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ABSTRACT. We show that the action of residual supersymmetries in holomorphic-
topological twists of N = 2 theories in three dimensions naturally ex-
tends to the action of certain infinite dimensional Lie superalgebras. We
demonstrate this in a range of examples, including N = 4 Yang-Mills
theories and superconformal Chern-Simons theories, describing how the
symmetries are implemented at the level of local operators.
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1. INTRODUCTION

The utility of symmetry is a recurring theme in the study of quantum
field theories. In many situations where exact computations are possi-
ble, their existence is owed to the presence of a nonmanifest infinite di-
mensional symmetry - the enhancement of conformal symmetries in two-
dimensional conformal field theory is perhaps the most well-known illus-
tration of this paradigm. In this paper, we show that supersymmetric field
theories in three-dimensions admit such a symmetry enhancement, after
performing a holomorphic-topological twist.

Twisting refers to a localization or fixed-point procedure for supersym-
metric field theories, whereby one considers the invariants of a theory with
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respect to a square-zero supercharge Q. Operationally, this is accomplished
by modifying the BRST differential of the theory by Q. Local operators
in the cohomology of the modified BRST differential are some fractionally
BPS operators and will be such that their correlation functions are killed
by those infinitessimal translations in the image of Q. More invariantly,
the image of bracketing by Q defines a transversely-holomorphic-foliation
(THF) and the twist is a simpler theory where all correlation functions are
constant along the leaves.

Whenever a theory admits a twist, it admits a minimal, or holomorphic-
topological (HT) twist, where the rank of the THF is minimal, and a max-
imal amount of information about the original theory is retained. More
commonly studied topological twists arise as further deformations of an
HT twist. In three-dimensions, HT twists exist given N = 2 supersymme-
try, and the result is a theory that can be placed on THF 3-manifolds locally
modeled on C×R.

A twist of any supersymmetric field theory will always retain an action
of the commutant of the supercharge used to twist. We show in three-
dimensional examples that the action of this commutant, a priori a finite
dimensional subalgebra of the supersymmetry algebra, extends to the ac-
tion of an infinite dimensional algebra. An analogous enhancement was
studied in [1] for the minimal twist of four-dimensional supersymmetric
field theories.

Explicitly, in Section 2 we show that for a general class of three-dimensional
N = 2 theories that upon performing the HT twist the resulting theory lo-
cally on C×R shares the same symmetries of a chiral CFT on C, namely
holomorphic vector fields along C.1 Global symmetries present in the three-
dimensional supersymmetric theory receive a similar enhancement. For
example, if a three-dimensional theory is equipped with a flavor symmetry
by some group H then locally on C×R the HT twist is equipped with an
infinitesimal symmetry by the Lie algebra of holomorphic functions on C

with values in h.

In conformal field theory, the symmetry by the algebra of holomorphic
vector fields is further extended to an action of the Virasoro algebra, which
is a central extension of holomorphic vector fields on the punctured plane
C×. In the HT twist of a three-dimensional supersymmetric theory there
is a similar phenomenon. Instead of holomorphic vector fields on C×, this
further enhanced algebra is an extension of the (derived) vector fields on
punctured three-dimensional space C×R− {0} which are constant along
the leaves of the standard THF. We briefly elaborate on this phenomenon

1On a more general THF, one should consider vector fields which are constant along the
leaves; in this simple split case this is precisely the holomorphic vector fields on C.
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in Section 2.3. Following the analogy with conformal field theory, we point
out that the method of descent leads to a three-dimensional version of a
vertex algebra which the first and third author have developed mathemat-
ically in [2]. We will further pursue this point of view in more supersym-
metric examples in a companion paper [3].

Any theory with N ≥ 2 supersymmetry can be thought of as a theory
with N = 2 supersymmetry so that its HT twist may be considered and
its enhanced symmetries examined. We begin doing so in Section 3, with
the example of N = 4 Yang-Mills theories, and we find that the above en-
hancement to holomorphic vector fields on C gets enhanced yet further to
the positive part of the N = 2 Virasoro algebra. We then turn to under-
standing further deformations of N = 4 theories from the point of view
of the enhanced symmetry algebras present in the HT twist. This includes
the A and B twists, studied extensively in the context of three-dimensional
mirror symmetry, as well as Ω-background deformations.

However, as the odd part of the enhanced symmetry algebra is infinite
dimensional, there are many more deformations that can be considered.
We highlight one family of such deformations, which generalize the Ω-
backgrounds in that they localize the HT twisted theory to a n-th order
neighborhood of {0}× ⊂ C ×R. Finally, we discuss how an involution
of the supersymmetry algebra that exchanges the A and B twists extends
to the entire infinite-dimensional enhanced symmetry algebra. This in-
volution can be viewed as part of the basic parameter-matching of three-
dimensional mirror symmetry, and its extension suggests interesting gen-
eralizations.

In Section 4 we turn our attention to superconformal Chern-Simons-
matter theories, beginning with the N = 3 theories found separately by
Zupnik-Khetselius and Kao-Lee [4, 5]; see also [6, 7]. We find that the HT
twist of such theories admits an action of the positive modes of the N = 1
Virasoro algebra. We then progressively constrain these theories to increase
the amount of supersymmetry, cf. [8]: there are the N = 4 theories of
Gaiotto-Witten [9] as well as their generalizations including twisted hyper-
multiplets due to Hosomichi-Lee-Lee-Lee-Park [10], where we again find
the positive modes of the N = 2 Virasoro algebra. The N = 5 and 6 theories
of Hosomichi-Lee-Lee-Lee-Park [11] come next, and we find the positive
modes of the N = 3 and big N = 4 Virasoro algebras, respectively.

Most strikingly, we find that in theories with N = 8 supersymmetry, the
HT twist has a symmetry by the exceptional Lie superalgebra E(1|6) which
appears in Kac’s classification of infinite dimensional linearly compact Lie
superalgebras [12]. This same exceptional Lie superalgebra was found by
the last two authors as an asymptotic symmetry of a twisted version of
the AdS4 × S7 background of eleven-dimensional supergravity [13]. We
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N = k sconfN=k (sconfN=k)
QHT aN=k fN=k

N = 2 osp(2|4) sl(2) vir≥0 h⊗O(C)
N = 3 osp(3|4) osp(1|2) vir≥0

N=1 −
N = 4 osp(4|4) osp(2|2) vir≥0

N=2 h⊗O(C1|1)
N = 5 osp(5|4) osp(3|2) vir≥0

N=3 −
N = 6 osp(6|4) osp(4|2) K′4

≥0 −
N = 8 osp(8|4) osp(6|2) E(1|6) = CK≥0

6 −
TABLE 1.1. Symmetry enhancement for HT twists of three-
dimensional N = k theories on C × R. The right hand
column denotes the enhanced flavor symmetry algebra of
a three-dimensional N = k theory with flavor symmetry
group H and Lie algebra h.

discuss two examples of an enhancement by E(1|6): the BLG theory [14,
15, 16] and the rank 1 ABJM theory at levels k = 1, 2 [17, 18]. While in
the former example, the presence of N = 8 supersymmetry is visible from
the Lagrangian, the latter example has N = 8 supersymmetry due to a
nonperturbative effect, and accordingly, currents realizing the enhanced
symmetry involve monopoles.

This last series of examples serves as an illustration of how the HT twist
can be used to diagnose supersymmetry enhancements. Namely, if the ex-
pected action of holomorphic vector fields in the HT twist is extended to
(e.g.) the positive part of the N = 2 Virasoro algebra then this is a good
indication that the theory has (or flows to a theory with) N = 4 supersym-
metry. We note that this enhancement is necessary but not sufficient: the
HT twist of a free N = 2 chiral multiplet (or multiplet copies thereof) has
this symmetry, cf. Section 2.4.4 of [3], but a free chiral certainly doesn’t
have N = 4 supersymmetry.

We point out that while our arguments for enhanced symmetries of HT
twists of theories with N ≥ 2 symmetry are classical, the statements can be
interpreted at the quantum level (at least perturbatively). Indeed, one of the
main results of [19] is that symmetries of holomorphic-topological theories
on Cn ×Rm, m ≥ 1 are non-anomalous to one-loop in perturbation theory.
Since the HT twist of the supersymmetric theories we study are all exact
at one-loop, we can apply this result to the case n = m = 1 to obtain the
quantum version of the statements in this paper.

A summary of enhanced symmetry algebras present in the HT twist is
given in Table 1.1. In this table we choose to highlight how the twist of the
superconformal algebra is enhanced.
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2. TWISTED THREE-DIMENSIONAL SUPERSYMMETRY

In this section we review and introduce the essential ingredients of our
approach to deforming the holomorphic-topological (HT) twist of three-
dimensional N = 2 theories to topological theories following [20, 21].

2.1. Twisted formalism for three-dimensional N = 2 theories. We begin
by discussing the essential features of the twisted formalism of loc. cit. The
utility of this twisted formalism is to dramatically simplify the field content
of the theory without losing any of the derived structures admitted by local
and extended operators, e.g., higher operations obtained by descent.

2.1.1. Twisting. The starting point for us is three-dimensional supersym-
metry. In Euclidean signature, the complexified three-dimensional N = k
supersymmetry algebra is the Lie superalgebra whose underlying super
vector space is

(2.1.1) C3 ⊕ΠS⊗W

where S is the two-dimensional irreducible spin representation for so(3; C)
and W is a k-dimensional vector space equipped with a bilinear form. The
nontrivial Lie bracket is determined by the unique so(3; C) invariant bilin-
ear form S× S→ C together with the bilinear form on W.

In this section we will be concerned with the case of N = 2 supersym-
metry. In this case, the algebra admits an R-symmetry by the group U(1)R
which acts on W with weights ±1 with respect to a chosen orthogonal ba-
sis. In such a basis, the algebra has four odd generators Qα, Qα, α = ±,
with super bracket

(2.1.2) [Qα, Qβ] = (σµ)αβPµ ,
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where (σµ)α
β are the Pauli matrices and Pµ, µ = 1, 2, 3 generate infinitesi-

mal translations of three-dimensional Euclidean space.2 The R-symmetry
assigns Qα, Qα weights −1, 1 respectively.

Up to spacetime symmetries and R-symmetry rotations, there is a unique
nilpotent supercharge in this algebra and hence twist [22, 23], which we
take to be

(2.1.3) QHT = Q+.

If we choose coordinates on Euclidean space R3 = Cz,z ×Rt as

(2.1.4) z = x1 + ix2, t = x3,

the non-trivial brackets involving QHT are given by

(2.1.5) [QHT, Qz] = Pz [QHT, Qt] = Pt ,

where Qz = 1
2 Q+ and Qt = −Q−. Thus, the cohomology with respect to

QHT will behave holomorphically on (z, z̄) and topologically in the coor-
dinate t. For this reason, a twist by this element is called a “holomorphic-
topological” (HT) twist. It is sometimes called the “holomorphic twist,” cf.
[21].

The QHT twist is compatible on three-dimensional manifolds that locally
admit a coordinatization of the form Cz,z ×Rt (or Cz,z ×Rt≥0). More pre-
cisely, the N = 2 theories we will be interested in preserve the full U(1)R
R-symmetry. With only a U(1)R R-symmetry, it is not possible to define the
QHT twist on an arbitrary three-manifold. Instead, we can work on a three-
manifold compatible with reduction of the Lorentz group to the subgroup
Spin(2)E ⊂ SU(2)E preserving vectors tangent to C. The interiors of such
manifolds locally take the form Cz,z ×Rt and transition functions between
patches Cz,z ×Rt and Cz′,z′ ×Rt′ are of the form

(2.1.6) z→ z′(z) z→ z′(z) t→ t′(z, z, t).

Boundaries are identical, but instead are modeled on Cz,z×Rt≥0. Such data
equips the three-manifold with a transverse holomorphic foliation (THF).

With respect to the subgroup Spin(2)E, the supercharges Q±, Q± have
spin J0 = ± 1

2 . The twisting homomorphism, simply amounts to working
with respect to the “twisted spin” Spin(2)E′ generated by J given by

(2.1.7) J = 1
2 R− J0.

With this choice, the supercharge QHT has twisted spin J = 0 and U(1)R R-
charge R = 1. Similarly, the supercharges Qz and Qt have U(1)R R-charge
R = −1 and twisted spins J = −1 and J = 0, respectively.

2Spinor indices are raised and lowered using the Levi-Civita symbol as χα = εαβχβ and
χβ = χαεαβ, where ε+− = ε+− = 1.
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2.1.2. BV-BRST and twisted superfields. In the following sections we will be
interested in N = 2 theories of vector multiplets coupled to matter fields
transforming as chiral superfields. We will assume that these theories are
equipped with an R-symmetry by the group U(1). See, e.g., [24] for a re-
view of the untwisted N = 2 theories. Here, we focus on the description
of HT-twisted N = 2 Chern-Simons–matter theories in [21, 20], which uses
the Batalin-Vilkovisky (BV) formalism [25, 26].

The data of a three-dimensional N = 2 Chern-Simons–matter theory is
the following:

• A compact gauge group GR.
• A unitary representation V of GR, a GR-invariant superpotential

W : V → C of R-charge 2, and a collection of Chern-Simons levels k.

We assume that the matter representation V decomposes as V =
⊕

r V(r),
where the R-symmetry U(1)R acts by weight r on V(r). Denote by gR =
Lie(GR) the (real) Lie algebra of GR, G the complexification of GR, and
g = Lie(G) its (complex) Lie algebra.

Using the notation of [21], we define the graded vector space

(2.1.8) Ω(j),• := C∞(R3)[dt, dz]dzj.

We view dt, dz as elements of cohomological degree +1 and dzj is cohomo-
logical degree zero. Although we work locally for now, there is a similar
complex defined for any three-manifold equipped with a THF, see section
2.3. There is a natural (wedge) product ∧ : Ω(j),i ⊗Ω(j′),i′ → Ω(j+j′),i+i′ ; in
particular when j = 0 this endows Ω(0),• with the structure of a graded
commutative algebra. We also utilize an integration map

∫
: Ω

(1),2
c → C,

where the subscript denotes forms with compact support. There is natural
differential operator

(2.1.9) d′ = ∂t dt + ∂z dz : Ω(j),• → Ω(j),•+1

of cohomological degree 1, square-zero, and of (twisted) spin J = 0. When
j = 0 this differential endows Ω(0),• with the structure of a commutative dg
algebra. We will also utilize the differential operator

(2.1.10) ∂ = dz
∂

∂z
: Ω(j),• → Ω(j+1),•

which is of cohomological degree 0 and (twisted) spin J = 1.

The twisted formalism of this class of theories includes the following
fields QHT-closed fields:
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• two components of the gauge field organized into the fermionic
field

A = At dt + Az dz ∈ Ω(0),1 ⊗ g,
with At complexified by the real scalar σ of the N = 2 vector multi-
plet.
• a coadjoint-valued bosonic field

B = Bz dz ∈ Ω(1),0 ⊗ g∗,

identified in the physical theory with the curvature 1
g2 Fzt up to Chern-

Simons terms.
• a V-valued bosonic field

φ = ∑
r

φr dzr/2 ∈
⊕

r
Ω(r/2),0 ⊗V(r),

identified with the bosons in the chiral superfields after applying
the twisting homomorphism turning Spin(2)E scalars of R-charge
R = r to sections of Kr/2

C
.

• a V∗-valued one-form valued field

η = ∑
r

(
ηr,t dt + ηr,z dz

)
dz1−r/2 ∈

⊕
r

Ω(1−r/2),1 ⊗ (V(r))∗,

whose components are identified with the covariant derivatives of
the conjugate scalar ηt ∝ Dzφ, ηz ∝ Dtφ.

The components of A and B have R-charge 0, φr has R-charge r, and ηr has
R-charge−r. In the BV formalism, we further include anti-fields A∗, B∗, φ∗, η∗

for the fields A, B, φ, η and a differential QBV schematically given by
(2.1.11)

QBV(anti-field) = EOM for field QBV(field) = EOM for anti-field .

The action for our twisted theory takes the form

(2.1.12) S =
∫

BF′(A) + η d′Aφ + 1
2 (η
∗)2∂2W + k

4π Tr(A∂A),

where d′A = d′ + A = (∂t + At)dt + (∂z + Az)dz is the covariant deriv-
ative, F′(A) = d′A + A2 is the corresponding curvature. An even better
description of this variation uses the (shifted-)Poisson bracket on the space
of fields called the BV-bracket {−,−}BV and pairs fields and anti-fields as

(2.1.13) {field, anti-field}BV = δ(3) dVol

from which one identifies QBV = {−, S}BV . It is straight-forward to derive
the action of QBV from either of these descriptions. For example, the fields
transform as

(2.1.14)
QBV A = 0 QBV B = 0

QBVφ = 0 QBVη = η∗∂2W

because the only anti-field that appears explicitly in the action is η∗.
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This action has two types of redundancies, which the BV formalism ac-
counts for by including ghost fields (and their corresponding anti-fields,
aka anti-ghosts). The first is a familiar gauge redundancy, for which we in-
troduce the usual BRST ghost c (a g-valued, fermionic scalar with R-charge
R = 0: c ∈ Ω(0),0 ⊗ g), under which the fields transform as

(2.1.15)
δc A = d′Ac δcB = c · B + k

2π ∂c
δcφ = c · φ δcη = c · η

,

where c · denotes the infinitesimal action of g with parameter c. The un-
usual variation of B ensures that (for nonzero level k) 2π

k Bz, Az, At trans-
form as components of a full gauge field A that transforms as δcA = dAc,
cf. [20].

The second redundancy comes from the twisting supercharge itself. In
particular, we introduce a M∗-valued, fermionic ghost ψ = ∑r ψr dz1−r/2 ∈⊕

r Ω(1−r/2),0 ⊗ (M(r))∗ and transformations

(2.1.16)
δψ A = 0 δψB = −µ

δψφ = 0 δψη = d′Aψ + ∂2Wη
,

where µ is the moment map for the g action on the representation T∗[1]M ∼=
M∗[1]⊕M; in components it reads µa = ψm(τa)m

nφn. In the physical the-
ory, ψ can be identified with one of the fermions in the chiral multiplets,
after applying the twisting homomorphism.

There is a ghost number symmetry U(1)gh, under which the fields A, B,
φ, η have ghost number gh = 0, the anti-fields A∗, B∗, φ∗, η∗ have ghost
number gh = −1, the ghosts c, ψ have ghost number gh = 1, and the anti-
ghosts c∗, ψ∗ have ghost number gh = −2. We define the cohomological
grading U(1)C as the sum of R-charge and ghost number:

(2.1.17) C = R + gh.

It is also important to note that we are free to redefine the cohomologi-
cal grading C by mixing with other abelian symmetries of the theory, we
will make use of this freedom below. The twisted theory is thus graded by
parity (fermionic or bosonic), twisted spin (generated by J), and the coho-
mological grading (generated by C).3 Each of the variations δc and δψ is
fermionic and has cohomological grading C = 1 and twisted spin J = 0, as
desired. We denote the total transformation by

(2.1.18) Q = QBV + δc + δψ .

3We work in conventions such that parity alone determines the graded-commutativity
of observables. Indeed, the R-charge, and hence the cohomological grading, in the above
class of N = 2 theories may be non-integral.
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After introducing anti-fields, ghosts, and anti-ghosts, the above field the-
ory can be concisely repackaged in terms of “twisted superfields.” Consider
the transformations of c, A, and B∗; they are given by

(2.1.19) Qc = c2 QA = d′Ac QB∗ = c · B∗ + F′(A) .

If we define A = c + A + B∗ ∈ Ω•,(0) ⊗ g[1], where [1] denotes a shift in
cohomological degree by 1, these variations can be neatly repackaged as

(2.1.20) QA = F′(A) =
0-form

c2 +
1-form
d′Ac +

2-form
c · B∗ + F′(A).

We can similarly combine the remaining fields:

(2.1.21)

B = B + A∗ + c∗ ∈ Ω(1),• ⊗ g∗

Φr = φr + η∗r + ψ∗r ∈ Ω(r/2),• ⊗V(r)

Ψr = ψr + ηr + φ∗r ∈ Ω(1−r/2),• ⊗ (V(r))∗[1]

The variation of these twisted superfields under QHT will be given below
in Eq. (2.1.24). The twisted spin J and cohomological grading C of these
twisted superfields, as well as dt, dz, dz, are collected in Table 2.1.

A B Φr Ψr dt dz dz
(J, C) (0, 1) (1, 0) ( r

2 , r) (1− r
2 , 1− r) (0, 1) (−1, 1) (1, 0)

TABLE 2.1. Twisted spin J and cohomological grading C of
the twisted superfields and differential forms dt, dz, dz in
the holomorphic-topological twist. The twisted superfields
A, B come from an N = 2 vector multiplet and Φ, Ψ come
from an N = 2 chiral multiplet with R-charge r.

As mentioned above, the desired variations arise from the BV-bracket
{−,−}BV , which pairs fields and anti-fields, via Q = {−, S}BV . In terms
of the twisted superfields, the BV-bracket is explicitly given by

(2.1.22) {A(x), B(y)}BV = {Φ(x), Ψ(y)}BV = δ(3)(x− y)dVol .

The appropriate action can be neatly expressed in terms of the above twisted
superfields as

(2.1.23) S =
∫

BF′(A) + Ψ d′AΦ + W + k
4π Tr(A∂A),

where W = W(Φ). The QHT variation of the twisted superfields is then
given by

(2.1.24)
QA =

δS
δB

= F′(A) QB =
δS
δA

= d′AB−µ+ k
2π ∂A

QΦ =
δS
δΨ

= d′AΦ QΨ =
δS
δΦ

= d′AΨ +
∂W
∂Φ

,
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where µ = µ(Φ, Ψ).

Nilpotence of Q and invariance of S under Q are equivalent to S solv-
ing the classical master equation [21]. Moreover, Q2 = 0 off-shell by con-
struction. The theories described by this twisting procedure are a (“chiral”)
deformation of the class of theories studied in [27], and their results show
that these theories have consistent quantization, i.e., it satisfies the quan-
tum master equation (at any scale).4

2.2. Spacetime and flavor symmetry enhancement. The twisted super-
fields of [21, 20] help make holomorphic-topological descent manifest; if
O is the lowest component of a twisted superfield O with QO = d′O, then
O is Q-closed and the higher form components of O describe the operators
making ∂zO, ∂tO cohomologically trivial. On the other hand, for a general
HT-twisted theory, the operator ∂zO must be realized as a surface integral
against the stress tensor:

(2.2.1) ∂zO(z, z, t) =
∮

S2
∗(Tzµ dxµ)O(z, z, t)

In the twisted formalism, the stress tensor ∗(Tzµ dxµ) can be expressed
as the 2-form component of the twisted superfield T, although one often
needs to modify the naı̈ve stress tensor obtained via a Noether procedure
on the action in Eq. (2.1.23). This (modified) stress tensor is such that QT is
d′-exact, i.e.

(2.2.2) QT = d′T ,

and hence the surface integral realization of ∂z is therefore Q-closed due to
Stokes’ theorem [21, Sec 2.2].

The (modified) stress tensor T is actually the first of an infinite tower of
conserved currents that generates an action of holomorphic vector fields
on the space of fields of our HT-twisted N = 2 theories. Explicitly, the
modified stress tensor T is given by

(2.2.3) T = ι∂z

(
− B∂A + ∑

r
(1− r

2 )Ψr∂Φr − r
2 Φr∂Ψr

)
,

where ι∂z denotes contraction with ∂z. Verifying QT = dT uses the fact that
the superpotential has R-charge 2.

It is important to note that BV-bracket with
∫

T acts on all fields as ∂z:

(2.2.4) {
∫

T,−}BV = ∂z .

4The papers [27, 19] use the machinery of the homotopy RG flow of [26] to make mathe-
matically precise statements in perturbative theory. In this paper, we will almost entirely ig-
nore these details and work at infinitely long length scales L→ ∞ to simplify the discussion.
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Equivalently, the integrated local functional
∫

T is the Hamiltionian/moment
map for the action of holomorphic translations. This is the (classical) BV
realization to the above (quantum) equation – the stress tensor T is a con-
served current that generates the action of holomorphic translations. Of
course, we can replace ∂z by a more general holomorphic vector field V =
V(z)∂z to get yet more currents

(2.2.5) TV = ιV

(
− B∂A + ∑

r
(1− r

2 )Ψr∂Φr − r
2 Φr∂Ψr

)
,

that serve as conserved currents realizing an action of holomorphic vector
fields on C, denoted Vect(C). A straightforward computation verifies that
the action of V is encoded by the Lie derivative of forms along V:

(2.2.6)

V ·A = {
∫

TV , A}BV = V∂zA

V · B = {
∫

TV , B}BV = V∂zB + (∂zV)B

V ·Φr = {
∫

TV , Φr}BV = V∂zΦr +
r
2 (∂zV)Φr

V ·Ψr = {
∫

TV , Ψr}BV = V∂zΨr + (1− r
2 )(∂zV)Ψr

We see that the holomorphic translation invariance of the underlying
theory becomes enhanced upon taking the HT twist.

2.2.1 Proposition. The HT twist of a three-dimensional N = 2 Chern-Simons–
matter theory on C×R is equipped with a symmetry by the Lie algebra of holo-
morphic vector fields Vecthol(C).

It should be emphasized that this statement holds at the level of quanti-
zation. Indeed, in [19] it was shown that there are no one-loop anomalies
to quantizing symmetries in the THF background C×R. This, combined
with the fact that the HT twist of any three-dimensional N = 2 theory is
one-loop exact gives the statement above at the quantum level.

Proof. It suffices to show

(1) {
∫

TV , S}BV = 0 for all holomorphic vector fields V, and
(2) {

∫
TV ,

∫
TV′}BV =

∫
T−[V,V′] for all holomorphic vector fields V, V ′.

First, note that TV = VT. Next, since QT = d′T (and using that V =
V(z)∂z is holomorphic) we have

(2.2.7) QTV = d′TV

Assertion (1) follows by noting Q = {−, S}BV .
12



The proof of (2) is by direct computation. We have

V ·
∫

TV′ = −
∫

V ′
(
(V · B)∂zA + B∂z(V ·A)

)
+ ∑

r
(1− r

2 )
∫

V ′
(
(V ·Ψ)∂zΦ + Ψ∂z(V ·Φ)

)
−∑

r

r
2

∫
V ′
(
(V ·Φ)∂zΨ + Φ∂z(V ·Ψ)

)
=
∫

2V ′(∂zV)T + V ′V∂zT =
∫

T(V′∂zV−V∂zV′)∂z

where we have used integration by parts in the last equality. �

We conjecture that the HT twist of any three-dimensional N = 2 the-
ory equipped with R-symmetry has such an enhanced symmetry by holo-
morphic vector fields. For those theories which are superconformal we
have some strong evidence for this. Indeed, the superconformal algebra
for N = 2 supersymmetry is the orthosymplectic group osp(2|4). The HT
supercharge QHT is a particular odd element of this Lie superalgebra and
its commutant is exactly sl(2). Enhancement for superconformal algebra
asserts that the holomorphic vector fields ∂z, z∂z, z2∂z generating this sl(2)
can be prolongated to an action of all holomorphic vector fields.

There are other symmetries also enjoy such an enhancement. Consider
a flavor symmetry of the chiral multiplets by a Lie group H with com-
plexified Lie algebra h. We assume the flavor symmetry acts linearly (al-
though this can likely be relaxed without issue) with representation ma-
trices (υi)

n
m; these matrices commute with the action of gauge symmetry,

[τa, υi] = 0; and this action preserves the superpotential (υiΦ)n∂Φn W = 0.
With this, it is straightforward to check that the conserved currents realiz-
ing the action of U = Uiui ∈ h = Lie(H) (the ui are a basis of f) are given by
JU = Ui(ΨυiΦ). Just as above, we can allow the coefficients Ui = Ui(z) to
depend on the holomorphic coordinate z without issue and find an action
of Q given by

(2.2.8) QJU = d′JU

and an action of holomorphic vector fields given by

(2.2.9) V∂z ·
∫

JU =
∫

JV∂zU

We conclude that the twisted theory admits a natural action of holomorphic
flavor transformations f⊗OC, acting on the matter fields as

(2.2.10)
U ·Φ = {

∫
JU , Φ}BV = Ui(υiΦ)

U ·Ψ = {
∫

JU , Ψ}BV = −Ui(Ψυi)

The following can be proved in an analogous way as in the case of holo-
morphic vector fields.

13



2.2.2 Proposition. Suppose that a three-dimensional N = 2 theory of gauged chi-
ral multiplets admits a flavor symmetry by a group H. Then the QHT-twist admits
an infinitesimal symmetry by the infinite-dimensional Lie algebra h⊗Ohol(C).

As we will see in the following sections, this holomorphic symmetry
enhancement is not restricted to bosonic symmetries which remain after
twisting. The HT twist of highly supersymmetric theories will often admit
residual fermionic symmetries coming from supercharges that commute
with the HT supercharge QHT; these too admit a holomorphic enhance-
ment.

2.3. Descent and vacuum modules. As a consequence of the symmetry
enhancement results of the previous section, we obtain that the space of
local operators in the HT twist is naturally a representation for these en-
hanced algebras.

In this section we use holomorphic-topological descent to further enlarge
such symmetry algebras to current algebras, where the currents are sup-
ported on two-spheres

(2.3.1) S2 ⊂ C×R− {0}.
This situation is reminiscent of a familiar one in two-dimensional confor-
mal field theory where the state-operator correspondence endows local op-
erators with an action of the algebra of S1-modes of the theory. In [2] the
first and third authors developed the resulting algebraic structure and have
deemed them raviolo vertex algebras due to their parallels with the ordinary
theory of vertex algebras. Another approach used in [28, 29, 21], equivalent
to the theory of raviolo vertex algebras, is based on 1-shifted Poisson vertex
algebras where the descent bracket is a shifted version of a λ-bracket. We
will not use the full details of raviolo vertex algebras in this note, but we
briefly expound on the structure from the point of view of descent.

If the three-dimensional theory were fully topological then by Witten’s
topological descent the spherical modes would be labeled by the de Rham
cohomology of the two-sphere H•(S2) ' C⊕C[−2]. As an example, con-
sider the following free topological theory which consists of fields

(2.3.2) X ∈ Ω•(R3)⊗V, Y ∈ Ω•(R3)⊗V∗[2]

where the free action is
∫
YdX. This is simply the Rozansky–Witten AKSZ

model with target T∗[2]V; it is a twist of the three-dimensional N = 4 hy-
permultiplet which we will further consider in the next section. The local
operators consist of polynomial expressions in the constant, 0-form modes
of the fields X,Y, denoted X, Y. As an algebra this is

(2.3.3) O(T∗[2]V) = Sym(V∗X ⊕VY[−2]).
14



Additionally, topological descent equips this algebra with a degree−2 Pois-
son bracket {−,−}top determined by

(2.3.4) {X, Y}top = 1.

There is a flavor symmetry by the Lie algebra gl(V) of matrices acting on
V. This algebra is a representation for gl(V) in the obvious way. Via topo-
logical descent, this symmetry is enhanced to a symmetry by the graded
Lie algebra

(2.3.5) gl(V)⊗ H•(S2) = gl(V)n gl(V)[−2].

The currents for the original gl(V) symmetry are given by

(2.3.6) −
∮

S2
YAX, A ∈ gl(V).

Via the shifted descent bracket, this current acts on a local operator O through
the quadratic local operator MA = −Y(AX):

(2.3.7) A ∈ gl(V) : O 7→ {MA, O}top.

The currents for the additional copy of gl(V)[−2] sitting in cohomological
degree +2 are

(2.3.8) −
∮

S2
YAX dvolS2 , A ∈ gl(V)[−2],

where dvolS2 stands for the volume element of the two-sphere. Notice that
such currents only depend on the lowest form components of Y, X, which
reveals that its cohomological degree is +2 as expected. At the level of local
operators this acts simply by inserting the quadratic local operator MB:

(2.3.9) B ∈ gl(V)[−2] : O 7→ MBO.

Notice that if B, B′ ∈ gl(V)[−2] then the relation [B, B′] = 0 holds since the
algebra of local operators is commutative in cohomology.

In the situation of the HT twist, the currents must be sensitive to the THF
structure on C×R. To obtain algebraic models for the enhanced symmetry
algebras we will consider punctured affine space instead of a two-sphere
of a fixed radius; of course these spaces are homotopy equivalent, so in
the topological situation it does not change anything. Being a submanifold
of C×R, once-punctured affine space is naturally equipped with a THF
structure. In particular we can consider the commutative dg algebras

(2.3.10) A(j),• def
= Ω(j),•(C×R− {0})

where, in practice, j ∈ 1
2 Z. This complex is equipped with the differen-

tial d′ which is the restriction of the standard one on C × R defined by
d′ = dz̄∂z̄ + dt∂t. When j = 0 the degree zero part of this complex simply
consists of smooth functions on C×R− {0} = R3 − {0} and the zeroth
cohomology is the algebra of smooth functions which are flat along the fo-
liation determined by the THF structure.
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As a remark, we point out that the ordinary de Rham complex of C×
R− {0} can be written in terms of the complexes above as

(2.3.11) Ω•(C×R− {0}) = A(0),• ∂−→ A(1),•[−1]

where ∂ is locally given by ∂ = dz∂z. From this we observe parallels with
the usual Hodge decomposition of the de Rham cohomology of P1 using its
complex structure. The complexes we consider here are distinct from the
usual Dolbeault complexes of P1 as we utilize the inherented THF structure
on S2 as a submanifold of C×R rather than its complex structure.

Any S2 current can be written as an observable on the fields of a three-
dimensional N = 2 theory evaluated on C×R− {0}. The complex A(0),•

is equipped with a version of the residue pairing which is simply given by
integration along any two-sphere

(2.3.12)
∮

S2
α(z, t) ∧ dz, α ∈ A(0),1

Note that this expression is only nonzero when α is a one-form in the THF
complex. There is a particular one-form that we denote by

(2.3.13) ω = c
2z̄dt− tdz̄

r3 ∈ A(0),1

where the constant c is normalized so that
∮

S2 ω ∧ dz = 1. The element
ω is easily seen to be d′-closed and hence represents a cohomology class
(see below). The two-form ω ∧ dz is an integral kernel for the distribu-
tional operator (d′)−1; therefore it plays the role of the propagator for an
HT twisted theory. In [19] the third author used a regularized version of
this propagator to study renormalization for HT twisted theories.

The d′-cohomology H(j),•(C×R− {0}) of the complex A(j),• is explicit
to describe. When r = 0 the cohomology is concentrated in degrees zero
and one. In degree zero there is an isomorphism

(2.3.14) H(0),0(C×R− {0}) ' Ohol(C)

which is induced by pulling back holomorphic functions along C × R −
{0} → C. In degree one there is a dense embedding

(2.3.15) C[∂z]ω ↪→ H(0),1(C×R− {0})

where ω is as in (2.3.13). The vector space C[∂z] is a module over Ohol(C)
by the rule that zn · ∂m

z ω = m!
(m−n)! ∂

m−n
z ω if m ≥ n and zero otherwise.

Now, consider a supersymmetric flavor symmetry by some group H on a
three-dimensional N = 2 theory. In the previous section we have seen how
the infinitesimal symmetry is enhanced from the Lie algebra h = Lie(H) to
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the current algebra h⊗ Ohol(C). Holomorphic-topological descent further
enhances this symmetry to the dg Lie algebra

(2.3.16) h⊗A(0),•.

The differential is idh⊗d′ and the bracket is determined by the bracket on h

together with the product on A(0),•. This is the three-dimensional N = 2 HT
twisted analog of the mode algebra h[z, z−1] in a chiral CFT. In cohomology
we obtain a symmetry by the graded Lie algebra

(2.3.17) h⊗ H(0),•(C×R− {0}) ' h⊗Ohol(C)n h⊗C[∂z]ω[−1].

The semi-direct product utilizes the Ohol(C)-module structure on C[∂z] de-
fined above.

Denote the space of local operators in the HT twist of a three-dimensional
N = 2 theory by Ops. Such local operators form a commutative algebra
and the cohomology is equipped with a shifted λ-bracket of cohomological
degree −1 that we denote by {{−,−}}(n), n ≥ 0 [28, 21]. Explicitly, the
bracket between two local operators is defined by

(2.3.18) {{O,O′ }}(n)(w, s) def
=
∮

S2
zndz Õ(1)(z, t)O′(w, t)

where O(1)(z, t) ∈ A(0),1 ⊗ Ops is the one-form holomorphic-topological
descendant of the local operator O(z, t).

For a concrete example, we consider the the HT twist of the theory of
a free chiral multiplet with values in a vector space V (we will not need
to be specific about R-symmetry in what follows). The cohomology of the
algebra of local operators Ops is freely generated by even symbols ∂n

z φ of
cohomological degree zero and odd symbols ∂m

z ψ of cohomological degree
+1 where n, m ≥ 0.

As in the topological example above, we contemplate the flavor symme-
try by the Lie algebra gl(V) and its enhancement to
(2.3.19)
gl(V)⊗ H(0),•(C×R− {0}) = gl(V)⊗Ohol(C)n gl(V)⊗C[∂z]ω[−1].

We have already pointed out how the degree zero cohomology classes A⊗
zn ∈ gl(V)⊗Ohol(C) give rise to currents

(2.3.20)
∮

S2
zndz ψAφ.

At the level of local operators, such elements act through the HT λ-bracket

(2.3.21) A⊗ zn : O 7→ {{ψAφ, O }}(n) .

Next, consider the classes in (2.3.19) of degree +1 which all have the form
B⊗ ∂n

z ω. In the twist of the free chiral multiplet, the currents associated to
17



such classes have the form

(2.3.22)
∮

S2
∂n

z ωdz ψAφ.

At the level of local operators, such elements act via ‘creation’ operators as

(2.3.23) B⊗ ∂n
z ω : O 7→ ∂n

z (ψBφ)O.

A totally analogous symmetry enhancement holds for the (twisted) su-
perconformal algebra. Above, we have seen that the HT twist of a three-
dimensional superconformal theory has enhanced symmetry by the Lie al-
gebra Vecthol(C). This further enhances to a symmetry by the following dg
Lie algebra. Let Thol denote the complex rank one bundle on C×R locally
spanned by the vector field ∂z. The sheaf of sections of Thol which are holo-
morphic in the z-direction (closed for the d′-operator) is endowed with a
Lie bracket, and globally on C ×R this recovers the Lie algebra of holo-
morphic vector fields. Further, the complex of sheaves Ω(−1),• on C×R is
a free resolution of this sheaf and can be given the structure of a sheaf of dg
Lie algebras. The dg Lie algebra

(2.3.24) A(−1),• def
= Ω(−1),•(C×R− {0})

is the desired enhancement of the Lie algebra Vecthol(C). Indeed, the ze-
roth cohomology of this complex is exactly the Lie algebra of holomorphic
vector fields. The first cohomology is nontrivial and generated by classes
of the form (∂n

z ω)∂z where n ≥ 0. The higher cohomology vanish. The dg
Lie algebra A(−1),• is the twisted three-dimensional analog of the Virasoro
algebra (really the Witt algebra, as we have not included a central exten-
sion).

We conclude this subsection with a remark that this discussion applies at
the level of cohomology. In the case of a flavor symmetry labeled by h, we
have seen how to construct in QHT-cohomology, a symmetry by the graded
Lie algebra (2.3.17). This cohomology loses information that is present at
the cochain level. Indeed, there are higher L∞ operations present in coho-
mology reflecting the fact that the dg Lie algebra h⊗ A(0),• is not formal.
Consequently, the cohomology of local operators in the HT-twist will be
enriched to L∞ modules for this L∞ algebra. We do not characterize this
structure here.

2.4. The perspective of factorization algebras. Finally, we remark on an-
other approach to the theory of observables for the HT twist of a three-
dimensional supersymmetric theory based on the theory of factorization
algebras. A central result in [30, 31] is that the observables of any quan-
tum field theory have the structure of a factorization algebra. Here it is
necessary that observables can be evaluated on an arbitrary open set of
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the spacetime manifold U 7→ Obs(U). For two open sets U, V which are
disjoint and lie within a bigger open set W part of the structure of a factor-
ization algebra is a sort of multiplication map

(2.4.1) Obs(U)⊗Obs(V)→ Obs(W)

which satisfies a sort of associativity axiom. We understand local operators
supported at a point (denoted Ops above) as observables supported on an
arbitrarily small open set containing the point. There are higher-ary opera-
tions, generalizing the multiplication above to arbitrary numbers of inputs
of disjoint open sets, resulting in a structure similar to that of an operad.
We refer to [30] for more precise definitions.5

In a three-dimensional topological theory the factorization algebra of ob-
servables result in a familiar operadic structure called an E3 algebra—an
algebra over the operad of little three-disks. In cohomology this recovers
the (2-shifted) topological descent bracket. Similarly, the factorization alge-
bra encoding a three-dimensional holomorphic-topological theory results
in the 1-shifted λ-bracket that we just recollected. Sometimes it is conve-
nient to work at the full level of the HT-twisted factorization algebra, which
we comment on below.

3. N = 4 YANG-MILLS GAUGE THEORIES

In this section we consider the simple example of N = 4 hypermultiplets
gauged with N = 4 vector multiplets. We assume that the hypermultiplets
transform in the complex symplectic representation R of the (complexified)
gauge group G.

The HT-twisted theory consists of an N = 2 vector multiplet (A, B),
an N = 2 adjoint-valued chiral multiplet (Φ, Λ) of R-charge 1, and an
R-valued chiral multiplet (Z, Ψ) of R-charge 1

2 . In addition, the theory
has a superpotential of the form W = − 1

2 Φa(τa)mnZmZn, where (τa)mn =

Ωml(τa)l
n = (τa)nm, i.e. the superpotential is (minus) the pairing of Φ and

the moment map ν for the G action on R. The HT-twisted action is then
given by

(3.0.1) S =
∫

BF′(A) + Λ d′AΦ + Ψ d′AZ− νΦ,

5We have only mentioned the structure of a prefactorization algebra. A factorization
algebra is one which also satisfies a gluing axiom which we will not utilize in this paper.
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and the action of QHT is given by

(3.0.2)

QA = F′(A) QB = d′AB−µ

QΦ = d′AΦ QΛ = d′AΛ− ν

QZ = d′AZ QΨ = d′AΨ−ΦZ

We note that the (modified, extended) stress tensor is given by

(3.0.3) TV = ιV

(
− B∂A + 1

2

(
Λ∂Φ−Φ∂Λ

)
+ 1

4

(
3Ψ∂Z− Z∂Ψ

))
.

3.1. Supersymmetric extension of Vect(C). The N = 4 superconformal
algebra is osp(4|4) and the HT supercharge QHT lives inside the N = 2
subalgebra osp(2|4) ⊂ osp(4|4). The HT twist of the N = 4 superconfor-
mal algebra is osp(2|2). The even part of this algebra is gl(1) × sl(2). As
in the N = 2 case, the sl(2) acts geometrically through the vector fields
∂z, z∂z, z2∂z. The gl(1) is the stabilizer of QHT in the N = 4 R-symmetry
algebra so(4). We will see explicitly how this symmetry gets enhanced to
an infinite-dimensional symmetry algebra aN=4 which turns out to be the
positive part of the N = 2 super Virasoro algebra virN=2 of type Neveu–
Schwarz.

It is straightforward to see that every model described above admits
a C× flavor symmetry under which Z transforms with weight 1 and Φ
transforms with weight −2; the current generating the (holomorphically
extended) symmetry is simply

(3.1.1) JS = S
(
ΨZ− 2ΛΦ

)
where S = S(z) need not be constant. The constant part of the bosonic sym-
metry generated by this current is the remnant of the N = 4 R-symmetry
group that preserves QHT.

In addition, there are always two local operators

(3.1.2) ΘΓ = Γ
( 1

2 Ω−1(Ψ, Ψ)− BΦ
)

Θ̃Γ̃ = Γ̃
( 1

2 Ω(Z, ∂Z) + Λ∂A
)

that generate fermionic symmetries parameterized by Γ = Γ(z) and Γ̃ =

Γ̃(z) of the HT twisted action. On the twisted superfields, we find that the
action of Γ takes the form

(3.1.3)

Γ ·A = ΓΦ Γ · B = 0
Γ ·Φ = 0 Γ ·Λ = ΓB

Γ · Z = ΓΩ−1(Ψ,−) Γ ·Ψ = 0
20



and the action of Γ̃ is given by

(3.1.4)

Γ̃ ·A = 0 Γ̃ · B = −Γ̃∂Λ− (∂Γ̃)Λ

Γ̃ ·Φ = −Γ̃∂A Γ̃ ·Λ = 0

Γ̃ · Z = 0 Γ̃ ·Ψ = Γ̃Ω(∂Z,−) + 1
2 (∂Γ̃)Ω(Z,−)

The action of V∂z on the integrals
∫

ΘΓ and
∫

Θ̃Γ̃ encodes the commuta-
tors of V∂z and Γ, Γ̃:
(3.1.5)

V∂z ·
∫

ΘΓ =
∫

Θ−V∂zΓ+ 1
2 (∂zV)Γ V∂z ·

∫
Θ̃Γ̃ =

∫
Θ̃−V∂z Γ̃+ 1

2 (∂zV)Γ̃

so that

(3.1.6) [V∂z, Γ] = V∂zΓ− 1
2 (∂zV)Γ [V∂z, Γ̃] = V∂zΓ̃− 1

2 (∂zV)Γ̃

so that Γ and Γ̃ transform as sections of K−1/2
C

. In a similar fashion, the
action of S encodes the commutators of S and Γ, Γ̃:

(3.1.7) S ·
∫

ΘΓ =
∫

Θ−2SΓ S ·
∫

Θ̃Γ̃ =
∫

Θ̃2SΓ̃

which implies

(3.1.8) [S, Γ] = 2SΓ [S, Γ̃] = −2SΓ̃

Finally, we find that action of Γ on
∫

Θ̃Γ̃ encodes the (anti)commutator of Γ
and Γ̃

(3.1.9) Γ ·
∫

Θ̃Γ̃ =
∫

T−ΓΓ̃ +
∫

J 1
4 (Γ̃∂zΓ−Γ∂z Γ̃)

corresponding to

(3.1.10) [Γ, Γ̃] =

K−1
C

=Vect(C)︷︸︸︷
(ΓΓ̃) + 1

4

OC︷ ︸︸ ︷
(Γ∂zΓ̃− Γ̃∂zΓ)

We will denote by aN=4 the algebra generated by the bosonic generators
V∂z, S together with the fermionic generators Γ, Γ̃. Putting this together,
we obtain the following result.

3.1.1 Proposition. The HT twist of a three-dimensional N = 4 theory built from
coupling an arbitrary number of vector multiplets and hypermultiplets admits a
natural action of a Lie superalgebra aN=4.

If Γ and Γ̃ are constant, so that ∂zΓ = ∂zΓ̃ = 0, we see that these two cur-
rents bracket to the constant vector field ∂z generating holomorphic transla-
tions. Indeed, the fermionic symmetries generated by these currents corre-
spond to (the holomorphic enhancement of) the supercharges that deform
the HT twist to the topological A and B twists – deforming the HT twisted
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action by
∫

Θ1 (resp.
∫

Θ̃1) results in the A twist (resp. B twist).6 The re-
maining fermionic generators in the HT twist of the N = 4 superconformal
algebra are Θz and Θ̃z.

We expect, but do not prove here, that the HT twist of a general N = 4
theory (with R-symmetry) admits an action by aN=4. For example, the di-
mensional reduction of the holomorphic twist of a theory of class S should
admit such a symmetry.

Also, note that aN=4 is the positive part (in the sense of Fourier modes)
of the chiral sector of the N = 2 super Virasoro algebra

(3.1.11) aN=4 = vir≥0
N=2 .

The action of aN=4 on an the HT twist of an arbitrary N = 4 theory im-
plies there are various deformations of the HT-twist given by square-zero
fermionic symmetries. These deformations arise adding the corresponding
term to the action, e.g. S→ S +

∫
ΘΓ. We now outline some simple cases:

• The element Γ = 1 gives the A-twist of the three-dimensional N = 4
theory as a further deformation of the HT twist and corresponds to
the supercharge Q−+̇− of the supersymmetry algebra. The A-twisted
action takes the form

(3.1.12)
SA = S +

∫
Θ1

=
∫

BF′(A) + Λ d′AΦ + Ψ d′AZ− νΦ + 1
2 Ω−1(Ψ, Ψ)− BΦ

cf. Section 4.1 of [32]. The cohomology of aN=4 with respect to this
element is trivial.
• The Γ = z is a superconformal deformation and is equivalent plac-

ing the B-twist of the original supersymmetric theory in the Ω back-
ground. The cohomology of aN=4 with respect to this element is also
trivial.
• More generally, we can consider deforming by the element Γ = zl

for l ≥ 2. The cohomology of aN=4 with respect to this nilpotent
element has l− 1 bosonic generators and l− 1 fermionic generators;
the bosonic subalgebra is identified with holomorphic vector fields
vanishing at z = 0 modulo the ideal generated by zl∂z.

Similarly, trading Γ for Γ̃ in the above two items corresponds to flipping A
and B.

6One should also replace the stress tensor TV by TV ± 1
4
(
∂zJV − J∂zV

)
in accordance

with the twisted spins of the A (−) and B (+) twists. We also note that the cohomological
grading C is altered in passing to the A and B twists.
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The algebra aN=4 is equipped with a Z2 outer automorphism defined by

S↔ −S

Γ↔ Γ̃.

This lifts the mirror automorphism of the three-dimensional N = 4 su-
persymmetry algebra that exchanges the Higgs and Coloumb branch R-
symmetries. We expect that the HT twists of mirror N = 4 theories will be
identified in a way that intertwines their actions of aN=4 with this automor-
phism. For example, the deforming by Θzl on one side of mirror symmetry
should be equivalent to deforming by Θ̃zl in the other side. This general-
izes the usual statements about exchanging the A and B twists (for l = 0)
and their Omega-backgrounds (for l = 1).

3.2. N = 4 flavor symmetries. A natural question to ask is what the above
analysis implies for N = 4 flavor symmetries. Although we will focus
on Higgs-branch flavor symmetries, there are analogous consequences for
Coulomb branch flavor symmetries.

Suppose a second (complex reductive) group H acts (linearly) on R in a
way that preserves the symplectic form Ω and commutes with the action
of the gauge group G; let (υi)

n
m be representation matrices for the action

of H. It immediately follows that the currents LU = Ui(ΨυiZ) generate a
flavor symmetry of the HT-twisted theory. Moreover, they are chargeless
(weight 0) under the remnant R-symmetry S and annihilated by the odd
generator Γ:

(3.2.1) S · LU = 0 Γ · LU = 0

On the other hand, the action of Γ̃ is related to the flavor symmetry moment
map ΞΥ = 1

2 Υi(υi)nmZnZm via

(3.2.2) Γ̃ ·
∫

LU =
∫

Ξ−Γ̃∂U

The bosonic operator ΞΥ has weight 2 under the remnant R-symmetry
and brackets trivially with Θ̃Γ̃:

(3.2.3) S ·
∫

ΞΥ =
∫

Ξ−2SΥ Γ̃ ·
∫

ΞΥ = 0

The action of Γ takes the following simple form:

(3.2.4) Γ ·
∫

ΞΥ =
∫

LΓΥ

We also note that the action V∂z is given by

(3.2.5) V∂z ·
∫

ΞΥ =
∫

Ξ−V∂zΥ− 1
2 (∂zV)Υ

and the action of U is given by

(3.2.6) U ·
∫

ΞΥ =
∫

Ξ−[U,Υ]
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All together, we see that the existence of an H Higgs branch flavor sym-
metry implies the following.

3.2.1 Proposition. Suppose a three-dimensional N = 4 theory of vector multi-
plets and hypermultiplets admits a Higgs-branch flavor symmetry by a group H.
The HT twisted theory admits an action of a Lie superalgebra fH,N=4 defined by

(3.2.7) fH,N=4 =

U︷ ︸︸ ︷
OC ⊗ h0 ⊕Π

Υ︷ ︸︸ ︷
K1/2

C
⊗ h2

where the subscripts denote the transformation properties with respect to the bosonic
subalgebra (aN=4)

+. The Lie bracket on the bosonic subalgebra (fH,N=4)
+ corre-

sponds to the natural Lie bracket on OC ⊗ h; the action of the bosonic subalgebra
(fH,N=4)

+ on the fermionic subspace (fH,N=4)
− uses the adjoint action of h on

itself and the action of functions OC on sections of K1/2
C

; and the bracket of two
fermionic elements vanishes.

As in the case of the enhanced superconformal algebra aN=4 we can un-
derstand further deformations of the enhanced flavor symmetry algebra
fH,N=4 by square-zero elements in a−N=4.

• The cohomology of fH,N=4 with respect to the element Γ = 1 is triv-
ial. In fact, after applying the A-twisting homomorphism the dg Lie
algebra (fH,N=4, Γ = 1) is isomorphic to the de Rham Lie algebra
(fH,N=4)dR, consistent with the fact that Higgs branch symmetries
do not act on the Coloumb branch chiral ring.7

• The element Γ̃ = 1 leads to the B-twist of the three-dimensional N =
4 supersymmetric theory. The cohomology of fH,N=4 with respect to
this element is isomorphic to the Lie algebra h, the Lie algebra of
the flavor group we started with. This is consistent with the fact
that Higgs branch symmetries act on the Higgs branch.
• The element Γ = z leads to a superconformal deformation and is

equivalent to placing the B-twist of the original supersymmetric
theory in an Ω-background. The cohomology of fH,N=4 with respect
to this element is isomorphic to the Lie algebra h. This should be
identified with a quantization of the symmetry in the previous item.
• The deformation by Γ̃ = z is another superconformal deformation

and is equivalent placing the A-twist of the original supersymmet-
ric theory in the Ω-background. The cohomology of fH,N=4 with
respect to this element is isomorphic to the semi-direct product Lie

7We note that, although Higgs branch symmetries do not act on the Coulomb branch,
mass parameters for Higgs branch symmetries can be used to deform/resolve the Coulomb
branch chiral ring. The complex mass parameters arise by deforming by a fermionic ele-
ment in (fH,N=4)dR; they are not Maurer-Cartan elements, instead leading to an equivariant
differential.
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superalgebra hn Πh. The odd part of this cohomology yields fur-
ther deformations corresponding to turning on a complex mass de-
formation.

To witness symmetries of the Coloumb branch of the three-dimensional
N = 4 theory one switches the roles of Γ and Γ̃ (and S with −S). In the
above N = 4 theory, the portion of these symmetries visible at the level
of the action is called the topological flavor symmetry and given by the
Pontrjagin dual to π1(G). The supersymmetric extension of this symmetry
is generated by the local operators

(3.2.8) L̃Ũ = Ũ∂ Tr(A) , Ξ̃Υ̃ = Υ̃ Tr(Φ) .

3.3. Example: superconformal deformation of an HT-twisted hypermul-
tiplet. To make the above discussions more explicit, we consider the case
of a free hypermultiplet. The HT twisted theory has two bosonic fields Zα

and two fermionic fields Ψα with BV/BRST differential given by

(3.3.1) QZ = d′Z QΨ = d′Ψ.

From this, we can read off the algebra of local operators in the HT twist:
only the lowest form components are Q-closed, and their z̄, t dependence is
exact; we are left with a commutative vertex algebra with four generators:
Zα, ψα. There is a 1-shifted Poisson structure on this algebra, determined
from holomorphic-topological descent:

(3.3.2) {{Zα, ψβ}} = δα
β

The local operators generating the flavor symmetry action can be read
off of the above. Namely, we consider the following local operators:

(3.3.3) Lα
β = ψβZα ξαβ = ZαZβ

We now consider the superconformal deformation by the Hamiltonian
for the odd symmetry Γ = z in the algebra aN=4, i.e. we add

∫
ΘΓ=z to the

action. This deformation corresponds to placing the B-twist of the original
supersymmetric theory in the Ω-background. This modification changes
the action of the BV/BRST supercharge to

(3.3.4) QSCZα = d′Zα + zΩβαΨβ QSCΨα = d′Ψα

We can analyze the vectorspace of local operators via a spectral sequence,
where the first step takes the cohomology with respect to d′, again restrict-
ing us to local operators built as polynomials in the holomorphic deriva-
tives in Zα, ψα. The differential on the second page corresponds to the ac-
tion of Γ = z and can be identified with taking the descent bracket with the
Hamiltonian z

2 Ω−1(ψ, ψ):

(3.3.5) {{ z
2 Ω−1(ψ, ψ), Zα(z)}} = zΩβαψβ(z)
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and

(3.3.6) {{ z
2 Ω−1(ψ, ψ), ψα(z)}} = 0.

Thus, local operators in this superconformal deformation are supported at
z = 0, independent of t, and generated by Zα(0).

Not only does this deformation reduce us to local operators built from
the Zα placed at z = 0, it introduces a non-commutativity controlled by
the symplectic form Ω. It is customary to dress the interaction vertex by
a “quantization parameter” 8πε ∈ C, with a convenient choice of normal-
ization factor.8 In order to extract this non-commutativity, we consider two
configurations of insertions: the first (resp. second) configuration has an
insertion of Zα at z = 0 and t = 0 and an insertion of Zβ at z = 0 and t = T
(resp. t = −T), for T > 0. The difference of the corresponding two-point
functions will be our measure of the resulting non-commutativity. This dif-
ference of two-point functions is given by the difference the two Feynman
amplitudes illustrated in Fig. 3.1; explicitly, the weight of the difference is
the integral:

(3.3.7) 8πεΩαβ

[∫
zι∂z

(
P(z, t; 0,−T)P(z, t; 0, 0)

)
+

(
T → −T

)]
where P(z, t; w, s) is the propagator of the HT kinetic term which in the
holomorphic gauge of [27] is given by

(3.3.8) P(z, t; w, s) =
(t− s)(dz− dw)− (z− w)(dt− ds)

8πi
(
(t− s)2 + |z− w|2

)3/2 dz.

The resulting integral

(3.3.9)

−εΩαβ

8π

∫
d2z dt

[
T|z|2

((
(t− T)2 + |z|2)−3/2(t2 + |z|2)−3/2

+
(
(t + T)2 + |z|2)−3/2(t2 + |z|2)−3/2

)]
can be computed explicitly, giving εΩαβ (since the diagrams are tree-level
from the perspective of the bulk, there is no need to regularize). As ex-
pected, we find a commutator

(3.3.10) [Zα, Zβ] = εΩαβ

corresponding to the Weyl algebra associated to the symplectic form εΩαβ,
cf. Section 3 of [33] or Section 6 of [34].

8We note that the Ω-background quantization parameter ε should not be conflated with
Planck’s constant h̄, so we choose to denote it by a different character.
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⊗

Zα(0, 0) •

Zβ(0,−T)•

−

⊗

Zα(0, 0) •

Zβ(0, T) •

FIGURE 3.1. The difference of Feynman diagrams comput-
ing the commutator [Zα, Zβ]. The dotted line is the z = 0
axis and the interaction vertex is

∫ z
2 Ω−1(Ψ, Ψ).

4. SUPERCONFORMAL CHERN-SIMONS-MATTER THEORIES

Although somewhat exotic, there are highly supersymmetric Chern-Simons-
matter theories. Chern-Simons theories with N = 3 supersymmetry go
back to the works [4, 5] and it was believed that this was the maximal
N = 3 supersymmetry attainable in the presence of Chern-Simons gauge
fields, see e.g. [35, 7, 6]. Somewhat surprisingly, there is a mechanism, first
discovered by Gaiotto-Witten [9], that allows for an N = 4 coupling of hy-
permultiplets and Chern-Simons gauge fields; the resulting theories have
since been known as Gaiotto-Witten theories. The work [10] generalized
the Gaiotto-Witten theories to include both hypermultiplets (taking values
in a representation R) and twisted hypermultiplets (taking values in a rep-
resentation R̃). The resulting theories have at least N = 4 supersymmetry
by the same mechanism found by Gaiotto-Witten, but include theories with
yet more supersymmetry [11] such as the N ≥ 6 ABJ(M) theories [17, 18]
and N = 8 BLG theory [14, 15, 16].

In this section we describe the additional superconformal symmetries
enjoyed in each of these cases, starting from N = 3 and progressing to N =
8. Representation theoretic aspects of these supersymmetry enhancements,
and superpotentials arising below, were described in detail in [8].

4.1. N = 3 Chern-Simons-matter theories. We start with the N = 3 Chern-
Simons-matter theories. This is a theory of an N = 2 Chern-Simons vector
multiplet (A, B) coupled to an N = 4 hypermultiplets (Z, Ψ) valued in a
complex-symplectic representation R of the complexified gauge group G.
In addition, there is a superpotential coupling

(4.1.1) W = π
k Tr(ν2) .
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We could also coupled to N = 4 twisted hypermultiplets, but these two
multiplets get identified upon reduction to N = 3. Putting this information
together, we arrive at the following HT-twisted action

(4.1.2) S =
∫

BF′(A) + k
4π Tr(A∂A) + Ψ d′AZ + π

k Tr(ν2)

It follows that the action of the HT supercharge takes the form

(4.1.3)
QHTA = F′(A) QHTB = d′AB−µ+ k

2π ∂A

QHTZ = d′AZ QHTΨ = d′AΨ + 2π
k Ω(−,νZ)

where νZ denotes the action of ν (viewed as an element of g with the bi-
linear form Tr) on Z. We give the hypermultiplets R-charge 1

2 , so that the
(modified) stress tensor takes the form

(4.1.4) TV = ιV

(
− B∂A + 1

4

(
3Ψ∂Z− Z∂Ψ

))

With a minor modification, an analog of the bosonic currents found in
Section 3 can be found in this N = 3 theory:

(4.1.5) ΘΓ = 1
2 Γ
(
Ω−1(Ψ, Ψ)−Ω(Z, ∂BZ)

)
where ∂B denotes the holomorphic “covariant derivative” ∂B = ∂− 2π

k B.
The fact that this is QHT-closed relies on the precise form of the superpo-
tential W. The action of ΘΓ on the fields is given by

(4.1.6)
Γ ·A = 2π

k Γν Γ · B = 0

Γ · Z = ΓΩ−1(Ψ,−) Γ ·Ψ = −ΓΩ(∂BZ,−)− 1
2 (∂Γ)Ω(Z,−)

This current transforms as a section of K−1/2
C

just as before:

(4.1.7) V∂z ·
∫

ΘΓ =
∫

Θ−V∂zΓ+ 1
2 (∂zV)Γ

One immediate observation is that the action of Γ on itself is not quite
the above stress tensor:

(4.1.8) Γ ·
∫

ΘΓ′ =
∫

T̂−2ΓΓ′

where the “stress tensor” T̂V is given by

(4.1.9) T̂V = ιV
( 3

4 Ψ∂BZ− 1
4 Z∂BΨ

)
The action of this current is given as follows:

(4.1.10)
V̂ ·A = 2π

k ιVν V̂ · B = 0

V̂ · Z = V∂B,zZ + 1
4 (∂zV)Z V̂ ·Ψ = V∂B,zΨ + 3

4 (∂zV)Ψ
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The current T̂V still generates an action of Vect(C) and, moreover, the two
actions of Vect(C) are cohomologous:

(4.1.11)
Q
(

ιV
(

π
k Tr(B2)

))
= d′

(
ιV
(

π
k Tr(B2)

))
+ T̂V − TV

⇒ {
∫

TV ,−}BV = {
∫

T̂V ,−}BV + Q
(
...
)

We see that the action of holomorphic vector fields Vect(C) gets en-
hanced to the Lie superalgebra

(4.1.12) aN=3 = Vect(C)⊕ΠK−1/2
C

where we have written the Lie algebra as a module for the even part. If
Γ, Γ′ are element of K−1/2

C
, their bracket is given by

(4.1.13) [Γ, Γ′] = 2Γ′Γ.

Putting this together, we come to the following proposition.

4.1.1 Proposition. The HT twist of an N = 3 superconformal Chern-Simons-
matter theory admits an action of aN=3.

Notice that one can identity aN=3 with the positive part of the N = 1
Virasoro algebra

(4.1.14) aN=3 = vir≥0
N=1.

4.2. Enhancement to N = 4. As discovered by Gaiotto and Witten [9], the
above N = 3 superconformal Chern-Simons theories have explicit super-
symmetry enhancement when the representation R satisfies the so-called
fundamental identity: the theory has N = 4 supersymmetry when the
(complex) moment map for the G-action is isotropic with respect to the
bilinear form Tr, i.e. Tr(ν2) = 0.9 In particular, the above superpotential
vanishes identically. In terms of the representation matrices (τa)mn and the
matrix elements Kab and Kab of the pairing Tr and its dual, the fundamental
identity says

(4.2.1) Kab((τa)lm(τb)no + (τa)nm(τb)lo
)
= 0

In the language of [8], the representation R (together with the metric Lie
algebra (g, Tr)) forms an anti-Lie triple system (aLTS).

There is a somewhat larger class of N = 4 Chern-Simons-matter theo-
ries, first described in [10], where we couple to both hypermultiplets and
twisted hypermultiplets; the latter will be valued in a (possibly different)

9More precisely, the fundamental identity requires Tr(ν2) is constant. If we further re-
quire an unbroken R-symmetry, this further imposes that this constant vanishes.
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symplectic representation R̃ also satisfying the fundamental identity. Al-
though the hypermultiplets (and similarly twisted hypermultiplets) are only
coupled to one another via the gauge fields, there is a superpotential that
couples the hypermultipets to the twisted hypermultiplets

(4.2.2) W = 2π
k Tr(νν̃) .

Putting this information together, we arrive at the following HT-twisted
action for this generalized Gaiotto-Witten theory:

(4.2.3) S =
∫

BF′(A) + k
4π Tr(A∂A) + Ψ d′AZ + Ψ̃ d′AZ̃ + 2π

k Tr(νν̃)

We give the hypermultiplets and twisted hypermultiplets R-charge 1
2 , and

so the (modified) stress tensor takes the form

(4.2.4) TV = ιV

(
− B∂A + 1

4

(
3Ψ∂Z− Z∂Ψ

)
+ 1

4

(
3Ψ̃∂Z̃− Z̃∂Ψ̃

))
We note that the moment map for the G action on R⊕ R̃, i.e. ν + ν̃, does
not satisfy the fundamental identity and instead

(4.2.5) Tr
(
(ν + ν̃)2) = 2 Tr(νν̃)

In particular, this theory of hypermultipliets and twisted hypermultiplets
is a special case of the above N = 3 theory.

We now describe the currents generating an action of aN=4 commensu-
rate with the fact that the underlying theory has N = 4 supersymmetry.
As in the Yang-Mills theories described in Section 3, the hypermultiplets
Z have weight 1 under the remnant R-symmetry, while the twisted hyper-
multiplets have weight −1. Thus, the conserved current associated to (the
holomorphic extension of) this symmetry is simply

(4.2.6) JS = S(z)
(
ΨZ− Ψ̃Z̃

)
The fundamental identity allows us to realize the bosonic current ΘΓ as the
sum of two currents:

(4.2.7) ΘΓ = 1
2 Γ
(
Ω−1(Ψ, Ψ)− Ω̃(Z̃, ∂BZ̃)

)
and

(4.2.8) Θ̃Γ̃ = 1
2 Γ̃
(
Ω̃−1(Ψ̃, Ψ̃)−Ω(Z, ∂BZ)

)
The action of ΘΓ on the fields is given by

(4.2.9)

Γ ·A = 2π
k Γν̃ Γ · B = 0

Γ · Z = ΓΩ−1(Ψ,−) Γ ·Ψ = 0

Γ · Z̃ = 0 Γ · Ψ̃ = −ΓΩ̃(∂BZ̃,−)− 1
2 (∂Γ)Ω̃(Z̃,−)

The action of Θ̃Γ̃ is nearly identical and given by exchanging hypermulti-
plets and twisted hypermultiplets.
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As in the N = 3 case, the action of Γ on
∫

Θ̃Γ̃ do not quite land on the
stress tensor TV :

(4.2.10) Γ ·
∫

Θ̃Γ =
∫

T̂−ΓΓ̃ +
∫

J 1
4 (Γ̃∂Γ−Γ∂Γ̃)

The “stress tensor” T̂V is given by

(4.2.11) T̂V = ιV
( 3

4 (Ψ∂BZ + Ψ̃∂BZ̃)− 1
4 (Z∂BΨ + Z̃∂BΨ̃)

)
For the same reason as in the N = 3 theories, the current T̂V still generates
an action of Vect(C) and this action is cohomologous to the one generated
by TV .

4.2.1 Proposition. The HT twist of any generalized Gaiotto-Witten theory ad-
mits an action of aN=4.

4.3. Enhancement to N = 5. As pointed out in [11], the N = 4 super-
symmetry in the general case enhances to N = 5 supersymmetry if we
ask that the hypermultiplets and twisted hypermultiplets transform in the
same representation R = R̃. In this case, we can write the hypermuletiplets
and twisted hypermultiplets as a double Zα = (Z, Z̃). We can then make
a triplet of complex moment map operators ν

αβ
a = 1

2 (τa)nmZαnZβm = ν
βα
a ;

the fundamental identity then implies

(4.3.1) Tr(ν++2) = 0 = Tr(ν−−2) Tr(ν++ν+−) = 0 = Tr(ν−−ν+−)

as well as

(4.3.2) Tr(ν++ν−−) = −Tr(ν+−2)

With this notation, the superpotential can be written in a manifestly sl(2)-
invariant fashion:

(4.3.3) W = π
2k εαγεβδ Tr(ναβνγδ)

Correspondingly, the above gl(1) symmetry gets extended by two addi-
tional currents

(4.3.4) JS+ = S+Ψ̃Z JS− = S−ΨZ̃

realizing this sl(2) symmetry. We can compactly write these sl(2) currents
as

(4.3.5) JS = SiΨα(σi)
α

βZβ

where σi are a basis of sl(2), e.g. the Pauli matrices. It is important to note
that this sl(2) symmetry is not an N = 4 flavor symmetry — both currents
ΘΓ, Θ̃Γ̃ transform non-trivially.10 Rather, these symmetries extend the rem-
nant C× R-symmetry to SL(2) ∼= Spin(3)! (The original C× is realized as

10Recall that ΘΓ (resp. Θ̃Γ̃) would be invariant under an N = 4 Higgs (resp. Coulomb)
flavor symmetry, cf. Section 3.2. Here, both ΘΓ and Θ̃Γ̃ transform non-trivially under sl(2).
Indeed, they transform into one another!
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the diagonal torus.) Similarly, the two bosonic currents present in the N = 4
setting gain a third so that the three transform in the adjoint representation
of this sl(2):

(4.3.6) ΘΓ = 1
2 Γαβ

(
Ω−1(Ψα, Ψβ)− εαγεβδΩ(Zγ, ∂BZδ)

)
where Γαβ = Γβα.

The symmetry algebra aN=5 realized by these currents takes the follow-
ing form. Written as a module for its bosonic part, we have

(4.3.7) aN=5 = Vect(C)⊕OC ⊗ sl(2)⊕ΠK−1/2
C
⊗ sl(2)

If Γ, Γ′ are elements of K−1/2
C
⊗ sl(2), their bracket is given by

(4.3.8) [Γ, Γ′] = Tr(Γ′Γ∨)− 1
4 (Γ∂Γ′∨ + Γ′∂Γ∨)0.

where (Γ∨)αβ = εαγεβδΓγδ, and (Γ′Γ)α
β = Γ′αγΓ∨βγ; M0 denotes the traceless

part of the matrix M. These brackets imply that aN=5 is simply the positive
part of the N = 3 Virasoro algebra

(4.3.9) aN=5 = vir≥0
N=3

4.3.1 Proposition. The HT twist of any generalized Gaiotto-Witten theory where
the hypermultiplets and twisted hypermultiplets transform in the same represen-
tation R admits an action of aN=5.

4.4. Enhancement to N = 6. The N = 5 supersymmetry of the theory fur-
ther enhances to N = 6 when the representation R splits as R = R⊕ R∗ =
T∗R with its natural symplectic structure. We can then split the hypermul-
tiplet as Z = (X, Y), with X valued in the representation R and Y valued
in the dual R∗, and similarly for the twisted hypermultiplets Z̃ = (X̃, Ỹ)
and the accompanying fermions. Let (ρa)s

t be the representation matrices
for the G action on R; it follows that the moment map can be expressed as
νa = YρaX, and the fundamental identity takes the following form:

(4.4.1) Kab((ρa)
s
t(ρb)

u
v + (ρa)

s
v(ρb)

u
t
)
= 0

In the language of [8], the representation R (together with the metric Lie
algebra) forms an anti-Jordan triple system (aJTS).

As X, X̃ (and Ỹ, Y) transform in the same representation, we will col-
lect them as Xα = (X, X̃) and Yα̇ = (Y, Ỹ); we denote the accompanying
fermionic fields ΨX,α and ΨY,α̇. With these operators, we can write four
moment map operators ναα̇

a = Yα̇ρaXα. Using the split form of the fun-
damental identity, the superpotential can be re-expressed in a manifestly
sl(2)+ ⊕ sl(2)− ∼= so(4) invariant fashion, where sl(2)+ (resp. sl(2)−) acts
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on the doublet Xα (resp. Yα̇):

(4.4.2) W = π
2k εαβεα̇β̇ Tr(ναα̇νββ̇)

The currents generating the action of OC ⊗ (sl(2)+ ⊕ sl(2)−) are given by

(4.4.3) JS = SiΨX,α(σi)
α

βXβ J̃S̃ = S̃iΨY,α̇(σi)
α̇

β̇Yβ̇

The supercharges ΘΓ transforming in K−1/2
C

gain a fourth partner to form a
Spin(4) vector

(4.4.4) ΘΓ = Γαα̇

(
ΨX,αΨY,α̇ − 1

2 εαβεα̇β̇

(
Xβ∂BYβ̇ − Yβ̇∂BXβ

))
One new feature is that there is a non-trivial mixing between the action

of so(4) and OC. Namely, we find that the action of OC ⊗ sl(2)± is given by

(4.4.5)
S ·
∫

ΘΓ =
∫

Θ−(S⊗id)Γ +
∫

Ξ 1
2 Γ∨(∂S⊗id)

S̃ ·
∫

ΘΓ =
∫

Θ−(id⊗S̃)Γ +
∫

Ξ− 1
2 Γ∨(id⊗∂S̃)

where the additional Spin(4) (co)vector of K1/2
C

-valued currents ΞΣ is given
by

(4.4.6) ΞΣ = Σαα̇Yα̇Xα

and Γ∨αα̇ = εαβεα̇β̇Γββ̇ is the bi-spinor avatar of lowering a vector index with
the Euclidean metric on C4. In particular, these currents transform un-
der Vect(C)⊕OC ⊗ so(4) as an extension of K−1/2

C
⊗ (C2

+ ×C2
−) by K1/2

C
⊗

(C2
+ ×C2

−)
∗.

We note that there is an additional gl(1) symmetry coming from the split-
ting of R:

(4.4.7) LU = U(z)(ΨX,αXα −ΨY,α̇Yα̇)

The corresponding OC ⊗ gl(1) symmetry commutes with the OC ⊗ so(4)
R-symmetry and acts trivially on the ΞΣ, but has a non-trivial action on
ΘΓ:

(4.4.8) U ·
∫

ΘΓ =
∫

ΞΓ∨∂U

In particular, this implies that LU centrally extends the OC⊗ so(4) remnant
R-symmetry.11

Putting this together, we have a Lie superalgebra aN=6 whose bosonic
subalgebra is

(4.4.9) (aN=6)
+ = Vect(C)⊕OC ⊗

(
so(4)⊕ gl(1)

)
11If this were a flavor symmetry then the action of LU on ΘΓ would yield some new

current rather than ΞΣ.
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and with fermionic subspace given by the extension

(4.4.10) 0→ K1/2
C
⊗ (C2

+⊗C2
−)
∗
0 → (aN=6)

− → K−1/2
C
⊗ (C2

+⊗C2
−)0 → 0.

In this expression, we use the subscript to denote the gl(1) weight. Let Γ
denote an element of K−1/2

C
⊗ (C2

+ ⊗ C2
−)0 and let Σ an element of K1/2

C
⊗

(C2
+ ⊗C2

−)
∗
0 . The brackets between odd elements takes the form: [Σ, Σ′] =

0,

(4.4.11) [Σ, Γ] = (ΓΣT)0 − (ΓTΣ)0 + Tr(ΣΓT)

and

[Γ, Γ′] = Tr(Γ′TΓ∨)− 1
4 (Γ∂Γ′∨T + Γ′∂Γ∨T)0

− 1
4 (Γ

T∂Γ′∨ + Γ′T∂Γ∨)0 − 1
4 Tr(Γ∂Γ′∨T + Γ′∂Γ∨T).

(4.4.12)

We can thus identify aN=6 with the positive part of the (big) N = 4 super-
conformal algebra K′4

(4.4.13) aN=6 = K′4
≥0.

4.4.1 Proposition. The HT twist of any generalized Gaiotto-Witten theory where
the hypermultiplets and twisted hypermultiplets transform in the same split rep-
resentation R⊕ R∗ admits an action of aN=6.

4.5. Enhancement to N = 8. There is a further, explicit enhancement to
N = 8 supersymmetry when the representation R possesses a G-invariant
metric guv, so that R is self-dual R ∼= R∗ and (ρa)uv = gut(ρa)t

v is anti-
symmetric in u, v, from which the fundamental identity implies that the
tensor Kab(ρa)st(ρb)uv is totally antisymmetric in s, t, u, v. A non-trivial (i.e.
non-free) example of this enhancement occurs when g = so(4) ∼= sl(2)+ ⊕
sl(2)− and R = C4 ∼= C2

+ ⊕ C2
−, or perhaps decoupled copies thereof,

whence Kab(ρa)st(ρb)uv ∝ εstuv. The resulting theory was found indepen-
dently by Bagger-Lambert [14, 15] and Gustovsson [16] and has since been
called BLG theory.12 In the language of [8], the representation R is said to
be the complexification of a representation giving a triple system of type
3-Lie algebra (3LA).

Using the above G-invariant metric, we can organize the hypermulti-
plet and twisted hypermultiplet scalar fields into four R-valued fields ZI =

(X, Y∨, X̃, Ỹ∨), and similarly organize the fermionic fields into four R∗-valued
fields ΨI . With this notation, we can express the superpotential as

(4.5.1) W = π
3!k εI JKLKabρa(ZI , Z J)ρb(ZK, ZL) .

12There are “higher rank” versions of the BLG theory, discovered by Aharony-Bergman-
Jaffries-Maldacena (ABJM) [17], but the enhancement from N = 6 to N = 8 involves cur-
rents built from monopole operators.
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This expression makes manifest an SL(4) ∼= Spin(6) invariance of the su-
perpotential. The theory therefore admits an action of the bosonic Lie alge-
bra

(4.5.2) (aN=8)
+ = Vect(C)⊕OC ⊗ sl(4)

The currents generating the OC ⊗ sl(4) action are given by

(4.5.3) LU = U I
JΨIZJ

where U must to be traceless for this local operator to be QHT-closed. The
current for the Vect(C) action is given as before.

Acting with SL(4) on the N = 6 fermionic symmetries, we arrive at the
following currents:

(4.5.4) ΞΣ = 1
2 ΣI JZIZJ ΘΓ = 1

2 ΓI J
(

ΨIΨJ − 1
2 εI JKLZK∂BZL

)
with ΣI J = ΣJ I and ΓI J = −ΓJ I . We have left implicit the G-invariant metric
on R. The action of OC ⊗ sl(4) on these fermionic symmetry generators
takes the form

(4.5.5)
U ·
∫

ΞΣ =
∫

ΞΣ(U⊗id+id⊗U)

U ·
∫

ΘΓ =
∫

Θ−(U⊗id+id⊗U)Γ +
∫

Ξ−(?Γ)(∂U⊗id+id⊗∂U)

where (?Γ)I J =
1
2 εI JKLΓKL. Together with the action of holomorphic vector

fields Vect(C), we find that these odd symmetries transform as the exten-
sion

(4.5.6) 0→ K1/2
C
⊗ Sym2(C4)∗ → (aN=8)

− → K−1/2
C
⊗∧2C4 → 0

Just as in the N = 6 case, the bracket between two elements of K1/2
C
⊗

Sym2(C4)∗ always vanishes. The bracket between K1/2
C
⊗ Sym2(C4)∗ and

K−1/2
C
⊗∧2 C4 is simply

(4.5.7) Σ ·
∫

ΘΓ =
∫

L−ΣΓ

and the bracket of two elements of K−1/2
C
⊗∧2 C4 takes the form

(4.5.8) Γ ·
∫

ΘΓ′ =
∫

T 1
2 Tr(Γ′?Γ) +

∫
L 1

2 (Γ
′?∂Γ+Γ?∂Γ′)

The brackets described above are precisely those of the exceptional sim-
ple Lie superalgebra which is denoted

(4.5.9) aN=8 = E(1|6)

in [12]. Thus we obtain the following.

4.5.1 Proposition. The HT twist of BLG theory admits an action of the excep-
tional simple Lie superalgebra E(1|6).
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Strictly speaking, the version of E(1|6) we find in the proposition above
is an analytic version of the one studied in [12] which is constructed using
formal power series. At the level of local operators one can show is that the
true version of E(1|6), defined using formal power series, acts.

4.5.1. Non-perturbative N = 8 Enhancement of rank 1 ABJM. In this subsec-
tion we consider another example with N = 8 supersymmetry, the rank
1 ABJM theory modeling the worldvolume of a single M2 brane probing
C4/Zk. We illustrate how the symmetry enhancement works for k = 1, 2.

An E(1|6) symmetry of the minimally twisted rank 1 ABJM theory at
level k = 1, was identified in [13] from the perspective of a putatively holo-
graphically dual twisted supergravity theory. There, we studied the min-
imal twist of eleven-dimensional supergravity on AdS4 × S7. The theory
has a U(1) global symmetry that mixes rescalings normal to the conformal
boundary of AdS4 with a global rescaling of the space of fields. This sym-
metry induces a consistent grading on the space of fields of depth −2, and
has the following features:

• The weight zero component is a certain local Lie algebra on R×C

whose ∞-jets at the origin is E(1|6).
• The nonzero weight components carry actions of the weight zero

component.
• The weight −1 component describes the holomorphic-topological

twist of the rank 1 ABJM theory at level k = 1.

As in the previous sections of this paper, here we will describe the ac-
tion of aN=8 in terms of explicit currents, which render the aforementioned
E(1|6) symmetry inner. However, the N = 8 superconformal symmetry
of the ABJM theory is not visible at the level of the Lagrangian and is due
to nonperturbatives effects. Accordingly, the symmetry enhancement en-
hancement is non-perturbative in nature: the currents realizing aN=8 will
include monopole operators.

Monopole operators in HT twisted N = 2 Chern-Simons gauge theo-
ries are in general quite difficult to study; in contrast, work of Zeng [29]
provides an explicit description of the DG vector space of local operators
using the state-operator correspondence together with the explicit geomet-
ric quantization of the equations of motion on the raviolo. We will apply
this analysis to the rank 1 ABJM theory and illustrate the enhancement to
N = 8 for k = 1, 2. For levels k > 2, such an enhancement is not present,
and though the above prescription yields the correct space of local opera-
tors, and new techniques are needed to compute the algebra structure.
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As a reminder, the rank 1 ABJM theory is a U(1)k×U(1)−k Chern-Simons
gauge theory with chiral multiplets Xα of weight (1,−1) and Yα̇ of weight
(−1, 1); written as an N = 2 theory, there is no superpotential. Without
loss, we take k > 0. The HT twisted action then takes the form

(4.5.10)
S =

∫
B+ d′A+ + k

4π A+∂A+ + B− d′A− − k
4π A−∂A−

+
∫

ΨX,α d′AXα + ΨY,α̇ d′AYα̇

with corresponding action of the HT supercharge

(4.5.11)

QHTA± = d′A± QHTB± = d′B± ∓µ± k
2π ∂A±

QHTXα = d′AXα QHTΨX,α = d′AΨX,α

QHTYα̇ = d′AYα̇ QHTΨY,α̇ = d′AΨY,α̇

In this expression, µ = ΨX,αXα − ΨY,α̇Yα̇ is the moment map for the U(1)k
action on the parity shifted cotangent bundle or, equivalently, the negative
of the moment map for U(1)−k.

Monopole operators are local operators that source gauge fields A± that
are partial connections on non-trivial holomorphic C× bundles on the ra-
dial P1. In particular, the moduli of such bundles has disconnected compo-
nents labeled by Z2, the magnetic charge of the monopole operator, or bet-
ter the “monopole number.” Note that the Chern-Simons terms induce an
electric charge on magnetically charged objects: a bare monopole of mag-
netic charge (m+,m−) ∈ Z2 will have induced electric charge (km+,−km−).
This implies there can be no gauge-invariant monopole operators for mag-
netic charges with m+ − m− 6= 0 because the only charged fields have
weights (q+, q−) with q+ = −q−. We will denote the bare monopole oper-
ator of magnetic charge (m,m) by Vm; this can be identified as Vm = e2πmΓ,
where Γ is the corresponding dual photon and satisfies

(4.5.12) ∂Γ = B+ + B− QVm = d′Vm + km(A+ −A−)Vm

cf. [21, Section 3.1]. With the Vm, we can realize gauge-invariant local
operators as Q-cohomology classes of U(1) × U(1)-invariants built from
the above fields, minus the zeromodes of A±.

At monopole number zero, there are the familiar N = 6 currents LU , L̃Ũ
and ΘΓ, Θ̃Γ̃ as well as the additional central currents LT = T(z)(ΨX,αXα)

and L̃T̃ = T̃(z)(ΨY,α̇Yα̇). The difference LT − L̃T = T(z)µ is cohomologous
to the current 1

4π T(z)(∂A+ + ∂A−) (up to a total derivative) generating the
topological flavor symmetry measuring monopole number.

Now consider local operators of monopole number m = ±1, i.e. a gauge-
invariant local operator built by dressing the operators V±1. To get some-
thing gauge-invariant, the dressing factor must have electric charge (∓k,±k).
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As a module for the operators of monopole number 0, these are generated
by degree k polynomials in Xα, ΨX,α and their ∂z derivatives times V1 for
m = 1, and similarly for m = −1. For k = 1, there are eight operators to
consider:
(4.5.13)

k = 1 :

MI︷ ︸︸ ︷
X1V−1, Y1̇V1, X2V−1, Y2̇V−1,

∆I︷ ︸︸ ︷
ΨX,1V1, ΨY,1̇V−1, ΨX,2V1, ΨY,2̇V−1

It is straightforward to check that the above currents are simply various
bilinears of these basic operators. The full set of currents generating the
aN=8 action take the form as in the previous section, up to identifying MI ↔
ZI and ∆I ↔ ΨI . Note that monopole number is identified with the weight
under the diagonal matrix diag(−1, 1,−1, 1) in sl(4); the perturbative N =
6 algebra is the subalgebra of weight 0.

We also note the additional N = 8 enhancement for k = 2: monopole
number is identified with half of the above sl(4) weight, with the monopole
number −1 sector generated by the odd currents ΨY,α̇XαV−1 as well as the
even currents XαXβV−1 and (ΨY,1̇ΨY,2̇ − 1

2 (X
1∂BX2 − X2∂BX1))V−1. The

additional generators at monopole number 1 take the same form with X↔
Y and V−1 → V1.

4.5.2. B-type superconformal deformation. From the perspective of the N = 4
algebra, the topological B twist corresponds to deforming the action by the
element ΘΓ for Γ34 = 1, with the other components vanishing. It follows
that the homotopy trivializing rotations in this B-twist is realized by ΘΓ for
Γ12 = z. We can determine the result of turning on an Ω background by
deforming the action S by this superconformal element, which we denote
by Θ.

A straightforward, albeit it tedious, computation shows that the coho-
mology of aN=8 with respect to Θ is as follows. The even cohomology can
be identified with the bosonic subalgebra sl(2)12 ⊕ sl(2)34 rotating the 12
and 34 planes; the fermionic part of the cohomology can be identified with
Πsl(2)34, arising from the K1/2 generators with Σij = 1 for I, J ∈ {3, 4}.
From an N = 4 perspective, sl(2)12 (resp. sl(2)34) should be thought of as
a Higgs-branch (resp. Coulomb-branch) flavor symmetry; these cohomol-
ogy classes can be identified with those found in Section 3.2: sl(2)12 acts
by rotating the Higgs branch and deforming by the elements of Πsl(2)34
deforms the Higgs branch.

Let us return to the example of the rank 1 ABJM theory, focusing on k = 1
for simplicity. Local operators surviving the Ω deformation can be obtained
via a spectral sequence: the first page computes the cohomology of QHT,
which is generated by the 0-form components MI , ∆I of MI , ∆I and their
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∂z derivatives. The second page corresponds to turning on the differential
induced by Θ: the action of Θ on the fundamental fields is given by

(4.5.14)

{∫
Θ, A±

}
= −2πzν̃

{∫
Θ, B±

}
= 0{∫

Θ, Zα
}
= zεαβΨβ

{∫
Θ, Ψα

}
= 0{∫

Θ, Zα̇} = 0
{∫

Θ, Ψ̃α̇

}
= −εα̇β̇(zDzZ̃β̇ + 1

2 Z̃β̇)

where ∂B = Dz dz. The fact that Θ acts trivially on B± implies it will also
act trivially on Γ and hence the monopole operators Vm, thus the action of
Θ on the local operators MI and ∆I is given by
(4.5.15){∫

Θ, MI} = z∆J(δ
I1δJ2− δI2δJ1)

{∫
Θ, ∆I

}
=
(
z∂z MJ + 1

2 MJ)(δI3δJ4− δI4δJ3)

As in Section 3.3, the only local operators that survive the Ω deformation
are generated by M1(0) and M2(0). We expect that the 1-shifted Poisson
bracket on local operators transfers to a bracket between M1(0) and M2(0)
on Θ-cohomology.

Conjecture. The Θ-cohomology of local operators in the HT-twisted rank 1 level
1 ABJM theorem is the algebra of differential operators on C.

Note that the algebra of differential operators on C is the same thing as
the spherical Cherednik algebra for gl(1) which is the expected answer for
the quantized Coulomb branch algebra for the rank 1 level 1 ABJM theory.
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