a later section — and it is a central point of this survey — we will explain how factor-
ization algebras provide a direct conduit from holomorphic field theories to these algebraic
constructions. Throughout this section, we will be a bit cavalier with certain subtleties
(e.g., about infinite-dimensional spaces and functions on them), emphasizing concepts and
motivations over mathematical precision. We will be a bit long-winded in the first two
subsections, to provide motivations, so that in the final subsection, we can rapidly sketch
these higher Kac-Moody and Weyl algebras.

3.1. Algebras in mechanics. A key feature of quantum mechanics is that the observables
(or operators) live in an associative algebra. In many cases this associative algebra is a
deformation of a commutative algebra, typically arising as functions on a manifold or
variety. The quintessential example is the Weyl algebra

C⟨x, p⟩/(xp− px = iℏ),

which is generated by observables x (“position”) and p (“momentum”) for a quantum particle
moving along a line. There is a parameter ℏ, which if sent to zero, recovers a commutative
algebra C[x, p] of complex-valued polynomial functions on the cotangent bundle T ∗R of
the real line R. This example will be a model for much of what we discuss in this paper.
So far we have ignored a lot of features of quantum mechanics (e.g., ∗-structures, Hilbert
spaces, unitarity) that are important in physics, and we will continue to do so. Note as
well that there are many more observables and we have only discussed subalgebras of all
observables (at the classical level, just polynomials in p, q); we will often focus on such
tractable subalgebras.

There are some features of this example that we would like to foreground. First, the com-
mutative algebra arises as functions on a symplectic space, which is the usual mathematical
setting for classical mechanics (aside from more subtle situations that require Poisson geom-
etry). Second, the symplectic form ω = dx∧ dp equips this algebra with a Poisson bracket
where {x, p} = 1, which controls the deformation to the Weyl algebra: following Dirac,
we promote the Poisson relation to a commutator relation. These two features motivate
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the deformation quantization problem: given a symplectic (or Poisson) manifold, describe
deformations of its commutative algebra of functions to an associative algebra with the
requirement that, to first order, the commutator recovers the Poisson bracket. Thanks
to Kontsevich [Kon03], there is a beautiful answer to this question, which has spawned a
mountain of fascinating mathematics.

Our view on field theory is motivated by this perspective on quantum theory (we discuss
it further in Section 5.3), and it might help the reader to bear in mind a variant of this
question: given a classical holomorphic field theory, what are the natural deformations of
its algebra of functions? Many of the results we discuss later can be seen as generalizations
of phenomena associated with deformation quantization.

In particular, consider how symmetries appear in mechanics. Let M be a symplectic man-
ifold encoding the “phase space” of a classical mechanical system, and let {−,−} denote
the Poisson bracket on C∞(X). If a Lie group G acts on X by symplectomorphisms (i.e.,
respects the symplectic structure), there is a map of Lie algebras ρ : g→ SympVect(M) so
that an “infinitesimal symmetry” x ∈ g acts by a symplectic vector field. In many cases,
such infinitesimal symmetries are realized as observables: there is a map of Lie algebras
Hρ : g→ C∞(M) such that {Hρ(x),−} = ρ(x). One says that each element x has a Hamil-
tonian function Hρ(x) whose associated Hamiltonian vector field is ρ(x). Classic examples
include the momenta for T ∗Rn arising from translation and rotational symmetry.

How does this set-up fit into the deformation quantization view? First, note that the free
commutative algebra Sym(g) has a canonical Poisson bracket by defining {x, y} = [x, y]

for generators x, y ∈ g and extending by the Leibniz rule. Hence the Hamiltonian map
Hρ extends to a Poisson map Hρ : Sym(g) → C∞(M). We can then ask: does this
map quantize? That is, can we compatibly deform the domain and range of the maps to
interesting associative algebras as well as deforming to a map of associative algebras? Here
it might be useful to recognize that the enveloping algebra Ug is a natural deformation
quantization of Sym(g), thanks to the Poincaré-Birkhoff-Witt theorem. Thus our question
might be reformulated to asking whether there is an associative algebra map Hq

ρ : Ug →
C∞
ℏ (M), where C∞

ℏ (X) is a deformation quantization, such that Hq
ρ recovers Hρ in the

classical limit. Such a map is sometimes called a quantum moment map, as Hρ is the
pullback of (polynomial) functions along a moment map µρ : M → g∗.

This class of questions appears throughout mathematics, and it has played a key role in
geometric representation theory and the theory of D-modules, where D denotes a ring of
differential operators. After all, for any manifoldM , the algebra of differential operatorsDX

is a natural deformation quantization of functions on T ∗M . Hence, for anyG-manifoldM , it
is natural to ask whether there is a representation g→ DM deforming the canonical Poisson
representation. In this spirit, we will search for analogues of the kind of mathematics
that has grown out of results by Beilinson-Bernstein [BB81], Brylinski-Kashiwara [BK81],
Kostant [Kos79] and others.
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Remark 3.1. We have only spoken of symplectic manifolds, and emphasized vector spaces,
but fermions play a crucial role in quantum mechanics too. Here the symmetric algebra on
a symplectic vector space (as classical observables) is replaced by an exterior algebra on an
inner product space, which can be seen as a symmetric algebra on an odd vector space (i.e.,
a super vector space with purely odd component). The deformation quantization of the
exterior algebra is then a Clifford algebra. We will set fermions aside for the remainder of
this section, but the discussion below extends easily to them and fermions appear naturally
in the study of holomorphic field theories.

3.2. A loopy version: the algebra of modes. What could provide the holomorphic
analog of the story above? Let us indicate one possible answer before we motivate it from
the point of view of holomorphic field theory. Roughly, the idea is that associated to
any finite-dimensional symplectic space is another, infinite-dimensional, symplectic space
of “loops” into the original symplectic space.

Let X be an algebraic variety defined over C, equipped with a symplectic form ωX . Then
we posit for the relevant phase space, the “symplectic space” LX—the formal loop space of
X. This is the space of maps D̂× → X from the formal punctured disk to X. (There are
clearly variations on this idea, such as the holomorphic loop space of all holomorphic maps
from C× to X, when X is a complex manifold.)

When X = V is a complex vector space equipped with a linear symplectic form ωV , we can
identify LX with the vector space V ((z)) of V -valued Laurent series in a single variable.
The symplectic form on this vector space is given in terms of the residue

(6) ωLV (f, g) = Res
z=0

ωV (f, g)dz.

One can get rid of the appearance of the holomorphic line element dz if we ‘twist’ Laurent
series by the square-root element dz1/2—in other words, we take sections of the line bundle
K

1/2
D× . (Again, there are clearly alternative algebras to consider.) When we quantize, this

algebra will be related to a well-known vertex algebra.

There is a feature we would like to point out, before we turn to explaining our interest in
this space and algebra. The inclusion D̂× ↪→ D̂ means that any algebraic map ϕ : D̂ → V

restricts to an algebraic map ϕ : D̂× → V . In our notation, this restriction map is the
inclusion V [[z]] ↪→ V ((z)) of V -valued power series in V -valued Laurent series. When
we quantize, this relationship will produce the underlying vector space (or Fock space, or
vacuum module) of the vertex algebra.

Now we will discuss why we might focus on these constructions, and in what sense they are
holomorphic versions of usual mechanics.

Let us start by offering a motivation for the “answers” (e.g., R[q, p] as classical observables) in
the setting of standard classical mechanics. The model problem in mechanics is to describe
a point particle moving in Rn, subject to some forces that specify the differential equations
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governing the particle’s motion. (We call these the “equations of motion.”) Newton’s law
says that this equation is second order, so that a solution (i.e., trajectory) is specified by
giving the position and velocity of a particle at one instant in time.

There is another view, which generalizes more naturally to field theories and which is
dubbed the Lagrangian formalism. Here one notes that there is a space of all imaginable
trajectories, namely the path space Map(R,Rn), where we view the source R as “time,” and
there is a subspace of trajectories realized by the particle, namely solutions to the equations
of motion. This subspace is, in some sense, the critical set of an action functional; the
variational calculus provides the relevant mathematical framework. The space of solutions
is naturally isomorphic to TRn, where an isomorphism is given by fixing an instant t0 in
time R and then sending a solution ϕ to the pair (ϕ(t0), ϕ̇(t0)), the position and velocity
of the solution at t0. With a little care, one finds that the variational calculus equips TRn

with a natural symplectic form and a symplectomorphism TRn ∼= T ∗Rn, with its canonical
symplectic form. Putting everything together, we have a natural symplectomorphism of
T ∗Rn with the space of solutions. The observables of the classical system are the algebra
of functions on the space of solutions, and so this isomorphism tells us that functions on
T ∗Rn provide the observables. The polynomial functions on T ∗Rn are a subalgebra of all
observables, and they suffice to distinguish distinct solutions.

This view generalizes nicely to the holomorphic setting, and it amounts to using the La-
grangian formalism to study the holomorphic field theories we have already introduced. In
this model case, we replace the path space Map(R,Rn) by Map(C×,Cn) or, if one wishes,
Map(S,Cn) with S a Riemann surface. We start with C× since it has a “time” direction
given by the radial coordinate (t becomes r = et)). Letting us view C× as a cylinder R×S1,
we can view the mapping space as Map(R,Map(S1,Cn)), namely mechanics into the loop
space of Cn. We replace Newton’s equations of motion with a holomorphic version so that
the space of solutions is given by holomorphic maps from C× into Cn. If we wish to focus
on a more algebraic version, as we did at the beginning, we could restrict to the algebraic
maps from C× into Cn, which sit inside the holomorphic maps.

A confession is necessary here, because this replacement is a bit misleading. The holo-
morphic version of the model case, known as the free βγ system, actually has holomorphic
maps into T ∗Cn as the space of solutions. The algebraic maps are precisely T ∗Cn-valued
Laurent polynomials.16

We now turn to quantization, and our phase space will be, for simplicity, the formal loop
space V ((z)) of a symplectic complex vector space V . Following the case of mechanics, we
might ask for a deformation of the Poisson algebra

(7) O (V ((z))) .

16One can extract the algebraic model from the holomorphic model by taking formal power series expansions
at the level of observables.
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Like the symplectic form on V ((z)), the Poisson bracket is given in terms of the residue
pairing. The standard Heisenberg commutation relations determine a Weyl algebra W [V ]

for this formal loop space. As a vector space W [V ] is isomorphic to O(V ((z))), just as the
simplest Weyl algebra is isomorphic to O(V ) as a vector space, but the product structure
is modified by quantization. We expect, by analogy with the simplest case, that any quan-
tization of a bigger algebra (e.g., for observables of the holomorphic loop space) contains
this quantization as its algebraic skeleton.

The subspace of “contractible formal loops" V [[z]] inside V ((z)) produces a module for
O(V ((z))) given by O(V [[z]]). (This module is in fact a quotient algebra.) One can quantize
this module to a module Vac[V ] for W [V ], where as a vector space, it is still O(V [[z]]). This
module structure means there is a map of algebras W [V ] → End(Vac[V ]), so we have a
natural “Hilbert space” or Fock module for W [V ].

It is a remarkable fact, suggested by physicists, that there is also a map

Y : Vac[V ]→ End(Vac[V ])[[z, z−1]],

known as the vertex operator or state-field correspondence, which is closely related to the
W [V ]-action. The intuition behind Y is that for any map ϕ : C× → V and for any point
w ∈ C×, there is a restriction of ϕ to a little disc around w. That is, there is a restriction
map rw : V ((z)) → V [[t]], where t is the local coordinate t = z − w. Hence there is a
w-dependent map O(V [[t]]) → O(V ((z))) by pulling back a function along rw; this map
determines a w-dependent action of O(V [[t]]) on O(V [[z]]). One can, in essence, quantize
this map, by trying to extend the formulas of the W [V ]-action, and this leads to the
map Y . If one axiomatizes the behavior of Y , one is led to the notion of a vertex algebra.
The algebra W [V ] is known as the algebra of modes associated to this vertex algebra.

Let us briefly comment on how symmetries extend to the holomorphic setting. In other
words, we wish to explain how the affine Lie algebras ĝ and free field realizations arise in
analogy with our discussion of quantum moment maps.

Suppose now that G is a complex Lie group and it acts on the symplectic complex vector
space V by holomorphic symplectomorphisms. Then G also acts on the formal loop space
V ((z)) as a “global” symmetry: the action is independent of z. On the other hand, if we
consider the infinitesimal action ρ : g→ SympVect(V ), there is, in fact, a natural extension
to a “local” symmetry by the “loop algebra”

(8) ρloc : Lg = g((z))→ SympVect(V ((z))).

Geometrically, a g-valued function x(z) acts pointwise (with respect to the formal disc)
on the formal loop space. This action factors through a map H loc

ρ : g((z)) → O(V ((z))),
and hence is Hamiltonian. Thus the loop algebra g((z)) arises naturally as symmetries of
a classical holomorphic field theory.
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When we try to quantize, we run into an interesting phenomenon: the Hamiltonian action
H loc

ρ does not extend as a Lie algebra map into the Weyl algebra W [V ], although it makes
sense as a linear map. The failure to respect the brackets determines, however, a cocycle
on the loop algebra by

αV (x⊗ f(z), y ⊗ g(z)) = TrV (xy)Res(f ∂zg).

There is thus a central extension of the loop algebra

CK → ĝ→ g((z))

so that
[x⊗ f, y ⊗ g] = [x, y]⊗ fg + αV (x⊗ f, y ⊗ g)c,

and there is a Lie algebra map

(9) Ĥ loc
ρ : ĝ→W [V ].

This is an example of a free field realization for the affine Lie algebra ĝ. This relationship —
and its extension to a map between the vertex algebras associated to ĝ and V — is small part
of the rich dialogue that has developed between complex analysis, representation theory,
and the physics of chiral conformal field theory. (To get Riemann surfaces into the game,
we will need a richer framework than ordinary algebra.)

3.3. Reduction vs. chiralization. Dimensional reduction, an idea from physics, offers a
view on how the Weyl algebra on generators p, q relates to its loopy version. As we already
discussed, mechanics (the Weyl algebra of V ) has to do with a one-dimensional system, i.e.,
time-line, while its loopy version (W [V ]) has to do with a two-dimensional system, such as
the punctured plane C×. There is a familiar identification (e.g., polar coordinates)

C× ∼= R× S1

and so
Map(C×, V ) ∼= Map(R,Map(S1, V )) = Map(R, LV ).

Dimensional reduction here means studying the two-dimensional physics as a one-dimensional
system with a more complicated target, namely the loop space.17 There is, in this case, a
kind of dual process that we call chiralization, that turns a one-dimensional physical system
(mechanics) into a holomorphic field theory. We will now describe this relationship in the
language of fields and Lagrangians.

The ordinary Weyl algebra on a symplectic vector space V arises from the quantization of
ordinary mechanics on the symplectic vector space V . A Hamiltonian H ∈ O(V ) acts as
a derivation of the Weyl algebra by the commutator [H,−]. The fields of this system are

17One can play this game whenever the spacetime manifold is product X×Y or a fiber bundle. Sometimes
the term compactification is used instead, with reduction reserved for fixing the fiberwise fields to be
constant—for a discussion of compactification within the setting of factorization algebras see Section 5.4.
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smooth maps ϕ = ϕ(t) valued in V , and the action functional is

S1d(ϕ) =

∫
ω(ϕ,dϕ) +H(ϕ)dt,

where d: C∞(R)⊗ V → Ω1(R)⊗ V is the de Rham differential.

The chiralization of this setup goes as follows. Let a field ϕ = ϕ(z, z) be a smooth function
valued in V , where (z, z) are (anti)holomorphic coordinates on the manifold C×. The action
functional is

S2d(ϕ) =

∫
ω(ϕ, ∂ϕ)dz,

where ∂ : C∞(C×)⊗ V → Ω0,1(C×)⊗ V is the Dolbeault differential.

Reduction goes from this holomorphic field theory to a mechanical system. Take as this
one-dimensional space the radial direction in C×. Concretely, any smooth function on C×

can be decomposed in polar coordinates as

ϕ(r, θ) =
∑
k∈Z

ϕk(r)e
2πikθ,

where ϕk(r) is a smooth function depending only on the radius r ∈ R+. Alternatively, by
taking the logarithm we can view ϕk(t) as a function of the “time” parameter t = log r ∈ R.
We interpret

∑
k∈Z ϕk(r) as smooth map from R to the formal loop space LV .

At the level of action functionals, we can integrate S2d(ϕ) over the angular coordinate to
obtain the following formal sum of one-dimensional action functionals

(10) Sred (. . . , ϕ−1, ϕ0, ϕ1, . . .) =
∑
k∈Z

∫
ϕ−k dϕk + k ϕk ϕ−k dt.

Notice that the k = 0 summand is just the Lagrangian of ordinary mechanics into V with
zero Hamiltonian. In general, we find mechanics into the symplectic vector space LV , where
the symplectic structure uses the residue pairing in addition to the symplectic form on V ,
with a nontrivial Hamiltonian that encodes the U(1)-symmetry arising from rotating LV
in the natural way.

3.4. Algebras in higher dimensions. The story we have just told admits a natural
extension to higher complex dimensions, but it requires a first step in the direction of
derived geometry.

Let V denote a complex vector space (no longer required to be symplectic). The naive
idea is to replace the algebraic loop space Map(C×, V ), or its formal version Map(D̂×, V ),
with a higher-dimensional analog Map(Cd−{0}, V ). If one considers ordinary algebraic or
holomorphic maps for d > 1, then every such map extends across the origin, by Hartogs’
lemma, so this seems uninteresting. One should notice, however, that punctured affine
space D̊d = D̂n − {0} is, as a scheme, not affine, and so the derived global sections of the
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structure sheaf Oalg are interesting:

H•(RΓ(D̊d,O)) =


0, • ≠ 0, d− 1

C[[z1, . . . , zd]], • = 0

C[z−1
1 , . . . , z−1

d ] 1
z1···zd , • = d− 1

.

We are providing a natural basis for the cohomology that aims to emphasize analogies
with the d = 1 case. When d = 1, note that this recovers the Laurent series, so when
d > 1, we view the cohomology in degree d − 1 as providing the derived replacement of
the polar part of the Laurent polynomials. Checking this computation is a straightforward
exercise in algebraic geometry; for instance, use the cover by the affine opens that are
the complements of the coordinate hyperplanes {zi = 0}. The full cohomology has the
structure of a commutative algebra. In degree zero, the algebra structure is the ordinary
one on functions, or polynomials. The module structure in the basis above is given by the
apparent multiplication: zki · z

−l−1
i = zk−l−1

i if k < l and zero otherwise.

There is also an algebraic version where we replace the formal disk by the affine space Ad

and its punctured version Åd. A similar result holds in analytic geometry, of course, so that
we have natural maps

RΓ(D̊d,O)← RΓ(̊Ad,O)→ RΓ(C̊d,Oan)

given by the embedding of polynomials into power series and holomorphic functions, re-
spectively.

It is important to have an explicit dg commutative algebra that models the derived global
sections for functions on punctured formal disk, and not just the cohomology groups. There
is a beautiful, explicit dg model A•

d for the formal version derived global sections due to
Faonte, Hennion, and Kapranov [FHK19] and based on the Jouanolou method for resolving
singularities. While we won’t go into details about this model, we remark on a few important
points all of which we take from [FHK19]:

• The complex A•
d is concentrated in degrees 0, . . . , d − 1 and its cohomology is the

same as the cohomology of RΓ(D̊d,O) described above.

• There is a polynomial version A•
d,poly and explicit embeddings of commutative dg

algebras

(11) A•
d ←↩ A•

d,poly ↪→ Ω0,•(Cd − 0).

The left embedding replaces the inclusion of Laurent polynomials into Laurent
series. The right embedding replaces the inclusion of Laurent polynomials into the
Dolbeault complex on C×.
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• There is a higher residue map Res : A•
d → C[−d + 1] that is compatible with inte-

gration over the 2d− 1 sphere

(12) Res(α) =

∮
S2d−1

α ∧ ddz,

under the above embeddings. Here ddz = dz1∧· · ·∧dzd is the standard holomorphic
volume form.

The ingredients are in place to mimic the construction of the Weyl algebra for the formal
loop space, of the affine Lie algebras, and of free field realization, but now with C̊d in
place of C̊1 = C×. We must be careful about parity, however. In dimension d = 1, the
Laurent polynomials valued in a symplectic vector space V ((z)) again has the structure of
a symplectic vector space via the residue. Because of the appearance of the cohomological
shift in the higher dimensional residue it is no longer the case that

(13) V ⊗ RΓ(D̊d,O) ≃ V ⊗ Ad

is symplectic if V is.

The residue map Res in equation (12) is of cohomological degree 1 − d. Thus, to get
a symplectic pairing on V ⊗ Ad via the residue we can ask that V is equipped with a
(d− 1)-shifted symplectic structure. A typical example of such a space is V = T ∗[d− 1]L =

L⊕ L∗[d− 1], where L is any vector space. 18

Let ωV be a (d − 1)-shifted symplectic pairing on the graded vector space V . Then ωV

extends to a map ω̃V : (V ⊗ A2)
⊗2 → Ad where we use the algebra structure on Ad. We

then obtain a (0-shifted) symplectic pairing on V ⊗ Ad by the formula

(14) ω(a, b) = Res(ω̃V (a, b) ∧ ddz).

As in the construction of the ordinary Weyl algebra, we can think about ω as defining
two-cocycle on the (abelian) dg Lie algebra V ⊗ Ad. In particular, ω determines a central
extension of dg Lie algebras

(15) C→ hd[V ]→ V ⊗ Ad.

From here, we can define the higher-dimensional analog of the Weyl algebra.

Definition 3.2. Let V be a (d−1)-symplectic graded vector space. Then, the d-dimensional
Weyl algebra Wd[V ] is the enveloping algebra of the dg Lie algebra hd[V ] where we set the
central term equal to the unit.

There is a close relationship of the higher dimensional Weyl algebra to the higher dimen-
sional βγ system on Cd − 0 just as the loopy Weyl algebra is related to the βγ system
on C×. In this sense, Wd[V ] is an example of a ‘mode algebra’, where the modes are now
parametrized by the cohomology of punctured d-dimensional affine space.

18In the generality of shifted symplectic geometry, we expect that the derived mapping space Map(D̊n, X)
is symplectic provided that X is a (d− 1)-shifted symplectic space.
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The trick of turning providing a higher dimensional version of the Weyl algebra can be easily
modified to obtain higher dimensional version of current, or loop, algebras. This is one of
the starting points of [FHK19] in their construction of higher dimensional Kac–Moody
algebras.

Definition 3.3 ([FHK19]). For a Lie algebra g, the sphere algebra in complex dimension
d is the dg Lie algebra g⊗ Ad. We denote it by g•d.

There are natural central extensions of this sphere algebra parallel to the affine Lie algebras
appearing as central extensions of the loop algebra. They are given by the data of a g-
invariant degree d + 1 polynomial θ ∈ Symd+1(g∗)G. The cocycle that defines the L∞
central extension is

θFHK : (Ad ⊗ g)⊗(d+1) → C
a0 ⊗ · · · ⊗ ad 7→ Res (θ(a0, ∂a1, . . . , ∂ad))

.

This cocycle has total cohomological degree +2 as an element in the Lie algebra cohomology
of g•d and so determines a central extension of dg Lie algebras

Cc→ ĝ•d,θ → g•d.

There is a particularly nice model for this dg Lie algebra as an L∞ algebra that we use in
[GW21a]. An L∞ algebra is a generalization of a dg Lie algebra; it is a graded vector space
L equipped with a countable collection of “higher brackets” [−]k : L⊗k → L that satisfy
a system of equations generalizing the Jacobi identity. For an overview (and an actual
definition!) we recommend [LV12a]. In our setting the usual bracket (the 2-bracket) of g•d
is unchanged but there is now a nontrivial d-bracket defined by θFHK.

The algebras ĝ•d,θ are not just introduced on a whim. In [FHK19] they are shown to appear
naturally in various contexts, notably in studying the derived moduli space of G-bundles
on a complex varieties of dimension d.

With the higher dimensional Weyl and Kac–Moody algebras in place, a natural question to
ask is whether there are higher dimensional versions of the free field realization as in (9).
If V is a representation of a Lie algebra g, there is a local symmetry

g•d → O(V ⊗ A•
d),

just as g((z)) acts on O(V ((z))). One can ask if this action lifts to a quantum symmetry.
The obstruction, see [GW21a], is one of the cocycles we discussed above:

(x0 ⊗ f0, . . . , xd ⊗ fd) 7→ TrV (x0 · · ·xd)Res(f0 ∂f1 ∧ · · · ∧ ∂fd).

That is, the invariant degree (d + 1) polynomial on g that determines the L∞ extension
of the sphere algebra g•d is given by TrV (x0 · · ·xd). In this sense, the higher Kac-Moody
algebras admit a higher free field realization, but a richer story is possible once we have
a higher version of vertex algebras. We will return to this topic once we have the rich
language of factorization algebras.
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4. Algebraic structures parametrized by configuration spaces

Associative algebras arise in quantum mechanics, we have argued, because the spacetime
of a mechanical system is a line (“time”).19 If we organize the observables (or operators)
by when they happen in time, it corresponds to writing them left-to-right as products
in an algebra. A natural question to ask then is what kind of higher algebraic structure
captures how observables behave for theories in higher dimensions? The shortest answer is
“factorization algebras,” and we will describe and explore this notion in Section 5 but there
are nice answers for two special classes of theories that we will develop now:

• For a topological field theory on Rd (which we’ll define in a moment), the observables
form an algebra over the little d-discs operad Discd (sometimes also known as the
Ed operad). Equivalently, one says the observables are an Ed-algebra. This notion
was introduced by algebraic topologists in the 1960s, so there is a rich body of work
to draw upon.

• For a holomorphic field theory on Cd, the observables form an algebra over the
d-polydiscs operad PDiscd. This notion was introduced only recently in [CG17].

We will make the assertions above precise (in part by adding some natural but necessary
hypotheses on a theory) and develop them in parallel. As a particularly illuminating ex-
ample, we will explore the d = 1 case rather closely and explain in what sense a vertex
algebra is a kind of “holomorphic associative algebra.” We will also discuss the polydiscs
algebras for which the higher Kac-Moody algebras are a Lie-algebraic shadow.

Remark 4.1. In the d = 1 case there is a lovely exploration of how the highly developed
theory of vertex algebras relates to this perspective in the pair of papers by Bruegmann
[Bru20; Bru21]. For a discussion of how conformal nets — an alternative formalism for
chiral CFT — relates to our perspective, see [Hen18; BPS20].

Before jumping into the main story, we mention a motivation for talking about Ed- and
PDiscd-algebras in parallel. By dealing with both, we are suggesting, of course, that there
is a natural analogy and hence a useful transfer of intuition between the settings of topo-
logical and holomorphic field theories. But there is a stronger, technical relationship that
we’ll develop via a version of dimensional reduction. From each holomorphic field theory
in complex dimension d, we’ll extract an Ed-algebra. This construction generalizes the
relationship between the Kac-Moody vertex algebra of a Lie algebra g at level k and the
central extension of the loop algebra Lg. We expect this correspondence to bear rich fruit.

There is an explicit model for an algebra over the cohomology of the Ed-operad called
a Pd-algebra. Essentially, these are graded commutative algebras with a Poisson bracket
of cohomological degree −d + 1. In [CS15] a parallel model for the cohomology of the
holomorphic PDiscd colored operad was proposed, though axioms were not written down.

19In the context of holomorphic field theory on Cn, we have treated the radial direction as the “time”.
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In recent work, similar models to that one have appeared, using the nomenclature of λ-
brackets [Bud+23; GKW], following Kac’s approach in the d = 1 setting. The multivariable
λ-brackets are similar in spirit to Lie conformal algebras, which use the notion of single-
variable λ-bracket to encode the “singular part” of the data of a vertex algebra. These
papers use this algebraic structure to give a beautiful proposal for computing Feynman
diagrams in holomorphic (and mixed holomorphic-topological) field theories (see Section 6
for more on renormalization within the context of holomorphic QFT).

4.1. Generalizing associative algebras for topological field theories. We want to
describe the algebraic structures that appear in d-dimensional topological field theories, as
a model for holomorphic field theories. It will be helpful to use the language of operads,
which are an efficient and powerful tool for defining and studying algebraic structures, so we
will gloss the key ideas of operads briefly and then turn to describing the operads relevant
to TFTs. A more extensive discussion can be found in [CG17], with [ES19b] studying the
topological setting in an elegant way.

An associative algebra is, by definition, a vector space A with a linear map µ : A⊗A→ A

satisfying that the linear map µ ◦ (id ⊗ µ) : A⊗3 → A equals the linear map µ ◦ (µ ⊗ id).
(Let’s ignore the other data and conditions for the moment.) Nearly all flavors of algebras
— Lie, Poisson, and so on — have a similar definition: one has a collection of multilinear
maps that satisfy some relations. An operad is a way of specifying such data, so there is
an associative operad Ass, a Lie operad Lie, and so on.

Before sketching the definition, we give a concrete example. Let V be a vector space. Then
every n-fold multilinear operator on V is an element of Hom(V ⊗n, V ); that vector space
parametrizes all possible n-ary operations on V . One can also compose such operations to
produce new ones. For instance, given µ : V ⊗m → V and ν : V ⊗m → V , we can put the
output of µ into the ith input of ν to produce a new operation

ν ◦i µ : V ⊗m+n−1 → V

v1 ⊗ · · · ⊗ vm+n−1 7→ ν(v1 . . . , µ(vi, . . . , vm), vm+1, . . . , vm+n−1)

where i can run over any index between 1 and n. We call this collection of data the
endomorphism operad of V , denote EndV . It consists of

• a list of vector spaces labelling n-ary operations, with

EndV (n) = Hom(V ⊗n, V ),

with n ∈ N, and

• a list of linear maps

◦i : EndV (n)⊗ EndV (m)→ EndV (n+m− 1)

for every pair n and m and where 1 ≤ i ≤ n.
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There are certain natural relations when one does multiple compositions, like µ ◦i (ν ◦j π),
arising from how multilinear maps compose.

Just as the model case of an associative algebra is End(V ) = Hom(V, V ) (the ring of square
matrices), the endomorphism operad is the model case of operads. A linear operad P

consists of a list of vectors (P (n))n∈N, where each P (n) is a vector space describing n-ary
operations, and a list of linear maps (◦i). We will not describe the relations, but resemble
those of an endomorphism operad.

Remark 4.2. The reader might ask why the adjective linear was appended before operad.
The reason is that we discussed algebraic operations on vector spaces, but one can, of course,
discuss analogs in other settings. For instance, a monoid is a set M with a multiplication
map satisfying an associativity constraint. One can talk about operads in sets (“an operad
in sets P has a set P (n) of n-ary operations for every n ∈ N . . . ”) or in topological spaces
or in dg vector spaces. In fact, the theory works in any symmetric monoidal category. For
the most part, we will work with vector spaces below.

Let us now raise another useful analogy. To define a module for an associative algebra
A, one specifies an algebra map ρ : A → End(V ). This map encodes how A acts on V .
Similarly, to give an algebra for an operad P , one specifies an operad map ρ : P → EndV .
This map picks out specific multilinear operations on V that will satisfy the relations we
want. For instance, if Pois is the Poisson operad, then Pois(2) ∼= C2 and this vector space
is spanned by an element ·, the commutative product, and {}, the Poisson bracket. Given
a P -algebra V , the map ρ(2) : Pois(2) → EndV (2) thus tells us both the commutative
and Poisson bracket put upon V . (The reader might enjoy trying to work out Pois(3) and
how to get elements there by composing binary operations.) Alternatively, by applying the
hom-tensor adjunction to ρ(2), we have a map

Pois(2)⊗ V ⊗2 → V

that evaluates a binary operation with a pair of inputs.

By working at the level of operads, one can obtain universal results that hold for all algebras
over a given operad. For example, there is an operad map b : Lie → Pois that, at the
level of the binary operations, includes the bracket, and this map induces the functor
b∗ : AlgPois → AlgLie where a Poisson algebra is “forgotten” to a Lie algebra.

So far we have only discussed putting algebraic structures on a single vector space V , but
it is possible to allow collections of vector spaces. For instance, the pair of an algebra and
a module provides an example of “two-colored operad” as the collection always consists of
two vector spaces. When one allows multiple objects, one works with colored operads or,
as an alternative terminology, multicategories.

Remark 4.3. For motivational introductions, we recommend [Sta04] and [Val14]. For sys-
tematic development of the theory, one might start with [LV12b; Fre17; Lur]. Operads now
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have an extensive literature, and there is a body of deep results (such as Koszul duality)
with far-reaching consequences throughout mathematics.

With this language to hand, we now turn to generalizing associative algebras for the setting
of topological field theories. Our goal is to formulate a colored operad that captures the
behavior of the observables of a topological field theory.

The heuristic idea is straightforward. Given a field theory T on Rd, there is a vector space
(or possibly dg vector space) ObsT(Dr(x)) of measurements one can make in the open disc
Dr(x) of radius r around the point x. Any measurement in a small disc should provide a
measurement on a bigger disc, so there is a map ObsT(Dr(x)) → ObsT(DR(y)) whenever
Dr(x) ⊂ DR(y). Thus we have a collection of vector spaces labeled by the discs in Rd, and
we have identified a class of unary operations determined by inclusion.

There should also be natural n-ary operations encoding how to combine observables from
several distinct discs to give an observable on a big disc. Start with n discs Dr1(x1), . . . ,
Drn(xn) whose closures are pairwise disjoint, and let DR(y) be a big disc containing all the
smaller discs. Then we want a map

ObsT(Dr1(x1))⊗ · · · ⊗ObsT(Drn(xn))→ ObsT(DR(y)).

In the limit when the big disc is all of Rd (i.e., R = ∞) and the input radii ri are very
small, this map should encode the n-point functions beloved of physicists.

So far we have described a structure that observables should have for any field theory on Rd.
For a topological field theory, we expect that the size of a disc does not matter: for any
inclusion Dr(x) ⊂ DR(y), the map ObsT(Dr(x)) → ObsT(DR(y)) is an equivalence. This
condition implies that we can always shrink the input radius as small as we want and we
can always take the output radius to be a fixed value, say R = 1. In other words, the
unary operations are parametrized by a point in the unit disc; we have a local system of
isomorphisms.

For n-ary operations we can likewise shrink the input radii as small as we want. Thus
the n-ary operations should be parametrized by the configuration space of n points inside
the unit disc. (Rather, we can recover all n-ary operations knowing this information.) We
expect that these n-ary operations should also define a local system.

Our list of expectations is motivated by the examples of topological field theories that
physicists typically give, rather than the Atiyah-Segal approach in terms of functors out
of bordism categories. Loosely speaking, a classical field theory (defined by a Lagrangian
density, also known as an action functional) is “topological” if solutions to the equations of
motion do not depend on the geometry of the spacetime manifold but only on its smooth
structure (or other differential-topological features, like orientations). A model example
is Chern-Simons theory on oriented 3-manifolds for compact Lie group G: the space of
solutions to the equations of motion on M is the moduli space of flat G-bundles on M . The
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observables for a classical field theory on M means the commutative algebra of functions
on solutions to the equations of motion on M . In particular, for M a disc, the size of the
disc will not affect the algebra of observables, and inclusions of discs leads to isomorphisms
of observables. Several of these features extend to the quantum field theories that arise
by quantizing such topological classical theories; the observables continue to form a vector
space but are not commutative algebras anymore. (See [CG17; CG21b] for a precise math-
ematical formulation of this idea, which is a natural extension of deformation quantization
to higher dimensions.)

Remark 4.4. There are examples of TFTs from physics where the solutions do not satisfy
this condition, such as the A-model of mirror symmetry. In such cases, however, the
observables are typically the de Rham complex (or some other model for cohomology) of
the space of solutions, and these observables do satisfy the conditions we’ve specified.

We are now in a position to offer a nice operad that should describe the observables of a
topological field theory. This operad was introduced by algebraic topologists for wholly
distinct purposes (understanding d-fold based loop spaces), so a remarkable dialogue has
opened between topologists and physicists. We will start, following the topologists, in the
category Top of topological spaces where we use the cartesian product for the symmetric
monoidal structure. An operad in this category will be called a topological operad.

Definition 4.5. The little d-discs operad Discd is the topological operad whose space of
n-ary operations is

Discd(n) = {(x1, . . . , xn; r1, . . . , rn) ∈ D1(0)
n × (0, 1)n |

the closure of the discs Dri(xi) is pairwise disjoint}.

The composition µ ◦i ν is given by rescaling the unit disc that labels the output of ν to ri
and then embedding it into the disc Dri(xi).

To illustrate the idea, we take d = 2 and draw a point in the configuration space Disc2(2):

p

q
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where the outermost disc is the unit disc, the input disc centered at the point p has larger
radius, and the input disc centered at the point q has smaller radius. By varying the
locations of p and q and by varying the radii of the inner circles, we move through Disc2(2).

This picture clearly resembles the “pair of pants" product from two-dimensional topological
field theories, but pressed flat. To a physicist, this picture encodes a way of multiplying
an operator with support near 0 by an operator with support near p to get an operator
with support near the origin (although the support is larger); they use the term operator
product expansion when they express this multiplication in formulas.

This operad was invented by algebraic topologists to capture the rich algebraic structure
of the d-fold based loop space ΩdX of a pointed space (X,x). (The usual homotopy group
πd(X) is a shadow of this richer structure.) Thus there is a deep reservoir of tools and
results for studying algebras over the little discs operads in algebraic topology.

Observables, however, are supposed to live in vector spaces or dg vector spaces, so we need
to explain how to get algebras in that setting. Thankfully, it is straightforward to get
a linear version of this operad a dg operad (i.e., operad with values in dg vector spaces
and using the tensor product as the symmetric monoidal product). One simply takes
the singular chain complex on each space of operations: for each natural number n, take
C•(Discd(n);C) and take the induced chain map

C•(◦i) : C•(Discd(n);C)⊗ C•(Discd(m);C)→ C•(Discd(n+m− 1);C)

to produce a dg operad we denote C•(Discd). (Note that as we always want to work with
cochain complexes, we regrade the usual singular chains C•(X,C) to sit in nonpositive
cohomological degrees. Likewise the composition C•(◦i) is then a cochain map.)

Definition 4.6. An algebra over the little d-discs operad (or little d-discs algebra or Ed-
algebra) is a cochain complex A that is an algebra over the dg operad C•(Discd).

Examples appear very naturally from topology: for any space X with a basepoint x, take
the singular chains C•(Ω

dX) of the d-fold based loop space Ωd
xX. A much more subtle

source of examples was conjectured by Deligne and subsequently proven in many ways: for
any associative algebra A, the Hochschild cochain complex Hoch•(A,A) can be equipped
naturally with an E2-algebra structure.

We can state now encapsulate our expectations from above:

the observables of a topological field theory on Rd are a little d-discs algebra.

There is a setting where a precise version of this statement was proven, by Elliott and
Safronov, for a mathematically well-defined class of Lagrangian field theories.

Theorem 4.7 ([ES19b]). Let T be a classical field theory on Rd and let its observables ObsT
be constructed following [CG21b].

If the theory T satisfies
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(i) it is equivariant under the action of the translation group,

(ii) the action of the translation Lie algebra is homotopically trivialized,20 and

(iii) the extension of observables along an inclusion of discs is a quasi-isomorphism,

then the observables form a little d-discs algebra.

This theorem applies to many well-known examples from physics:

• The topological B-model of maps from an oriented surface into a Calabi-Yau mani-
fold X yields an E2 algebra. It is quasi-isomorphic to the well-known Gerstenhaber
algebra of polyvector fields on X. (The quantization was constructed by Li and Li
[LL16] in a setting where [ES19b] applies.)

• The Chern-Simons gauge theory of flat G-bundles on an oriented 3-manifold yields
an E3 algebra, which encodes the quantum group Uℏg under a version of Koszul
duality. (The quantization was constructed, essentially, by Axelrod-Singer [AS94a;
AS94b] and Kontsevich [Kon94] but articulated in this setting by Costello [Cos11].)

• The Rozansky-Witten theory of maps from an oriented 3-manifold into a complex
manifold yields an E3 algebra. (The quantization was constructed by Chan, Leung,
and Li [CLL17].)

• The Kapustin-Witten gauge theory for oriented 4-manifolds yields an E4 algebra,
related to deforming functions on the coadjoint quotient stack g∗/G. (The quanti-
zation was constructed in [EGW21].)

It applies to other examples of topological AKSZ theories, such as BF theories and the
Poisson σ-model. In all these examples, the underlying elliptic complex appearing in the
field theory is a version of the de Rham complex, so that the chain homotopy η is easily
constructed by contracting a vector field with differential forms.

This theorem builds an explicit bridge between topology and physics. Thanks to the theo-
rem of Elliott and Safronov, we know that most topological field theories in the physicist’s
sense provide En algebras (with the examples above as evidence), but they can thus be
analyzed using the powerful machinery of modern homotopy theory. Conversely, intuition
from physics about the behavior of topological field theories suggests novel constructions
and examples to topology. Much of the amazing resonance between operads, homological
algebra, and string-theoretic physics over the last few decades can be understood from this
perspective. (See Section 5.3.1 for the relation with the Atiyah-Segal approach to TFT.)

20View the translation algebra Rd as spanned by the basis {∂j} of constant vector fields, and let ρ : Rd →
Der(ObsT) denote the translation action on observables. By a homotopical trivialization, we mean here
that there is a linear map η : Rd → Der(ObsT) of degree −1 such that [dT , η(∂j)] = ρ(∂j). In other words,
η provides a chain homotopy trivialization of the action ρ.
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Let us comment on some aspects of the theorem and its proof. The notion from [Cos11]
articulates Lagrangian field theories whose linearized equations of motion are elliptic in
nature; it uses (and mathematically articulates) the Batalin-Vilkovisky formalism, which is
inherently homological. In particular, there is an underlying graded vector space of “fields,”
and the observables are a dg commutative algebra given a symmetric algebra on the linear
dual to the fields and equipped with a differential dT that is determined by the Lagrangian
density of the theory. Item (ii) above then means that each vector field ∂j acts by a degree
0 cochain map Dj on the observables and there is a degree one cochain homotopy η on the
observables such that [dT, η(∂j)] = Dj .

For physicists, we note that the proof uses a version of Witten descent. Indeed, descent
can be used to produce interesting operations in these disc algebras, so that many familiar
constructions from the physical approach to TFTs fit cleanly and easily into this framework.

4.2. Generalizing algebras for holomorphic field theories. We now turn to the prob-
lem of describing observables of a holomorphic field theory on Cd, and we follow an approach
similar to the topological case just discussed.

In the setting of a holomorphic field theory, we expect the observables to have a nontrivial
dependence on the radius of a disc. Consider, for example, that when Dr(x) ⊂ DR(y) ⊂ C
are open discs in the plane, the restriction map of holomorphic functions

O(DR(y))→ O(Dr(x))

is not an isomorphism, and the sheaf O provides a fundamental model for how the solutions
of the equations of motion should behave for a holomorphic field theory. We will assume,
however, that a holomorphic theory is equivariant under translations of Cd and that the
observables in a disc Dr(X) are equivalent to the observables in a translate Dr(x + z).
Thus, we will have a colored operad whose colors are labeled by radii r ∈ (0,∞), as we
merely have to specify the observables on a disc Dr(0).

We now introduce a small tweak. Instead of working with discs, we work with polydiscs:
for w = (w1, . . . , wd) ∈ Cd, the polydisc of radius r around w is

PDr(w) = {z ∈ Cd | |zi − wi| < r for all i}.

We work with polydiscs because it is easier to describe holomorphic functions on a polydisc
than on a disc; one can borrow results from single-variable complex analysis. With this
notion in hand, we introduce our main character.

Definition 4.8. The d-polydiscs operad PDiscd is the colored operad in the category of
complex manifolds where each positive real number r ∈ (0,∞) is a color and where there
is a complex manifold of n-ary operations

PDiscd(r1, . . . , rn|R) = {(w1, . . . ,wn) ∈ PDR(0)
n | the closure of the polydiscs PDri(wi)

is pairwise disjoint and each is contained in PDR(0)}
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for any list of radii r1, . . . , rn, R. This manifold is always an open subset of PDR(0)
n.

(Note that the manifold is empty for many values.) There is a composition

◦i : PDiscd(r1, . . . , rn|R)×PDiscd(s1, . . . , sm|S)→ PDiscd(r1, . . . , s1, . . . , sm, ri+1, . . . , rn|R)

only when ri = S, and in that case, the composition µ◦i ν is given by embedding an output
polydisc into an input polydisc of the same radius. (Composition is not defined if the radii
do not match.)

We are again thinking about configuration spaces — here of polydiscs inside larger polydiscs
— but we are remembering the complex structure explicitly. To describe observables, we
want to produce a dg colored operad that encodes the holomorphic nature of this situation.
We do not want to take singular chains, which would only remember the homotopy type;
instead, we choose to take the Dolbeault complex of each configuration space. Note, how-
ever, that taking the Dolbeault complex is a contravariant functor, so we get a cooperad
rather than an operad. This notion bears the same relationship to operad as a coalgebra
does to an algebra; one simply reverses all the arrows and asks for an appropriate variant
of the relations. For instance, there is a composition

(16) ◦i : Ω0,•(PDiscd(r1, . . . , s1, . . . , sm, ri+1, . . . , rn|R))→

Ω0,•(PDiscd(r1, . . . , rn|R))⊗ Ω0,•(PDiscd(s1, . . . , sm|S))

when ri = S, and in that case, the composition µ ◦i ν is given by embedding an output
polydisc into an input polydisc of the same radius. (Composition is not defined if the radii
do not match.)

An important technical point arises here: we need to be careful about functional analysis.
The wedge product map

Ω0,•(X)⊗ Ω0,•(Y )→ Ω0,•(X × Y )

is not a quasi-isomorphism in general (unlike with de Rham complexes), but the completed
projective tensor product as topological vector spaces

Ω0,•(X) ⊗̂π Ω
0,•(Y )→ Ω0,•(X × Y )

is an isomorphism. (We use here the standard Fréchet topology on smooth functions,
extended to sections of vector bundles.) Hence we should work in some category of cochain
complexes of well-behaved topological vector spaces, such as convenient vector spaces, or
something related. This requirement makes sense when geometry matters (e.g., using the
Dolbeault complex) and not just topology. For an extensive discussion of these issues,
see the appendices of [CG17]. From hereon we will ignore function-analytic aspects and
write ⊗, with an appropriate choice of symmetric monoidal category left implicit.

Definition 4.9. The d-polydiscs dg cooperad is the colored operad in the category of dg
vector spaces where each positive real number r ∈ (0,∞) is a color and where there is a dg
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vector space of n-ary cooperations

Ω0,•(PDiscd(r1, . . . , rn|R))

for any list of radii r1, . . . , rn, R. There is a composition

(17) ◦i : Ω0,•(PDiscd(r1, . . . , s1, . . . , sm, ri+1, . . . , rn|R))→

Ω0,•(PDiscd(r1, . . . , rn|R))⊗ Ω0,•(PDiscd(s1, . . . , sm|S))

only when ri = S, and in that case, the composition µ◦i ν is given by embedding an output
polydisc into an input polydisc of the same radius. (Composition is not defined if the radii
do not match.)

An algebra A over this cooperad means that for each radius r, there is a dg vector space
A(r), and for any list of radii r1, . . . , rn, R, there is a cochain map

α(r1, . . . , rn|R) : A(r1)⊗ · · · ⊗A(rn)→ A(R)⊗ Ω0,•(PDiscd(r1, . . . , rn|R)).

To invest the map α with more meaning, pick a real, closed submanifold

T ⊂ PDiscd(r1, . . . , rn|R)

along which one can integrate (0, k)-forms. For instance, for any inputs ai ∈ A(ri), we get
an element in A(R) by ∫

T
α(a1 ⊗ · · · ⊗ an),

where we have suppressed distracting notation from α.

We will now examine the case d = 1 in some detail and relate such algebras to vertex
algebras. Afterward, we explain how holomorphic field theories produce such algebras, by
a result analogous to Elliott and Safronov’s. In particular, a holomorphic version of Witten
descent gives a useful method for producing interesting observables for holomorphic field
theories.

4.2.1. Vertex algebras from the d = 1 case. In the case d = 1, it is possible to relate
polydiscs algebras to vertex algebras. More precisely, there is a functor from a class of
1-polydiscs algebras to vertex algebras, developed in Chapter 5 of [CG17]. In essence, a
polydisc algebra is in this class if it has a nice action of the rotation group U(1), so that
one can extract “modes” (or Fourier components) from it. Examples like the free βγ system
and the Kac-Moody vertex algebras are analyzed in [CG17].

Here we will analyze the cohomology of the cooperad and what kind of information it
encodes, aimed at relating it to vertex algebras. The takeaway from the discussion below
is that one can read off the modes a(n) that assemble into the vertex operator Y (a, z) using
a 1-polydiscs algebra.

It is easiest to work with extremal values of the radii. We take the output radius to be
R = ∞, so that the outputs are observables on all of C. We take the input radii to be
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ri = 0, so that the inputs are observables supported at the points wi. (A physicist might
call these “local operators.”) This input value is not allowed in the definition, but it arises
as a natural limit. In any case, it is natural to think about the complex manifold Confn(C)
of configurations of n distinct points in C: it is

Confn(C) = Cn \ {union of the diagonals {wi = wj}}.

Note that for any finite and nonzero values of radii, there is an inclusion

PDiscd(r1, . . . , rn|R) ↪→ Confn(C).

We now turn to examining the Dolbeault cohomology.

It is easy to see
Confn(C) ∼= C× (C×)n−1

by sending a configuration (w1, . . . , wn) to (w1, w2−w1, . . . , wn−wn−1). (We could replace
w1 by any wj , or even the sum of them all.) Hence, the Dolbeault cohomology consists of
holomorphic functions on this space; there is no higher cohomology. Inside the holomorphic
functions

O(Confn(C)) = H0,•(Confn(C)),

as a dense but understandable subalgebra, are the algebraic functions:

Oalg(Confn(C)) = C[w1, (w1 − w2)
±1, . . . , (wn − wn−1)

±1].

Here (wj−wj−1)
±1 means that the function 1/(wj−wj−1) is a generator, as is (wj−wj−1).

Each such algebraic function provides an operation on H∗(A), where A denotes a polydisc
algebra.

Let us unravel things in the special case of two points. For simplicity, we will fix w1 = 0 so
that we focus on where place the other point w2 ∈ C×. We will use z to denote this point
w2. Then we have binary co-operations parametrized by the space C×. Let

V = lim
r→0

H∗(A(Dr(0)))

denote the cohomological observables “supported at the origin.” (It would be better to take
the homotopy limit of the A(Dr(0)), but we leave the experienced reader to make such
adjustments.) For any two elements a, b ∈ V and for any n ∈ Z, we then obtain an element

a(n)b =

∫
|z|=r

α(a, b) z−n−1dz

in H∗(A(DR(0)) for any radius R > r. (The choice to match n with z−n−1 is conventional.)
Any holomorphic function f ∈ DR(0) \ {0} also defines a map∫

|z|=r
α(a, b) f(z)dz

and, if f is meromorphic at the origin, then its Laurent expansion

f(z) = c−Nz
−N + · · ·+ c0 + c1z + · · ·
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guarantees that we have ∫
|z|=r

α(a, b) f(z)dz =
N−1∑

n=−∞
c−n−1a(n)b.

Thus we have worked out the modes a(n), as promised.

This construction also gives insight into some challenges with the formalism of vertex
algebras, such as the fact that one cannot simply compose vertex operators but must
describe a 3-point product and track the geometry between the insertion points 0, z, and
w. For instance, to obtain the modes, we took the outgoing radius to be infinite, so it
cannot be inserted into any finite radius disk. Nonetheless, the associativity of composition
in PDisc1 casts the shadow of the Cousin property or Borcherds product in vertex algebras.

4.2.2. Examples related to vertex algebras. We have just recalled that in the complex dimen-
sion one case, holomorphic polydiscs algebras (with a compatible U(1) action) correspond
to vertex algebras. Let us briefly point out a few examples of this correspondence.

Given a Lie algebra g we obtain a one-dimensional holomorphic disc algebra Ag by the
following construction. To a disk Dr(z) of radius r centered at z ∈ C we attach the cochain
complex

(18) Ag(Dr(z)) = C•
(
g⊗ Ω0,•

c (Dr(z))
)

Here, Ω0,•
c (Dr(z)) denotes the Dolbeault complex of compactly supported (0, •) forms on

the disc. Because the space of (0, •) forms define a commutative dg algebra, the complex
g ⊗ Ω0,•

c (Dr(z)) has the natural structure of a dg Lie algebra—the complex on the right
hand side is the Chevalley–Eilenberg complex that computes the Lie algebra homology of
this dg Lie algebra. Using the formalism of factorization algebras (which we recall in the
next section) it is shown in [CG21b] how to equip Ag with the structure of a holomorphic
disc algebra. The corresponding vertex algebra is the Kac–Moody vertex algebra of g at
level zero. To obtain the vertex algebra associated to a nonzero level κ one can deform this
holomorphic polydisc algebra Ag ⇝ Ag

κ.

Let V be a vector space. Then, we can define a holomorphic disc algebra AV that cor-
responds to another familiar vertex algebra: the βγ system with values in V . To a disc
D = Dr(z) this assigns the following cochain complex

(19) Sym
(
Ω1,•
c (D)⊗ V ∗[1]⊕ Ω0,•

c (D)⊗ V [1]
)

where the differential is ∂ + △ that we will explain momentarily. We denote the linear
generators of this symmetric algebra by γ ∈ Ω1,•

c (D) ⊗ V ∗[1] and β ∈ Ω0,•
c (D) ⊗ V ∗[1].

Now, for the differential, ∂ is the familiar operator (which acts in the standard way on
(0, •) and (1, •) forms) and △ can be defined on Sym2 summand by the formula

(20) △(γ · β) =
∫
D
⟨γ, β⟩.
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The operator can be extended to the entire complex AV (D) by the rule that it is a BV
operator for the 1-shifted Poisson bracket given by wedge and integration. The vertex
algebra associated to this disk algebra is the familiar βγ-vertex algebra.

4.2.3. Revisiting the higher Kac-Moody algebras. It is apparent that the formula in (18)
makes sense for a (poly)disk of arbitrary complex dimension d. In this way, we obtain
functor from Lie algebras to d-polydisks algebras g 7→ Ag

d. (Here Ag
1 = Ag.)

In this section we have mostly focused on disks. If we evaluate Ag
d on a punctured disk

rather than a disk then we obtain a complex that receives a dense embedding from the
complex

(21) Sym (g•d)

where g•d is the higher sphere algebra from Definition 3.3. A natural question is how the Lie
algebra structure appears; to address this we will use the language of factorization algebras
in the next section.

Given an invariant polynomial θ ∈ Symd+1(g∗)G as in §3.4 we can obtain a twisted version
of this d-polydisks algebra Ag

d,θ. At the level of the punctured disk this corresponds to the
higher Kac–Moody algebra that is the central extension of the sphere algebra g•d. This is a
d-polydisks avatar of the higher Kac–Moody algebra, in the same way that the Kac–Moody
vertex algebra is related to the affine Kac–Moody Lie algebra [GW21b].

4.2.4. Polydiscs algebras from holomorphic field theories. Let

tC = C⊗R t = spanC{∂/∂z1, . . . , ∂/∂zd, ∂/∂z1, . . . , ∂/∂zd}

denote the complexification of the Lie algebra t of translations. Let tz denote the subalgebra
spanned by all the ∂/∂zi.

Theorem 4.10 (see Chapter 5 of [CG17]). Let T be a classical field theory on Cd, and let
its observables be constructed following [CG21b]. If the theory satisfies

(i) T is equivariant under the action of the translation group and

(ii) the action of the Lie algebra tz is homotopically trivialized,

then the observables form a d-polydiscs algebra.

This result is analogous to Elliott and Safronov’s, although it predated (and inspired) it.
It applies to the theories that are the focus of this survey. One can mimic the version of
Witten descent for the topological case to produce observables from local observables.

A number of examples from Section 8 have been developed in this framework, analogous
to the list of examples after Theorem 4.7:
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• The curved βγ system for a Riemann surface into a complex manifold X was con-
structed in [Cos10], and then [GGW20] demonstrates in detail how the vertex al-
gebra of chiral differential operators of X is recovered.

• In [Wil] these methods were extended to holomorphic σ-models from Cd to a com-
plex manifold X, yielding d-polydics algebras of chiral differential operators on X.

• Costello and Li quantized BCOV theory, yielding a 3-polydiscs algebra for holo-
morphic gravity on the Calabi-Yau 3-fold C3 [CL15].

• The holomorphic twists of 4-dimensional supersymmetric Yang-Mills theories are
constructed and analyzed in [EGW21].

A number of examples of topological-holomorphic theories have also been constructed, and
these yield polydiscs algebras. A highlight is Costello’s discovery of a theory on C×R2 that
encodes the Yangian, an infinite-dimensional quantum group [Cos13b].

5. Factorization algebras and holomorphic field theories

A key idea for us is that much of the content in field theories — both classical and quan-
tum — is captured by factorization algebras. We will introduce that concept now, in the
style that sheaves are defined, so first we describe prefactorization algebras and then im-
pose a local-to-global condition to characterize factorization algebras. Their local structure
encompasses the behavior we saw in the preceding section, where Ed algebras captured
topological field theories on Rd and PDiscd algebras captured holomorphic field theories
on Cd. Factorization algebras allow one to work on smooth or complex manifolds and
hence bring in global aspects of geometry. Their global behavior encompasses construc-
tions like Hochschild homology (for E1 algebras extended as factorization algebras on S1)
and conformal blocks (for PDisc1 algebras extended as factorization algebras to Riemann
surfaces). We will then sketch the main theorem of [CG21b], which explains a precise and
general relationship between quantum field theories and factorization algebras. Finally,
we describe some special features and interesting applications of factorization algebras of
holomorphic field theories.

Kapranov gave a lecture series explaining how factorization algebras fit into algebraic ge-
ometry [Kap21]. A recent survey of factorization algebras, with a focus on their role in
mathematical physics, can be found in [CG23].

Remark 5.1. Beilinson and Drinfeld introduced the notion of factorization algebras in their
work on chiral conformal field theory [BD04], and their version has had great success in
algebraic geometry and representation theory, particularly in the setting of the geometric
Langlands program. Francis, Gaitsgory, and Lurie ported the spirit of this notion into the
setting of manifolds, developing topological chiral homology [Lur] and factorization homol-
ogy [AF15] for questions in algebraic topology. Motivated by these efforts (and benefiting
from conversations as those works were in progress), Kevin Costello and the first author de-
veloped a version that works well for a broad class of quantum field theories and for more
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differential-geometric settings [CG17; CG21b]. These approaches share a common spirit
but have important technical differences. A detailed comparison between the versions for
locally constant factorization algebras exists [KSW24], but a detailed comparison between
the Beilinson-Drinfeld and Costello-Gwilliam version is currently open. (See, however, the
last section of [HK23] for important steps in that direction.)

5.1. The essential idea of a prefactorization algebra. Let M be a topological space
and let C⊗ be a symmetric monoidal category. In this paper M is always a smooth manifold
(typically a complex manifold) and C is Vect or dgVect, with the usual tensor product as
the symmetric monoidal product. (As mentioned in the paragraph before Definition 4.9,
one needs to deal with issues of functional analysis for applications to QFT, but we will not
discuss those aspects here. In brief, for purposes of holomorphic field theories, we use an
∞-category obtained from working with cochain complexes of differentiable vector spaces,
with extensive treatment in [CG17].)

Definition 5.2. A prefactorization algebra F on M taking values in cochain complexes is a
rule that assigns a cochain complex F(U) to each open set U ⊂M along with the following
maps and compatibilities.

• There is a cochain map mU
V : F(U)→ F(V ) for each inclusion U ⊂ V .

• There is a cochain map mU1,...,Un

V : F(U1) ⊗ · · · ⊗ F(Un) → F(V ) for every finite
collection of open sets where each Ui ⊂ V and the Ui are pairwise disjoint. The
following picture represents the situation.

U1

U2
. . .

Un

V

⇝ F(U1)⊗ · · · ⊗ F(Un)
m

U1,...,Un
V−−−−−−→ F(V ),

• The maps are compatible in the obvious way, so that if Ui,1 ⊔ · · · ⊔ Ui,ni ⊆ Vi and
V1 ⊔ · · · ⊔ Vk ⊆W , the following diagram commutes.

⊗k
i=1

⊗ni
j=1F(Uj)

⊗k
i=1F(Vi)

F(W )

For an explicit example of the associativity, consider the following picture.
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⇝

a⊗ b⊗ c ∈ A⊗A⊗A

ab⊗ c ∈ A⊗A

abc ∈ A

Figure 1. The prefactorization algebra FA of an associative algebra A

W
V1

V2

U1,1

U1,2

U2,1

⇝

F(U1,1)⊗ F(U1,2)⊗ F(U2,1) F(V1)⊗ F(V2)

F(W )

The case of k = n1 = 2, n2 = 1.

This definition bears analogies to familiar objects in mathematics. On the one hand, F

resembles a precosheaf, which is a functor from opens in M to a category like Vect or
dgVect. (A presheaf is a functor out of the opposite category to opens in M .) Here,
however, F also assign values to disjoint unions of opens, and it uses the tensor product
rather than direct sum. This feature leads to the other analogy: F resembles an algebra, as
the multilinear maps look like multiplications. These maps let us multiply elements from
disjoint regions to get an element in a larger region.

Example 5.3. Every associative algebra A defines a prefactorization algebra FA on R, as
follows. To each open interval (a, b), we set FA((a, b)) = A. To any open set U =

∐
j Ij ,

where each Ij is an open interval, we set F(U) =
⊗

j A. The structure maps simply arise
from the multiplication map for A. Figure 1 displays the structure of FA. Notice the
resemblance to the notion of an E1 or A∞ algebra. ♢

Example 5.4. Another important example for us is the symmetric algebra of a precosheaf.
Let F be a precosheaf of vector spaces on a space X. For example, consider F = C∞

c

the compactly supported smooth functions on a manifold. The functor F = SymF : U 7→
Sym(F (U)) defines a precosheaf of commutative algebras, but it also a prefactorization
algebra. For instance, if U and V are disjoint opens, we see that

F(U ⊔ V ) = SymF (U ⊔ V ) ∼= Sym(F (U)⊕ F (V ))

∼= Sym(F (U))⊗ Sym(F (V )) = F(U)⊗ F(V ),

and these isomorphisms provide the structure maps for F. ♢
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There is another, more sophisticated way to phrase prefactorization algebras, using the
framework of operads. Associated to each topological space M , there is a colored operad
DisjM such that a prefactorization algebra is an algebra over DisjM . For a discussion, see
Chapter 3 of [CG17]; related ideas are developed in [AF15; Lur; Gin15].

Remark 5.5. The reader fond of higher abstract nonsense will note that we could have pref-
actorization algebras take values in other target categories (or even better, ∞-categories),
not just vector spaces or cochain complexes. For instance, one might categorify the values:
F might assign an ∞-category F(U) to each open set U . This generalization is fruitful. In
the Beilinson-Drinfeld style, it leads to chiral categories, which play an important role in
the geometric Langlands program. In the style advocated above, it would likewise be useful
for capturing notions like defects or extended operators from quantum field theory.

5.2. Meet factorization algebras. We are now in a position to define factorization alge-
bras, which are prefactorization algebras whose behavior on large open sets is determined by
their behavior on small open sets. To give a precise description, we introduce a Grothendieck
topology due to Michael Weiss, which is explained nicely and further developed in [BW13].

Definition 5.6. Let U be an open set. A collection of open sets U = {Ui | i ∈ I} is a
Weiss cover of U if for any finite collection of points {x1, . . . , xk} in U , there is an open set
Ui ∈ U such that {x1, . . . , xk} ⊂ Ui.

The Weiss covers define a Grothendieck topology on Open(M), the poset category of open
subsets of a space M . We call it the Weiss topology of M . Note that Weiss covers are
required to “know” about every configuration of finitely many points, and so they often
contain many opens. For a smooth n-manifold M , a useful Weiss cover is the collection of
open sets in M diffeomorphic to a disjoint union of finitely many copies of the open n-disc.
(If one has a metric on the manifold, one can work with unions of “small” discs.)

Now that we have a notion of cover, we can formulate the local-to-global property for
factorization algebras.

Definition 5.7. A factorization algebra is a prefactorization algebra F on M with values
in a symmetric monoidal category C⊗ that is a cosheaf for the Weiss topology.

Being a cosheaf means that for any open set U ⊂ M and any Weiss cover {Uα} of U , the
value of F(U) can be reconstructed using the Čech complex:

F(U)
≃−→ Č(U,F).

Replacing cochain complexes with some other category (or ∞-category), one needs to take
a (homotopy) colimit over the Čech nerve of the Weiss cover.

As verification that this notion has some real content, let’s consider a first, interesting case.
We already explained how to produce a locally constant prefactorization algebra FA on R
from a dg associative algebra A. We could ask about working on the circle S1 instead of R.
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This construction tells us what to assign to every proper open subset of S1: for instance,
to each open interval, we assign A. The Čech complex should then tell us what to assign
to the whole circle. Remarkably, this construction recovers a well-known invariant: the
Hochschild chains Hoch∗(A) of A.

Theorem 5.8 ([Lur; AF15; KSW24]). The prefactorization algebra FA extends to a fac-
torization algebra on S1, and

Hoch•(A) ≃ Č(U,FA)

for any Weiss cover of S1.

This theorem tells us that factorization homology can be seen as a generalization of Hochschild
homology, where one simultaneously generalizes the circle to an arbitrary closed manifold
and an algebra to a factorization algebra.

There is a variant on this result that plays a role in Section 5.4 below. Recall that a locally
constant sheaf on S1 may have monodromy: starting with a section on a small interval
around the circle and then continuing it around the circle (by local constancy), it may not
match, i.e., it may not extend to a global section. Instead, transporting values around the
circle produces an automorphism of the stalk at a point, known as monodromy. Similarly,
a locally constant factorization algebra F on S1 restricts to a locally constant factorization
algebra on S1−{p} ∼= R, so it corresponds to an associative algebra A. But in transporting
elements of A around the circle using this factorization algebra on S1, we may find there
is an algebra automorphism σ appearing as monodromy. Then∫

S1

F = F(S1) ≃ Hoch•(A,Aσ)

where Aσ denotes A viewed a bimodule where A acts from the left by multiplication and
from the right by multiplication twisted by σ.

5.3. How factorization algebras appear in QFT. Factorization algebras on Rn and En

algebras should be closely related, as can be seen by drawing pictures of the configurations
of discs that control operations.

Definition 5.9. A factorization algebra F on an n-manifold M is locally constant if for
each inclusion of open discs D ⊂ D′, then the map F(D)→ F(D′) is a quasi-isomorphism.

For M = R, we have already discussed how locally constant factorization algebras relate
to associative algebras, starting with Example 5.3. Lurie has shown the following vast
extension of this example. (See section 5.4.5 of [Lur], particularly Theorem 5.4.5.9.)

Theorem 5.10. There is an equivalence of (∞, 1)-categories between En algebras and lo-
cally constant factorization algebras on Rn.

Remark 5.11. We remark that Lurie and Ayala-Francis uses a different gluing axiom than
we do. A careful comparison of the different axioms and a proof of their equivalence (for
locally constant factorization algebras) can be found in [KSW24]. ♢
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This perspective suggests that factorization algebras offer a natural generalization to field
theories on manifolds, and not just on Euclidean spaces. Indeed [CG17; CG21b] provide a
systematic relationship between field theories and factorization algebras. The slogan is

the observables of a field theory living on a manifold M form a factorization
algebra on M .

To physicists, this claim should not be so surprising: the Weiss cosheaf condition offers
a precise version of the idea that a quantum field theory can be fully encoded by all its
n-point functions.21

To make a mathematical statement, one needs to be precise about what a field theory is.
Here, we will mean the definitions articulated in [Cos11; CG17; CG21b], which encompass
the Euclidean versions of many field theories studied in physics and mathematics. Those
books use the Batalin-Vilkovisky (BV) formalism for quantization, a homological method
generalizing the BRST approach and widely regarded as the most powerful and general
way to quantize gauge theories.

Theorem 5.12. The observables of a classical field theory on M form a factorization alge-
bra Obscl that assigns to every open set, a 1-shifted Poisson algebra (i.e., a commutative dg
algebra equipped with a Poisson bracket of cohomological degree one). A BV quantization of
this theory yields a factorization algebra Obsq that is a flat deformation of Obscl over R[[ℏ]].

This theorem provides an elegant interpretation of BV quantization as a kind of deformation
quantization. In the setting of mechanics (or one-dimensional field theory, since a particle
has a worldline), deformation quantization explains the transition from classical to quantum
as deforming the observables from a Poisson algebra to an associative algebra. This theorem
allows one to interpret quantization of field theories—on manifolds of arbitrary dimension—
as a deformation quantization from a 1-shifted Poisson factorization algebra to a plain
factorization algebra. In fact, in [GLL17; GLX21] it is shown how BV quantization for
one-dimensional quantum field theories connects with the ordinary theory of deformation
quantization.

This theorem is also a key connection between field theories and higher algebras. Indeed,
a the value of a locally constant factorization algebra on a d-disk has the structure of a
Diskd-algebra. The value of a holomorphic factorization algebra on a complex d-dimensional
polydisk has the structure of a PDiskd-algebra.

5.3.1. Relating to the Atiyah-Segal approach to TFTs. Atiyah [Ati88] offered a mathemat-
ical definition for topological field theories that uses symmetric monoidal functors out of
bordism categories. His approach was inspired by Segal’s definition of a conformal field
theory [Seg04], and these notions have subsequently undergone extensive development.

21This idea is not seen as accurate when one takes into account some nonperturbative aspects of QFT,
notably generalized global symmetries and higher-dimensional defects. We note that it is possible to enlarge
the Weiss topology to accommodate those aspects.
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Notably, Baez and Dolan [BD95] suggested and advocated for fully extended TFTs; their
vision was revisited by Lurie [Lur09], who used modern machinery to provide a roadmap
for using fully extended TFTs and for proving the cobordism hypothesis.

An important suggestion from [Lur09] is that factorization homology allows one to produce
nontrivial examples: every Ed algebra provides a fully extended d-dimensional framed TFT,
albeit taking values in a higher analogue of the Morita bicategory (which works for the d = 1

case). Scheimbauer [Sch] implemented Lurie’s suggestion.

Theorem 5.13. For any Ed algebra A, the functor∫
(−)

A : Bordord → Algd

determines a fully extended framed d-dimensional field theory with values in a higher Morita
(∞, d)-category of Ed algebras.

In combination with the theorem of Elliott and Safronov, we can connect action functionals
— the physicist’s usual description of a field theory — to Atiyah-Segal functorial field
theories.

Corollary 5.14. For any Lagrangian field theory satisfying the hypotheses of Theorem 4.7,
there is a fully extended framed d-dimensional field theory given by

∫
(−)A

q where Aq denotes
the Ed algebra of quantum observables.

More generally, given a map of Lie groups G → O(d) and a compatible G-action on the
theory, a homotopical trivialization of this action on the quantum theory equips Aq with
the structure of a G-framed Ed algebra and, by Lurie’s work, a G-framed fully extended
d-dimensional TFT. It is interesting to ask how these kinds of functorial field theories
intertwine with the better-known constructions, such as the Reshetikhin-Turaev theories,
where the target category is not Algd but some other higher-categorical extensions of Vect.

In this survey we use factorization algebras to capture the rich algebraic structure of holo-
morphic field theories, but these connections with functorial TFTs raise the question of
producing functorial holomorphic field theories.

5.4. Compactification and conformal blocks. Factorization algebras yield interesting
information when their global sections are computed, much as sheaf cohomology is a rich
source of invariants and information. We focus here on some global aspects of holomorphic
factorization algebras, connecting with important results about vertex algebras and with
the physical notion of compactification.

A map f : X → Y induces a pushforward functor between categories of factorization alge-
bras. If F is a factorization algebra on X, then the pushforward f∗F is the factorization
algebra on Y that assigns the value F(f−1(U)) to an open set U ⊂ Y .
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Consider a situation where F is the factorization algebra of observables of a quantum
field theory on X. In the case that f is a smooth map with compact fibers, then f∗F

is the factorization algebra of observables for the compactification of the quantum field
theory along f . In the case f : Z × Y → Y is the projection, one says that f∗F is the
compactification of F along Z. This is akin to the famous Kaluza–Klein compactification
in physics and should not be confused with the notion of “dimensional reduction”, which
only includes some of the Kaluza–Klein fields.

Another special case is the map f : X → ⋆. Then f∗F =
∫
X F is the global sections of

the factorization algebra F along X. In the case that F is a locally constant factorization
algebra, this computation agrees with the factorization homology of F along X, as defined
by Ayala-Francis and Lurie. In the case that F is a holomorphic factorization algebra on
a Riemann surface Σ, the global sections

∫
Σ F is related to a familiar invariant within the

theory of vertex/chiral algebras called the “space of conformal blocks” [FB04, §8]. Pre-
cisely, the zeroth homology of

∫
Σ F is linearly dual to the space of (ordinary, non-derived)

conformal blocks.

Thus, it is natural to view global sections as a higher-dimensional generalization of the
notion of conformal blocks. That is, whenX is any complex manifold and F is a holomorphic
factorization algebra on X, then

∫
X F plays the role of conformal blocks. One can then

ask for analogs in higher dimensions of important results involving Riemann surfaces and
vertex algebras. We sketch here an example of how the character of a (conformal) vertex
algebra relates to the conformal blocks over the moduli of elliptic curves.

First, consider a real one-dimensional topological factorization algebra A. If we identify
A with the associative algebra that it determines, then the factorization homology

∫
S1 A

along the circle agrees with the Hochschild cohomology of the associative algebra A. In
other words, it is the home for all of the “traces” defined on the algebra A.

For a vertex algebra V, the role of the circle is played by any elliptic curve, and the role
of Hochschild homology is played by conformal blocks on that genus one curve. Thus
conformal blocks over elliptic curves provides the natural home for the characters of the
vertex algebra. The most basic example of the character of a conformal vertex algebra is
its q-character, which is defined in terms of a trace:

(22) charV(q) = TrV(q
L0−c/24),

where L0 denotes the action of the vector field z∂z. The shift by the central charge guaran-
tees that this expression has nice modularity properties, i.e., we can view q as parametrizing
the moduli of elliptic curves.

From the point of view of factorization algebras, we can understand this trace in terms of
Hochschild homology of the algebra of modes associated to V. Indeed, suppose the confor-
mal vertex algebra V arises from a holomorphic S1-equivariant factorization algebra FV on
C. If r : C× → R>0 is the radial projection there is a procedure for extracting the associative
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algebra of modes from the one-dimensional factorization algebra r∗FV. Indeed, while r∗FV

may not be a locally constant factorization algebra, it always contains a dense subfactoriza-
tion algebra which is locally constant.22 With slight abuse of notation, we will still denote
r∗FF the locally constant factorization algebra obtained from this compactification.

If we further put this on the circle, we find Hochschild homology. Thus, for each modulus q
functoriality of factorization homology gives rise to a map

(23)
∫
S1
σ

r∗FV = Hoch(r∗FV, σ)→
∫
Eq

FV.

Here, σ is an automorphism defined in terms of the given S1-action on FV, and what appears
on the left-hand side is the σ-twisted Hochschild homology. For free theories, this map is a
quasi-isomorphism. On the other hand, given a conformal block (i.e., linear functional on∫
Eq

FV) we can compose it with that map to define a trace on the modes algebra. From
this point of view, the factorization homology along an elliptic curve encodes characters in
the sense of vertex algebras. For more on this perspective see [GL22], where they carefully
develop the notion of a trace for chiral/vertex algebras.

In higher dimensions we can build a similar picture, replacing the moduli of elliptic curves
with the moduli of Hopf manifolds. Recall that a Hopf manifold is a quotient of the
punctured affine plane

(24) Hq =
(

Cd − {0}
)
/ ((z1, . . . , zd) ∼ (q1z1, . . . , qdzd))

where q = (q1, . . . , qd) are complex numbers satisfying 0 < |qi| < 1. For generic q such a
complex manifold is diffeomorphic to S2d−1 × S1. The factorization homology of a holo-
morphic factorization algebra F along a Hopf surface of this kind can be identified with the
Hochschild homology of the associative algebra of S2n−1-modes:

(25) Hoch(r∗F, σ)→
∫
Hq

F

where, again, r : Cd − {0} → R>0 is the radius and σ is an automorphism of F induced
from the S1-equivariant structure of F. Thus, we see that the factorization homology

∫
Hq

F

naturally encodes traces of the S2n−1-mode algebra associated to F. In [SW20], it is shown
how an important invariant called the supersymmetric index (or supersymmetric partition
function) of a supersymmetric theory along a sphere S2n−1 be cast into this framework at
the level the holomorphic twist.

6. Renormalization & anomalies: constructing examples

In practice, quantum field theories are typically constructed using regularization and renor-
malization, by starting with an action functional that defines a classical field theory and

22To extract it, one assumes that F is S1-equivariant. For each interval I ⊂ R>0 one then looks at the
subspace of F(π−1(I)) consisting of the eigenspaces for this S1 action. The assignment of an interval I to
this subspace is a locally constant factorization algebra.
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then finding a way to extract sensible answers from the yoga of Feynman diagrams (which
naively produce divergent integrals). One can apply similar techniques to produce holomor-
phic quantum field theories, and the higher algebraic structures associated to them. A key
feature of holomorphic theories is the absence of counterterms (possibly scheme-dependent),
which can make typical quantum field theories challenging to work with. In this section we
describe the current state of the art for renormalization and anomalies of holomorphic field
theories, after reviewing some background and the similarly pleasant results for topological
field theories.

6.1. Overview and context. The dream is that a quantum field theory is specified by
the path (or functional) integral, which is supposed to involve integrating a measure over
the space of all fields. This path integral does not (usually) exist using conventional math-
ematical tools, so one mimics well-established asymptotic expansions for finite-dimensional
oscillating integrals. Feynman explained how to label the terms in these expansions using
graphs; there is an explicit algorithm that converts the action functional of the classical
field theory into integrands (often distributional in nature) on the spacetime manifold M

and products Mk of it. Unfortunately, these formal expressions are often ill-defined as they
would involve multiplying distributions (and hence the putative integral would diverge).
Regularization means a way of systematically working around these issues, often by ad-
justing the integrand or finding a clever way of extracting a finite answer. In short hand,
one introduces counterterms that soak up the divergences and hence obtain useful values
for the Feynman diagrams. Renormalization means assembling the data produced by the
collection of Feynman diagrams to approximate the “true” path integral.

To offer some notation, a graph γ (whose exact shape depends on the theory) is expected to
define a functional WΓ on the space of fields (i.e., a distribution). It is described, formally,
by an an integral over the product manifold M |V (γ)|, where V (Γ) is the vertex set of the
graph. Unfortunately, this integrand, and the distribution it purports to encode, is often
not integrable.

These methods are essential — and often quite convoluted — for the theories that describe
physical phenomena, such as quantum electrodynamics, where Feynman first introduced
his diagrammatics. For topological quantum field theories, like Chern-Simons theory, life is
quite a bit simpler: Axelrod-Singer and Kontsevich developed a a very simple regularization
method that removes all divergences. For these theories, the putative divergences always
arise from distributional issues along the diagonals of the product spaceMk. On the Fulton-
MacPherson compactification of the configuration space of k points in M (i.e., takes the real
blow-up along the diagonals), the integrand admits a smooth extension and the integrals
become well-defined.

These results guarantee the existence of factorization algebras for topological field theories
like Chern-Simons theory or the Poisson σ-model or the topological B-model by the main
result (Theorem 5.12) of [CG21b]. Thus these theories produce Ed algebras by Theorem 4.7
and Atiyah-Segal-style TFTs by Corollary 5.14.
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This configuration space method traditionally used to study topological theories does not
admit an immediate generalization to holomorphic theories. Nevertheless, the renormaliza-
tion for holomorphic field theories is equally well-behaved.

Costello, inspired by the methods of Axelrod-Singer and Kontsevich, found a framework
for perturbative renormalization that works with a large class of elliptic complexes. When
applied to Dolbeault complexes arising in Kodaira-Spencer (or BCOV) theory, he and Li
found some remarkable simplifications and good behavior [CL12]. In [Li23] Li showed,
by clever analysis, that holomorphic field theories in complex dimension one (i.e., chiral
conformal field theories) are finite to all orders in perturbation theory; this result was later
extended to arbitrary Riemann surfaces in [LZ21]. Following up, the second author laid
out systematic mathematical foundations:

• he established key analytic results about holomorphic renormalization, showing that
it is highly manageable, with no counterterms to 1-loop; and

• characterized the one-loop anomalies (i.e., obstructions to BV quantization),

see [Wil; Wil20]. These apply to all holomorphic theories on Cn, but some of the techniques
should extend to more general complex manifolds.

In the last few years, there has a been a buzz of recent activity on the renormalization of
holomorphic field theories. Budzik, Gaiotto, Kulp, Wu, and Yu developed a strategy for
proving that in a holomorphic quantum field theory, certain graphs (called Laman graphs)
do not produce divergences [Bud+23]. The key idea is to combine the heat kernel analysis
with the sort of compactifications that are used in the theory of configuration spaces.

Recently, Minghao Wang has extended this analysis to show that holomorphic field theories
on Cn admit a regularization scheme that is divergence-free to all orders in perturbation
theory [Wan24]. In other words, both topological and holomorphic field theories are com-
pletely free of the divergences present in typical quantum field theories! We briefly recall
the approach to this regulation scheme.

6.2. No divergences: Wang’s approach. We will allow graphs with finitely many ver-
tices and edges, but also leaves (also known as hair or half-edges).23 We allow multiple
edges between vertices, as well as loops, the precise form of which are determined by the
interactions of the theory.

For a graph γ, let E(γ) denote the number of edges, V (γ) denote the number of vertices,
and L(γ) denote the number of leaves. We fix a “cut-off" length scale L > 0 that is used to
remove the divergences that often come from integrating over a noncompact manifold (a
so-called IR divergence), which is a different kind of divergence (and much easier to resolve)
than those that typically plague Feynman diagrammatics.

23That is, a vertex may have, in addition to edges connecting it to other vertices, some incident edges that
do not connect to another vertex. These will label inputs to an operation associated to the graph.
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Definition 6.1. The Schwinger space Schw(γ) associated to a graph γ and a length L is
the non-compact manifold with corners (0, L]E(γ).

The desired Feynman graph weight Wγ of a graph γ is obtained as the integral over this
Scwhinger space.

Definition 6.2. For a perturbative field theory with space of fields E, there is a distribution
valued in differential forms on Schwinger space

wγ : E
L(γ)
c → Ω• (Schw(γ))

that we call the regularized weight of γ.

The possibly ill-defined weight Wγ is obtained by integration of wγ over Schwinger space.
This family of distributions is constructed as an integral over Cv(γ)d, where each edge e is
labeled by a smooth function Pt(e) depending on the length of the edge and where each
vertex is labeled by a distribution arising from an interaction term of the theory. For
general theories, one cannot smoothly continue the regularized weight from the positive
length values to zero lengths. The putative integrals become divergent, which is reflected
by the non-compactness of Schwinger space from this perspective.

For holomorphic field theories, however, something remarkable happens.

Theorem 6.3 ([Wan24]). Let E be the space of fields underlying a holomorphic field theory
on Cn. For every graph γ, the differential form wγ has a natural smooth extension w̃γ to a
compactification ˜Schw(γ) of Schwinger space. In particular, the composite

EL(γ)
c

w̃γ−−→ Ω•
(

˜Schw(γ)
) ∫
−→ C

is a continuous linear functional on E
L(γ)
c and shows the desired weight Wγ is well-defined.

In other words, divergences do not appear when constructing the perturbative quantization
of any holomorphic field theory on Cd. (Similar results hold for topological-holomorphic
theories [WW24].)

This result ensures the existence of myriad examples of the higher algebraic structures
we’ve discussed: it provides the analysis to quantize the kinds of examples from Section 8
and hence to produce polydiscs algebras and factorization algebras.

6.3. Anomalies that obstruct quantization. The discussion so far concerned the an-
alytic issues that are present when trying to make the path integral precise. For some
quantum field theories, like gauge theories, there is another issue that could prevent the
theory from being well-posed: these are called anomalies. An anomaly measures the failure
of the path integral to enjoy the same symmetries as the underlying classical field theory. In
gauge theory, for instance, the perturbative renormalization might not be gauge invariant,
although the classical action functional is. Specifically, the gauge variation of a particular
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Feynman graph integral may be nonzero—this leads to an anomaly in the quantum theory.
In topological theories, it is known that these sort of anomalies are absent. For holomor-
phic theories, however, anomalies are present. (Within the context of Costello’s formalism
for perturbative QFT, these anomalies arise as obstructions to solving a Maurer-Cartan
equation known as the quantum master equation.)

Since renormalization is so well-behaved, however, such anomalies are amenable to explicit
characterization. For example, at one-loop in perturbation theory, an explicit formula for
such anomalies for holomorphic theories on Cd is given in [Wil20]. It involves a sum over
Feynman weights WΓ where Γ is a polygon with (d+ 1) vertices.

As an example, consider holomorphic BF theory on C2 with Lie algebra g and couple it to
the βγ system on C2 valued in a representation (V, ρ) of g. The action functional is

S(A,B, β, γ) =

∫
⟨B, ∂A⟩+ 1

2
⟨B, [A,A]⟩+ ⟨β, ∂γ⟩+ ⟨β, ρ(A)γ⟩,

where the final term encodes the “coupling” (cf. the discussion of these theories in Section 8).
The second and fourth terms are cubic functions of the fields, and they provide trivalent
vertices to build graphs with. The first and third terms are quadratic, and they control
what labels the edges of graphs.

The gauge variation of the two diagrams which contribute to the gauge anomaly are shown
in Figure 2. The difference between these two diagrams is how we label the internal edges:
in the first diagram they are labeled by A−B fields and in the second they are labeled by
β−γ fields. An anomaly can be represented by a (local) functional on the space of fields. In
each diagram at hand, this local functional depends only on the holomorphic gauge field A
and has the form

(26) c

∫
TrV (A ∧ ∂A ∧ ∂A)

where c is some nonzero constant and V is some representation of g.24 Specifically, we have:

• In the first diagram the representation V is the adjoint representation. Thus, this
expression vanishes when g is simple, e.g., when g = sl(n).

• In the second diagram the representation is that used in defining the βγ system.

The sum
c

∫
(TrM (A∂A∂A) + TrV (A∂A∂A))

is the total anomaly for this field theory. These anomalies of a holomorphic gauge theory
on C2 are holomorphic avatars of the Adler–Bell–Jackiw, or chiral, anomaly in ordinary
gauge theory on R4.

24In this example, the value of c is the same for both diagrams.
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Figure 2. Diagrams whose gauge variation contribute to the anomaly in
holomorphic gauge theory on C2

In the case that g is simple (so that the first diagram does not contribute to the anomaly),
there is an easy way to produce a non-anomalous holomorphic QFT: take V to be a sym-
plectic representation of the gauge Lie algebra V = Q⊕Q∗, where Q is any g-representation.

7. Vista: Seiberg duality and its consequences

A major endeavor in theoretical physics is to develop a deep and effective understanding
of theories like quantum chromodynamics (QCD), which governs the behavior of quarks
and gluons. One natural approach is to study theories that are close cousins but that are
easier to analyze, and a notable way is to look for theories with the same ingredients but
with larger groups of symmetries. Supersymmetric Yang–Mills theories are quite appealing
in this regard, and there have been remarkable successes in this direction. A well-known
high point is the work of Seiberg and Witten on 4-dimensional N = 2 supersymmetric
Yang–Mills theory, where they explained how confinement could be realized by a version
of the Mandelstam-’t Hooft mechanism (i.e., a kind of electromagnetic duality identifies
confinement with a Meissner effect). Their work offered powerful new tools that opened
up much subsequent progress, and even impacted mathematics through the Seiberg-Witten
equations (which are related to the topologically twisted versions of N = 2 theory).

The class of supersymmetric theories closest to the Standard Model, however, has only
N = 1 supersymmetry. There too Seiberg offered inspiring and powerful insights about
SQCD (N = 1 supersymmetric QCD), and one of his leading contributions is referred to
as Seiberg duality. It has had a large impact in theoretical physics, but the impact in
mathematics is much more muted, possibly due to the lack of a topological twist for any
N = 1 theory.25 Such theories do admit holomorphic twists, however, and so we explore
here what holomorphic Seiberg duality might mean and what its consequences could be in
mathematics. In our opinion this direction could be quite fruitful and we welcome others
to join us in exploring it.

We begin this section by describing the holomorphic twist of N = 1 supersymmetric Yang–
Mills theory, and then we offer a holomorphic version of Seiberg duality, initially conjectured

25Although citations offer only coarse insight into impact, Seiberg’s paper introducing the conjecture [Sei95]
has over 1800 citations listed on Inspire but less than 60 citations listed on MathSciNet.
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by Richard Eager. We end by sketching how this duality, when compactified along Riemann
surfaces, should produce equivalences between different kinds of 2-dimensional B-model
theories; these reductions are related to work of Hori and Hori–Tong and its mathematical
development, notably by Segal and collaborators [Hor13; HT07; RS19; ADS15].

7.1. Holomorphic chromodynamics and steps towards holomorphic QCD. A 4-
dimensional N = 1 supersymmetric Yang–Mills theory depends on a choice of compact Lie
group G, with Lie algebra g, and it lives on the spacetime M = R4. The field content of
the theory is

• a vector multiplet that consists of a gauge field A ∈ Ω1(M)⊗ g together with some
fermions λ ∈ C∞(M)⊗ g, and

• a matter multiplet (often called the chiral multiplet), depending on a choice of a
representation V of g, that consists of a scalar ϕ ∈ C∞(M)⊗V together with some
fermions ψ ∈ C∞(M) ⊗ V . Additionally, there is a superpotential W ∈ O(V )g, a
G-invariant polynomial on V .

We always work with super vector spaces, so a fermion means an element of an odd vector
space while a boson means an even element. Thus, we view a fermion λ as living in
Π(C∞(M)⊗ g), where Π denotes odd parity.

From hereon we fix a nonzero, square zero supercharge Q of the 4-dimensional N = 1

supersymmetry algebra. This element determines a complex structure on R4. We also use
it to twist the supersymmetric theory to produce a holomorphic field theory on C2. This
twist also has a “vector” part and a “matter” part. This twist of 4-dimensional N = 1

supersymmetric Yang–Mills theory has been analyzed and described in [Cos13b; ESW22;
SW20], within that framework for (primarily perturbative) field theory.

This twist has a moduli-theoretic description that we now sketch; we call a point in such a
moduli space a solution to the equations of motion. (We give later a description in terms
of fields and action functionals.) Let GC denote the complex Lie group associated to G,
and let gC denotes its complex Lie algebra. We assume that gC is equipped with a non-
degenerate symmetric invariant pairing and will freely identify gC with its linear dual using
this data.

The twisted vector multiplet defines a field theory on any complex surface X often called
holomorphic BF theory. It will be convenient for us to assume that X is equipped with
a holomorphic volume form that we denote by ΩX . A solution encodes a holomorphic
GC-bundle P→ X (by picking out a ∂-connection on the underlying smooth bundle) and a
holomorphic section of the adjoint bundle ad(P)→ X. The moduli space can be expressed
as the mapping space Map(X,T ∗[1]BGC), as a derived stack. (Note that T ∗[1]BGC is the
coadjoint quotient stack [g∗C/GC].)

A twisted matter multiplet also defines a field theory on any complex surface X. The su-
perpotential determines a derived affine scheme: the derived critical locus Critd(W ), which
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can be modeled as the spectrum of the dg algebra given by polyvector fields PV (V ) on
V with differential ιdW . (It is the Koszul complex associated to the Jacobi ring of W .)
This description makes manifest an odd symplectic structure on Critd(W ), as polyvector
fields are an odd Poisson algebra via the Schouten bracket. By itself (i.e., before cou-
pling to a gauge theory) the twisted matter multiplet corresponds to the mapping space
Map(X,Critd(W )).26

The holomorphic twist of a theory with both vector and matter multiplets can be described,
globally, as a derived mapping space from X to the target

(27) [(g∗C × Critd(W ))/GC].

This is a derived quotient stack whose first factor arises from the BF theory and whose
second factor arises from the matter multiplet.

Supersymmetric quantum chromodynamics (SQCD) refers to a specific sort of four-dimensional
N = 1 gauge theories. In the special, yet interesting, case that the gauge group is
G = SU(N) (and so GC = SL(N)) the matter fields consist of two types: quarks, valued in
some number of copies of the fundamental (defining) representation, and antiquarks, valued
in the same number of copies of the anti-fundamental (dual to the defining) representation.
The number of fundamental representations that appear is called the number of flavors, and
will be denoted F . The number N is called the number of colors. The following theorem
describes the holomorphic twist of SQCD (for G = SU(N)). Henceforth, we will refer to
the resulting holomorphic field theory as holomorphic QCD.

Theorem 7.1 ([ESW22; SW20]). The holomorphic twist of G = SU(N) SQCD with F

flavors and super potential W on C2 = R4 is equivalent to the following holomorphic field
theory:

• the gauge fields are those of holomorphic BF theory valued in sl(N), whose fields
are

A ∈ Ω0,•(C2, sl(N))[1] and B ∈ Ω2,•(C2, sl(N)∗);

• the “quarks” are fields of a holomorphic βγ system valued in

VQ = Hom(CF , N) ∼= N⊕F ∼= CNF ,

whose fields are

Q ∈ Ω0,•(C2, VQ) and R ∈ Ω2,•(C2, V ∗
Q)[1];

• the “antiquarks” are fields of a holomorphic βγ system valued in the dual represen-
tation

V ∗
Q
∼= Hom(N,CF ) ∼= (N∗)⊕F ∼= CNF ,

26Notice that AKSZ formalism equips this mapping space with a 1-shifted symplectic structure as opposed
to the desired (−1)-shifted symplectic structure. Hereon we totalize all gradings to Z/2.
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whose fields are

Q† ∈ Ω0,•(C2, V ∗
Q) and R† ∈ Ω2,•(C2, VQ)[1].

(The superscript † does not mean we apply an operation to Q or R; it is simply to remind
us that these fields are the “antiparticles”.)

The action functional is

SQCD =

∫
B F 0,2

A +

∫
R∂AQ+

∫
R† ∂AQ

† +

∫
d2zW (Q),

where ∂A = ∂ +A is the covariant ∂-operator.27

Remark 7.2. Notice that to write down the superpotential term, we are utilizing the holo-
morphic volume form d2z. Relatedly, unless W = 0, this theory is only Z/2-graded, so all
fields are considered merely as even or odd. For instance the component of the gauge field
A0,1 is even while the component of the matter field Q0,1 is odd. When W is homogenous
one can lift the theory to a Z-grading by making additional choices.

To formulate Seiberg duality, we will need to allow auxiliary matter fields that we call
“mesons.” As above, we fix GC = SL(N,C).

Definition 7.3. A holomorphic QCD theory with mesons is a holomorphic QCD with N

colors and F flavors along with meson fields, which form a βγ system valued in the vector
space VM , whose fields we denote by

µ ∈ Ω0,•(C2, VM ) and ν ∈ Ω2,•(C2, V ∗
M )[1].

The action functional is

SQCDwM = SQCD +

∫
ν ∂µ+

∫
d2z W̃ (Q,Q†, µ).

Note that the fields µ are “uncharged,” i.e., SL(N) acts trivially on VM . Hence we use ∂
rather than ∂A. The only coupling that the meson µ has to the other fields is through the
new superpotential W̃ .

7.2. A first pass at Seiberg duality. Our long-term goal is to show that two special
cases of holomorphic QCD are dual. The notion of duality can refer to several kinds of
relationships, but loosely speaking it means that some aspects of the two theories are
equivalent under some correspondence. We will postpone saying anything precise till we
have some terminology in place.

The proposed duality involves two holomorphic theories on C2. We call one side electric and
the other magnetic. These turn out to be the twists of the original electric and magnetic
supersymmetric theories of the famous Seiberg duality, which motivates our terminology.

27Although this perturbative theory only depends on the Lie algebra of G, the group structure will be
relevant when we discuss local operators and moduli of vacua.
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Definition 7.4. Fix a positive integer F , for flavor, and fix integers N and Ň such that
F = N + Ň and F ≥ N, Ň ≥ 2.

• The electric theory is the holomorphic QCD with N colors and F flavors and without
mesons. We denote it by TE(F,N). We use A,B,Q,R,Q†, and R† for the fields.
For simplicity, we don’t consider any superpotential.

• The magnetic theory TM(F, Ň) is the holomorphic QCD with Ň colors and F flavors,
but with mesons µ̌ that take values in

VM̌ = End(CF ) ∼= C⊕F 2

(and ν̌ for the partner field to µ̌). We use Ǎ, B̌, Q̌, Ř, Q̌†, and Ř† for the other fields.
The superpotential is

(28) W̃ = Tr(Q̌†µ̌Q̌)

where we compose the linear maps before tracing over VŇ .

Note that the lower bound on N and Ň is simply to ensure that we have nontrivial gauge
groups.

Seiberg duality states how certain “electric” and “magnetic” versions of SQCD should be
equivalent. The electric and magnetic holomorphic QCDs are precisely the holomorphic
twists of those that appear in Seiberg duality, and so Richard Eager suggested that Seiberg
duality should survive after taking the holomorphic twist.

Conjecture ([Eag18]). Let F = N + Ň and F ≥ N, Ň ≥ 2. Construct a quantization of
the theories TE(F,N) and TM(F, Ň). There is an equivalence of 2-dimensional holomorphic
factorization algebras

ObsE ≃ ObsM

where these are the observables of the electric and magnetic theories, respectively.

Remark 7.5. The statement is an equivalence of factorization algebras valued in Z/2-graded
cochain complexes since the field theories are only Z/2-graded.

This claim should seem rather surprising. In many ways these theories look, on their face,
like very different theories: the gauge groups SL(N) and SL(Ň) are (usually) different,
and one side has mesons and the other does not. Of course, relating quite different theories
also makes the conjecture powerful.

One appealing aspect of Eager’s conjecture is that it is mathematically precise: duality
would mean giving an equivalence of factorization algebras. It is analogous to claiming
that two vertex algebras are equivalent, such as in the well-known boson-fermion corre-
spondence or in the correspondence between the chiral rings of the A- and B-models of
mirror symmetry. In this sense it is a target at which a mathematician can aim, rather
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than the more amorphous statements of duality that one often finds in the physics litera-
ture. In that literature, however, there is guidance on what map of factorization algebras
provides the equivalence, which we describe in the next section.

In general, Eager’s suggestion opens up a fascinating vein of inquiry:

how do physical results about supersymmetric gauge theories behave under
twisting to holomorphic or topological theories?

We have found, so far, that these results often admit clean mathematical formulations
and that the holomorphic (or topological) twists involve constructions of natural interest
in geometry and representation theory. In [EGW21] we and Chris Elliott explored twists
of N = 4 supersymmetric Yang–Mills theory, provided their quantizations, and began
analyzing their factorization algebras. One might can also ask about the twisted versions
of S-duality and how to provide those conjectured equivalences. The answer to this question
has been studied by Raghavendran and Yoo [RY19] using Costello and Li’s description of
spacetime twists of superstring theories in terms of topological string theory [CL16; CL20].
A further localization of S-duality has also been studied by Costello and Gaiotto [CG21a].

Remark 7.6. Our discussion here is ahistorical. Witten initiated this vein of research for
twists that are topological [Wit88], and Costello advocated holomorphic twists [Cos13a].
Costello and Li initiated the use of holomorphic twists to study dualities particularly in the
setting of the topological B-model (see [CL12] and follow ups), and further extended these
ideas to non-topological strings [CL16]. These ideas are extensively used in the program of
twisted holography, which is growing rapidly at the moment. (The interested reader might
track the papers that cite those we have mentioned.) Eager’s suggestion was a natural
variation on this theme but it (seems to) involve physical ideas and methods that have not
(yet) played a large role in Costello’s program.

7.3. A remark relating to homological projective duality. A standard maneuver
used in physics is compactification: given a field theory T in n dimensions, one takes
compact (n-k)-manifold N and produces a field theory TN in k dimensions by studying T

on manifolds of the form N × Σ, where Σ is k-dimensional. One then considers the push
forward of the theory along the projection map N × Σ → Σ, to obtain a theory along Σ.
(A close cousin is dimensional reduction, where one restricts to solutions of the classical
field theory that are constant along N .)

We now apply this maneuver to holomorphic Seiberg duality: by compactifying along a
Riemann surface, we should generate a conjectural equivalence between two-dimensional
field theories. As we will see, this new conjecture resembles the Hori-Tong dualities that
have led to Hori-mological mirror symmetry [Hor13; HT07; RS19].

Consider a holomorphic theory defined on C× × C× and push forward along the map ρ :

C× × C× → R>0 × R>0 that sends (z1, z2) to (|z1|, |z2|). In other words, take the torus
compactification of the holomorphic theory. For a holomorphic factorization algebra F, the
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pushforward ρ∗F contains a locally constant factorization algebra on R2
>0
∼= R2 (in essence,

by taking the Fourier modes on the torus fibers). This locally constant factorization algebra
corresponds to an E2-algebra.28

Let’s start with holomorphic QCD and see what Seiberg duality would imply. On the
electric side, we have a two-dimensional holomorphic BF theory coupled to a complex
two-dimensional βγ system. By itself, the βγ system with target CNF yields, by torus
compactification, the topological B-model theory whose target is the formal double loop
space L2CNF . The algebra of functions of this target space is O(CNF )((z))((w)), where
z, w are formal loop parameters that we imagine as describing the winding of the two circles
we have compactified. The dimensional reduction then picks out the constant modes along
each circle, so we find a topological B-model with target CNF . Similarly, holomorphic BF
theory dimensionally-reduces to topological BF theory, which can be viewed as the B-model
with target the classifying space BGL(N). In sum, the dimensional reduction of electric
holomorphic QCD is the topological B-model with target the stack CNF /GL(N). As a
derived mapping space, the moduli of solutions is given by

(29) Map
(
R2, T ∗[1]CNF /GL(N)

)
.

Dimensional reduction of the factorization algebra of observables produces the E2 algebra
of (holomorphic) polyvector fields on the stack CNF /GL(N).

On the magnetic side the reduction is similar, except this time we must take into account
the superpotential. What results is a Landau–Ginzburg B-model whose target is the stack

(30)
(

C(F−N)F /GL(F −N)
)
× CF 2

.

The first factor comes from the reduction of the dual quarks coupled to the dual gauge
theory, and the second factor comes from the reduction of the mesons. The potential for
the Landau–Ginzburg model is precisely the potential W̌ seen in (28). This procedure
produces an E2 algebra by deforming the differential on the E2 algebra of polyvector fields
on the stack C(F−N)F /GL(F −N)×CF 2 , namely use the differential {W̌ ,−} where {−,−}
is the Schouten bracket.

Holomorphic Seiberg duality thus predicts an equivalence of two-dimensional topological
field theories, or at least of E2-algebras.

Conjecture. There is an equivalence of E2 algebras between

• the electric E2 algebra of polyvector fields on the stack CNF /GL(N), and

• the magnetic E2 algebra of polyvector fields on the stack (C(F−N)F /GL(F −N))×
CF 2 with differential {W̌ ,−}.

28Recall Section 3.3, where we compactified on a circle and then broke things up using Fourier modes. This
construction extracted an associative (E1) algebra that is a Weyl algebra of a formal loop space from a
holomorphic field theory on C×.
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This conjectured equivalence resembles Hori-Tong dualities. Note that it is often said that
Hori-Tong dualities are like Seiberg dualities! We hope that insights from the study of
these dualities — such as the deep work on homological projective duality [Kuz07; Tho18;
Per19] — might apply here, and also feed back towards holomorphic Seiberg duality.

8. Appendix: A zoo of holomorphic field theories

In this section we describe several examples of holomorphic field theories, in the style we
used for holomorphic Chern-Simons theory. Our aim here is to give a sense of how take
physical ideas and find holomorphic analogs.

In traditional physics there are a few basic types of field theories, and they can be assembled
into combinations, of which the Standard Model offers a nice example. The basic types
are29

• Scalar field theories where the fields are maps from M to a vector space V , or
natural generalizations like taking sections of a vector bundle V → M . The Higgs
boson appears as part of a scalar field theory.

• Fermionic field theories where the fields are maps from M to an odd vector space
(in the sense of supermathematics), typically a section of a spinor bundle. Such
theories are often used to describe matter, such as electron fields.

• σ-models where the fields are maps from M into a manifold X. (One can view these
as nonlinear generalizations of scalar field theories.)

• Gauge field theories where the fields are connections on a principal G-bundle over
M , with G a Lie group. The Yang–Mills theories for the electroweak and strong
forces are examples.

• Gravity theories where the fields are metrics on M , or something that similarly
controls the geometry of M . Einstein’s theory is a paradigmatic example.

The Standard Model involves the first three types, and the different fields interact in intri-
cate ways.30

There are holomorphic versions of all these basic types, and we now spell out some simple
examples.31 To give the readers — possibly a mixed audience of mathematicians and
physicists — some feel for the examples, we describe them in several ways: in terms of PDE
and action functionals but also as moduli spaces. We do not offer a thorough justification

29For the experts, we remark that we focus above on the field content that motivates or characterizes, and
mostly ignore (just for the moment!) issues like gauge transformations and the associated ghost fields.
30For instance, the scalar and fermionic fields are sections of associated bundles to the principal bundle
appearing in the gauge theory.
31See [DT98] for a pioneering and illuminating discussion of how to find such analogs, by mathemati-
cians. See Nekrasov’s thesis [Nek96] for a master physicist’s view on holomorphic field theories, before he
reconfigured our understanding of much of gauge theory.
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of the dictionary, for which see [Cos13a] for a wonderful and motivating exposition, and see
[AY23b] and [Ste23] for recent work on this topic.

For an example that mixes several types, see Section 7 where we discuss a holomorphic
analog of quantum chromodynamics (QCD), the theory that governs the strong force and
quarks.

A motivation for us to explore holomorphic field theories is that physical insights and
conjectures, such as Seiberg duality, translate into surprising predictions in the holomorphic
setting, which is typically more accessible for mathematics. (One might also hope that
progress in the holomorphic setting then feeds back useful insights to physics.)

8.0.1. Holomorphic scalar field theories. We met the standard example of a scalar field
theory in Example 2.1, where the field ϕ a smooth real-valued function on a manifold M

and the equation of motion is ∆ϕ = 0, so that the moduli space of solutions is the space of
harmonic functions on M .

A natural analogue is to have the field be a complex-valued function γ on a complex
manifold M with an equation of motion ∂γ = 0, so that the moduli space of solutions is
the space of holomorphic functions on M .

Notice that we are shifting from a second-order differential operator ∆ to first-order differ-
ential operators ∂. Reworking a theory to express its equations of motion using first-order
operators is sometimes called the first-order formalism.

We will start with M being a Riemann surface for simplicity. Consider the action functional

(31)
∫
β ∧ ∂γ

where β is a (1, 0)-form on M .Note that this action functional also imposes the equation
of motion ∂β = 0, so that β should be a holomorphic 1-form.

It should seem reasonable to view two solutions β1 and β2 as equivalent if they differ by a
∂-exact term. If one imposes this equivalence relation (a kind of “gauge symmetry”), then
one is on the path towards setting up the theory in the Batalin-Vilkovisky formalism.

Derived geometry is the mathematical version of BV formalism. From this point of view,
the moduli space of solutions for this βγ-system is the shifted cotangent bundle

T ∗[−1]Map∂(M,C) = RΓ(M,O)× RΓ(M,Ω1
hol),

where Ω1
hol is the sheaf of holomorphic one-forms.

Remark 8.1. It is possible to directly relate the usual massless scalar field theory to this
βγ-system as follows.

When M is two-dimensional, oriented and Riemannian, we can view M as equipped with
a complex structure. Every complex-valued harmonic function then decomposes as a sum
of a holomorphic and anti-holomorphic function. That is, if we complexify the scalar field
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ϕ, we can view it as a pair of fields γ and γ, where the equation of motion of γ is ∂γ = 0

and the equation of motion is ∂γ = 0. These components are sometimes called the chiral
and anti-chiral “sectors.”

The βγ-system also plays a role in superstring theory as the free field theory underlying
bosonic ghosts corresponding to worldsheet supersymmetry [Pol98, Chapter 3]. There is
likewise a complex-conjugate βγ-system encoding the antichiral sector of the free boson.
To recover the full boson, one must couple the chiral and anti-chiral sectors. See [Kap05;
GGW20] for more details. ♢

This example admits a natural generalization to an arbitrary complex manifold. The input
data is a complex manifold X of arbitrary complex dimension n, together with a holomor-
phic vector bundle V on X. (Above we took this bundle to be trivial.) Each field of the
theory consists of a pair (γ, β) where

γ ∈ Γ(X,V ) and β ∈ Ωn,n−1(X,V ∗).

The action functional is ∫
X
β ∧ ∂γ

and the equations of motion are
∂γ = 0 = ∂β.

Solutions consist of a holomorphic function γ and a holomorphic (n, n− 1)-form. We again
suggest to identify solutions to the second equation ∂β = 0 that differ by a ∂-exact form.

8.0.2. Holomorphic fermions. It is straightforward to modify the example above to allow
holomorphic super vector bundles, i.e., holomorphic Z/2-graded vector bundles.

For example, given a holomorphic vector bundle V on a complex n-fold X, let ΠV denote
the parity-reversed vector bundle, i.e., we now give V an odd grading. There is a bc system
that is the fermionic analog of the βγ system. The fields of the theory consist of a pair
(c, b) where

c ∈ Γ(X,ΠV ) and b ∈ Ωn,n−1(X,ΠV ∗).

Thus, b and c are fermionic fields. The action functional is∫
X
b ∧ ∂c,

and the equations of motion are
∂c = 0 = ∂c.

We again suggest to identify solutions to the equation ∂c = 0 that differ by a ∂-exact form.

There is another class of fermionic theories that is quite interesting as they are more fun-
damental than the previous example. Let X be a complex n-fold and L→ X a line bundle
on X such that

• n ≡ 1 mod 4 (i.e., n = 4k + 1 for some k) and
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• L is a square root of the canonical bundle L⊗2 ∼= KX .

A field is a section
ψ ∈ Ω0,2k(X,ΠL),

and the action functional is ∫
X
ψ ∧ ∂ψ.

The equation of motion for this system is simply ∂ψ = 0. To study the quantization of this
system, it is necessary to identify solutions that differ by ∂-exact terms (and identifying
identifications that differ by ∂-exact terms, etc.).

From the point of view of derived geometry, the cochain complex

Ω0,•(X,ΠL)[2k]

presents a derived super stack that should be viewed as the moduli of solutions for this
theory.

8.0.3. Holomorphic σ-models. A σ-model is a field theory whose space of fields contains a
mapping space Map(M,N). When N = R, this mapping space simply becomes functions
and so the σ-model reduces to a scalar field theory.

There is a natural generalization of the βγ system to a σ-model. Let M be a complex
d-manifold and let N be a complex n-manifold. The fields are a pair (γ, β) where

γ ∈ Map(M,N) and β ∈ Ωn,n−1(M,γ∗T ∗
N ).

Note that ∂γ lives in Ω0,1(M,γ∗TN ), a section of the pullback of the tangent bundle of the
target. The action functional is ∫

X
β ∧ ∂γ,

where we use the canonical evaluation pairing between the pullback of the tangent and
cotangent bundles of the target. The equations of motion are

∂γ = 0 = ∂β,

so that solutions consist of a holomorphic map γ : M → N and a holomorphic section β

of the pullback tangent bundle. As usual, we suggest to identify solutions to the equation
∂β = 0 that differ by a ∂-exact form.

From derived geometry point of view, the moduli space of solutions for this βγ-system is
the shifted cotangent bundle

T ∗[−1]Map∂(M,N),

where Map∂(M,N) is the derived stack of holomorphic maps M → N . This is a natural
space to study in complex geometry.

8.0.4. Holomorphic gauge theories. We have already met holomorphic Chern–Simons the-
ory, which is defined on Calabi–Yau three-folds. There is a another class of holomorphic
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gauge theories defined on any complex manifold, with no restriction on dimension and
without the need for a Calabi–Yau structure.

Let X be a complex manifold of complex dimension n. Fix a complex Lie group G and an
invariant symmetric bilinear form ⟨−,−⟩ on its Lie algebra g. Fix a holomorphic principal
G-bundle P → X. The fields consist of pairs (A,B) where

A ∈ Ω0,1(X, gP )

where gP is the adjoint bundle of P and

(32) B ∈ Ωn,n−2(X, g∗P ),

where g∗P is the coadjoint bundle of P . The action functional is

(33) S(A,B) =

∫
X
⟨B ∧ FA⟩

where FA is the curvature of the connection A. The equations of motion are

F 0,2
A = ∂A+

1

2
[A,A] = 0

∂B + [A,B] = 0.

A solution to the first equation provides a new ∂-connection

∂A = ∂P + [A,−]

on P . A solution to the second equation is a ∂A-flat (n, n − 2)-form-valued section of the
coadjoint bundle. This theory is often called holomorphic BF theory, due to the integrand
of the action functional.

Remark 8.2. Notice that this action functional resembles the βγ system, with A playing
the role of γ and B playing the role of β. One also recognizes this action functional as a
holomorphic analog of topological BF theory.

It is natural to view two connections as equivalent if they are related by a gauge transfor-
mation and to identify B-solutions that are related by a ∂A-exact term. From the point
of view of derived geometry, we thus see holomorphic BF theory as describing the moduli
space

T ∗[−1]BunG(X),

if we run over all principal bundles.

Remark 8.3. Holomorphic BF theory exhibits some interesting properties at the quantum
level, at least perturbatively. For example, in [Bud+24, §3.2] it is shown that on X = C2

the perturbative quantization of holomorphic BF theory is almost a topological field theory.
More precisely, to first-order in perturbation theory, the divergence-free component of the
stress tensor is rendered cohomologically trivial at one-loop in perturbation theory. In other
words, the quantum theory appears to be totally “invariant” under divergence-free vector
fields, although not all vector fields (as in the case of a TFT).
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It is possible to formulate holomorphic versions of higher abelian gauge theories, associated
to moduli spaces of holomorphic k-gerbes with connection, see [SW23; Wil24].

8.0.5. Interlude on holomorphic field theories as chiral sectors. Every holomorphic theory
we have introduced so far has a “kinetic term” (the quadratic term in the action functional)
that only involves ∂. Thus the linearized equations of motion always have the form ∂ϕ = 0,
so that they manifestly relate to holomorphic functions (or sections). There are, however,
holomorphic theories with a different flavor.

We start with complex dimension 1. The usual scalar field theory can be written as∫
Σ
ϕ ∧ ∂∂ϕ,

where Σ is a Riemann surface. Using integration by parts, one can use instead the action
functional ∫

Σ
∂ϕ ∧ ∂ϕ.

This theory is not holomorphic, but we can force it to be holomorphic by demanding that
∂ϕ = 0. Importantly, this constraint is not an equation of motion. When we impose this
constraint, we can rewrite the action functional in terms of the (1, 0)-form α ∈ Ω1,0(Σ) as

(34)
∫
Σ
α ∧ ∂(∂−1α),

where α plays the role of ∂ϕ. In this theory the kinetic term is the whole action, and it
has a rather different flavor from the examples we have seen so far.32 One might call this
the chiral sector of the free scalar theory, as it consists of the complex-valued scalar fields
satisfying a “chiral” constraint.

There is a higher-dimensional analog of the chiral sector of the scalar field. Let X be
a complex manifold of dimension 2n + 1, i.e., odd. The fields are the (n + 1, n)-forms
α ∈ Ωn+1,n(X) that satisfy the constraint

(35) ∂α = 0.

(When n = 0 and X is simply a Riemann surface, this constraint is automatic.) The action
functional is

∫
X α∂(∂−1α), the same as (34). Generally, this theory is the holomorphic part

of a higher-form scalar theory, with action

(36)
∫
X
∥C∥2 dvol =

∫
X
dC ∧ ⋆dC,

where C ∈ Ω2n+1(X). For more details we refer to [GRW22].

The reader may (and should) be concerned with the apparent “non-local” form of the action
functional in (34). This can be made rigorous by cohomologically resolving the condition
that α be ∂-closed, rather than strictly imposing the constraint [CL12]. The essential bit

32This action functional is a precursor to the “holomorphic gravity” theory we meet next, known as Kodaira–
Spencer theory.
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is that the sheaf of holomorphic differentials is equipped with a (shifted) Poisson bivector
essentially given by the holomorphic de Rham operator ∂ : OΣ → Ω1

Σ.

8.0.6. Holomorphic “gravity”. Any theory of gravity involves, in part, metric structure on
a given manifold, so that solutions to the equations of motion produce metrics satisfying a
PDE. For a perturbative gravity theory, one studies deformations of some metric structure
on a manifold. There is a holomorphic avatar of this situation: deformations of complex
structure. The first appearance of such a theory was motivated by topological string theory
and involves complex structures on Calabi–Yau threefolds [Ber+94]. It is known Kodaira–
Spencer gravity or the Kodaira-Spencer field theory, due to its relationship with deformation
of complex structures.33 It has been pursued mathematically by Costello and Li as an
approach to the quantum higher genus B-model, starting with [CL12] and continuing in a
series of papers by Costello and Li. In these works, the authors also provide a generalization
of the theory that makes sense in any complex dimension; here we focus just on the most
familiar three-dimensional version.

Let X be a complex threefold equipped with a Calabi–Yau structure; we denote by Ω the
holomorphic volume form. The primary field of Kodaira-Spencer theory is

(37) µ ∈ Ω0,1(X,TX),

a (0, 1)-form on X with values in the holomorphic tangent bundle TX . A constraint is
imposed on these sections: we assume that µ preserve the holomorphic volume form Ω,
meaning

divΩ(µ) = 0,

i.e., its divergence vanishes. In short, the fields are divergence-free vector fields. The
classical equation of motion is

(38) ∂µ+
1

2
[µ, µ]SN = 0,

where [−,−]SN denotes here the Schouten–Nijenhuis bracket.34 The reader might recognize
this equation as the Maurer–Cartan equation controlling deformations of complex structure
∂ ⇝ ∂ + µ. Formulating the action functional to obtain this equation of motion is a little
involved, and we refer to [CL12] for a systematic discussion.

Remark 8.4. The kinetic term of this theory has the form∫
X
Ω ∧

[
Ω ∨

(
1

2
µ∂∂−1µ

)]
and hence resembles the chiral sector of the scalar, which we just discussed in the preceding
example.
33Kodaira and Spencer’s work was an important initial clue in the relationship between deformation theory
and dg Lie algebras.
34On vector fields, [−,−]SN is simply the Lie bracket, and it is the natural multilinear extension to polyvec-
tor fields.
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