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In four-dimensional conformal field theory, the numbers a and c are defined as co-
efficients of particular terms in the operator product expansion (OPE) of the energy-
momentum tensor. They can be understood as conformal anomalies appearing in the
trace of the energy-momentum tensor in a background gravitational field as in

〈Tµ
µ 〉 = −

a
16π2 (Euler) +

c
16π2 (Weyl)2

where (Weyl)2 is the square of the Weyl curvature and (Euler) is the Euler density.
Generally, conformal (or Weyl) anomalies exist in any even dimension; a complete
classification has appeared in [Duf94; DS93]. The quantities a, c are informative in-
variants of a four-dimensional conformal field theory. For example, reminiscent of
Zamolodchikov’s c-theorem in two-dimensions [Zam86] is the famous “a-theorem” in
four-dimensions proposed in [Car88] and proved in [KS11]. This states that the func-
tion a is monotonic along (unitary) RG flow implying, in particular, that the IR value
of a is strictly less than its UV value.

The numbers a, c are also well-defined for superconformal field theories in four di-
mensions, but turn out to be much simpler to characterize. This is because the su-
perconformal symmetry necessarily mixes spacetime symmetry with supersymmetry
and hence a, c admit descriptions in terms of supersymmetric invariants of the theory.
Concretely, as we will review below, the a, c anomalies can be understood in terms of
anomalies to R-symmetry.

The R-symmetry is also used to twist a supersymmetric theory [Wit88; Cos13a;
ESW22]. Typically, a supersymmetric theory is defined on some geometric class of
spin manifolds. The R-symmetry allows one to re-label fields of a theory so as to make
sense of the theory in other geometric contexts. So, for a topological twist, one can use
R-symmetry to define the theory on an arbitrary smooth manifold. For a holomorphic
twist [Cos13a], one can use R-symmetry to define the theory on complex manifolds.
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R-symmetry is not the only thing needed to twist a supersymmetric theory; addition-
ally, one must choose the data of a square-zero supercharge. Fields and operators in
the twisted theory can be described in terms of the cohomology with respect to the
chosen supercharge. The twisting process, hence, often provides a significant simpli-
fication of the original supersymmetric model. The holomorphic twist is especially
relevant for this paper since we consider four-dimensional supersymmetric theories
which do not, generally, admit topological twists.

In this paper, we give an interpretation of the a, c anomalies in terms of complex
geometric invariants of the holomorphic twist of a four-dimensional supersymmetric
quantum field theory. The main result is that a, c can be understood, in the twist, in
terms of anomalies to holomorphic diffeomorphism symmetry. Since twisting mixes
R-symmetry with spacetime symmetry, we find that while this interpretation is not
surprising, it does provide a satisfying complex geometric perspective for the coeffi-
cients which is also computationally effective via the Riemann–Roch theorem.

As a consequence of the holomorphic formulation of the a, c anomalies one ob-
tains a classification of complex two-dimensional analogs of the Virasoro algebra in
conformal field theory. The higher dimensional affine Kac–Moody Lie algebra was
proposed by Faonte, Hennion, and Kapranov in [FHK19] and was connected to sym-
metries of holomorphic quantum field theory in [GW21]. The key point is that it is
absolutely necessary, in higher dimensions, to work in a derived setting. Indeed, the
n-dimensional Kac–Moody algebras are all obtained as central extensions of the dg Lie
algebra of derived sections of the structure sheaf on the punctured n-disk with values
in an ordinary Lie algebra g. Similarly, one can contemplate central extensions of the
the dg Lie algebra of derived sections of the tangent sheaf of the punctured n-disk. In
complex dimension two, a, c label all possible central extensions of Γ(D̂2 − 0, T). For
an approach to characterizing central extensions of the derived tangent sheaf which
uses factorization homology we refer to [HK23]. While we don’t pursue any algebraic
structures in this paper, we refer to recent work of Bomans and Wu [BW23] for a char-
acterization of the two-dimensional Virasoro algebra from the point of view of the
holomorphic twist of four-dimensional supersymmetery. We will return to the rela-
tionship between the a, c anomalies and the higher dimensional Virasoro algebra from
the point of view of factorization algebras in future work.

The key technical aspect of this paper is a formulation of the supersymmetric theory,
its twist, and symmetries within the Batalin–Vilkovisky (BV) formalism. The univer-
sal symmetry of a holomorphic field theory is introduced in section 1. In section 2, we
provide a background of anomalies in the BV formalism, specifically in the context of
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symmetries which largely follows Costello and Gwilliam’s treatment [CG21]. We turn
to holomorphic theories in section 3, and interpret the anomaly to quantizing holomor-
phic diffeomorphism symmetry as the Chern class of a line bundle over the universal
complex manifold; thus affording the Riemann–Roch theorem as an effective method
of computation. In section 4 we turn to twists of supersymmetric theories and prove
the precise relationship between anomalies to holomorphic diffeomorphism with a, c.
Finally, in section 5 we elaborate on an example involving the twist of supersymmetric
quantum chromodynamics (QCD).
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1. A LOCAL MODEL FOR HOLOMORPHIC VECTOR FIELDS

Let X be a complex manifold. The ∂-operator associated to a holomorphic vector
bundle V defines its Dolbeault complex Ω0,•(X, V). In degree q, the space Ω0,q(X, V)

denotes the space of smooth sections of the vector bundle
∧q T

∗
X⊗V and the ∂-operator

extends to a differential ∂ : Ω0,q(X, V) → Ω0,q+1(X, V), ∂
2
= 0. By Dolbeault’s theo-

rem, the complex provides a resolution for the sheaf of holomorphic sections of the
bundle V.

A holomorphic vector field is a holomorphic section of the holomorphic tangent
bundle TX. The sheaf of holomorphic vector fields has the natural structure of a sheaf
of Lie algebras with bracket the Lie bracket of vector fields. Since this bracket involves
only holomorphic differential operators, it extends to a bracket on the Dolbeault com-
plex of TX. In local holomorphic coordinates the Lie bracket is

(1.1) [ f I,i(z, z)dzI∂zi , gJ,j(z, z)dzJ∂zj ] = f I,i∂zi gJ,jdzI ∧ dzJ∂zj − gJ,j∂zj f I,idzJ ∧ dzI∂zi .

This bracket endows Ω0,•(X, TX) with the structure of a dg Lie algebra where the
differential is ∂. This leads to the following definition; for a recollection of terminology
on local complexes and local Lie algebras we refer to [CG17].

Definition 1.1. Let TX be the local dg Lie algebra whose underlying complex of vector
bundles is

(1.2) Ω0,•(X, TX).

The differential is the ∂-operator associated to the holomorphic bundle TX. The bracket
is the Lie bracket of holomorphic vector fields extended to the Dolbeault complex as
described above.

When X = Cn we will abusively refer to this local dg Lie algebra simply as T.

By Dolbeault’s theorem, for U ⊂ X a Stein open set there is a quasi-isomorphism
TX(U) ' Vecthol(U), the Lie algebra of holomorphic vector fields on U.

There is also the following relationship between T and formal vector fields, which
will be used subsequently. Let E → M denote a Z-graded vector bundle on M. We
consider the pro vector bundle of ∞-jets which we will denote by j∞E, see [And92]
or [Cos11, §5.6] for instance. The sheaf of smooth sections of this pro vector bundle
carries the natural structure of a DM-module. If L = Γ(L) is a local L∞ algebra then
j∞L is a bundle of L∞ algebras.
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Lemma 1.2. The map

(1.3) j∞
0 : T(Cn)→ vect(n)[[z, dz]]

induces a quasi-isomorphism of dg Lie algebras j∞
0 T(Cn) ' vect(n).

2. ANOMALIES AND DESCENT

In this section we rely on the quantum Batalin–Vilkovisky formalism as developed
in the series of books [CG17; CG21].

2.1. Anomalies as local functionals. Let E be a vector bundle on a smooth manifold
M. The C∞

M-module of local functionals on M is

(2.1) Oloc(E) def
= DensX ⊗DM ∏

n>0
HomC∞

M
(jet(E), C∞

M) ,

where DM is the algebra of differential operators and jet(E) is the ∞-jet bundle of E.
Concretely, if M is equipped with a volume form, a section of Oloc(E) is a linear com-
bination of objects of the form

(φ1, . . . , φn) 7→ [(D1φ1 · · ·Dnφn) dvolM]

where φi denote sections of E, where Di are differential operators E → C∞(M), and
where [−] means equivalence classes up to total derivative.

Suppose that (E, ω, S) is a classical BV theory on a smooth manifold M. This means,
in particular:

• E = Γ(M, E) is sections of a Z-graded vector bundle E→ M.
• ω : E ⊗ E → DensM[−1] is a density valued, non-degenerate, pairing of de-

gree −1.
• S ∈ Oloc(E) is a local functional of cohomological degree zero.

The BV anti-bracket induced from ω equips the complex Oloc(E)[−1] with the struc-
ture of a graded Lie algebra. The classical master equation is the condition that S be
a Maurer–Cartan element {S, S} = 0. Equivalently, we can decompose {S,−} =

Q + {I,−} where S(Φ) = ω(φ, Qφ) + I(φ). Then the classical master equation is
QI + 1

2{I, I} = 0. When this equation holds, the operator {S,−} is square-zero and
endows

(2.2) (Oloc(E), {S,−}) ,

with the structure of a dg Lie algebra.
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Our goal in the remainder of the section is recall the various versions of symme-
try that a theory in the BV formalism can exhibit. To that end, suppose that g is an
arbitrary dg Lie algebra. Then we can define its Chevalley–Eilenberg complex C•(g)
which is a commutative dg algebra. Furthermore, we can tensor with a shift of local
functionals

(2.3) C•(g)⊗Oloc(E)[−1]

to obtain a dg Lie algebra. The subcomplex

(2.4) C•red(g)⊗Oloc(E)[−1]

is a sub dg Lie algebra. To write this in a slightly more symmetric way, we recall that S
equips E[−1] with the structure of a local L∞ algebra such that {S,−} is precisely the
Chevalley–Eilenberg differential. Thus we can write this sub dg Lie algebra as

(2.5) C•red(g)⊗ C•loc(E[−1])[−1].

Let L be a local dg Lie algebra (our main example is the local dg Lie algebra TX from
the previous section). The Chevalley–Eilenberg differential equips the C∞

M-module of
local functionals Oloc(L[1]) on the shift of L with the structure of a cochain complex
which we denote C•loc(L) There is a cochain embedding

(2.6) C•loc(L)(M) ⊂ C•red(L(M))

from local cochains (by our conventions, local cochains are always reduced) to ordi-
nary Chevalley–Eilenberg cochains of the dg Lie algebra of global sections L(M).

Furthermore, the Lie bracket in (2.5) restricts to a Lie bracket on the subcomplex

(2.7) C•loc(L⊕ E[−1])[−1] ⊂ C•red(g)⊗ C•loc(E[−1])[−1],

thus equipping the left hand side with the structure of a dg Lie algebra.

The embedding of local dg Lie algebras E[−1] → L⊕ E[−1] induces a map of dg
Lie algebras

(2.8) C•loc(L⊕ E[−1])[−1]→ C•loc(E[−1])[−1] = Oloc(E)[−1].

Let InnerAct(L,E) denote the kernel of this map. The map of local dg Lie algebras
L⊕ E[−1]→ L induces an inclusion of dg Lie algebras

(2.9) C•loc(L)→ C•loc(L⊕ E[−1])[−1].

This map factors through the dg Lie algebra InnerAct(L,E) ⊂ C•loc(L⊕ E[−1])[−1].
We let

(2.10) Act(L,E) def
= InnerAct(L,E)/C•loc(L)
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be the quotient dg Lie algebra.

As cochain complexes there are isomorphisms

Act(L,E) ' C•loc(L⊕ E[−1])[−1]/ (C•loc(L)[−1]⊕ C•loc(E[−1])[−1])

InnerAct(L,E) ' C•loc(L⊕ E[−1])[−1]/C•loc(E[−1])[−1].

Thus, an element of Act(L,E) is a local functional on the complex L[1] ⊕ E which
does not depend solely on L[1] or E. Likewise, an element of InnerAct(L,E) is a local
functional which does not depend solely on E.

Definition 2.1. Let (E, ω, S) be a classical BV theory and L a local Lie algebra. A
classical L-background is a Maurer–Cartan element

(2.11) SL ∈ Act(L,E)1.

Unwrapping the definitions above, this means that SL is a local functional on L[1]⊕ E

of cohomological degree zero which satisfies the equation

(2.12) dLSL + {S, SL}+ 1
2
{SL, SL} = 0,

where dL is the Chevalley–Eilenberg differential for L.

The equation (2.12) is referred to in [CG21] as the L-equivariant classical master equa-
tion.

In [Cos11] the problem of perturbative quantization of classical theories within the
BV formalism is put within an obstruction-deformation theoretic framework. There
are two main steps to construct a quantization. The first is to construct a renormalized,
or effective action, {I[L]} which is a family of action functionals depending on a scale
parameter L whose L → 0 limit agrees with the classical interaction I (among other
conditions). Additionally, this effective family is required to satisfy the quantum master
equation

(2.13) (Q + h̄4L)eI[L]/h̄ = 0,

where4L is the effective BV Laplacian.

Starting with a classical BV theory (E, ω, S = Skin + I), the problem of quantization
order by order in h̄ is controlled by the dg Lie algebra Oloc(E)[−1]. While there are
possibly many inequivalent ways to quantize a theory, even at one-loop, there is a
scheme-dependent obstruction to the one-loop quantization of a classical BV theory
which is measured by a degree +1 cohomology class

(2.14) Θ1−loop ∈ H1
loc(E) = H2 (Oloc(E)[−1], {S,−}) ,
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obtained as the L → 0 limit of the quantum master equation (in other words, it is the
failure for an effective action to solve the master equation). Similarly, if a quantization
exists and is fixed to order h̄n−1 there is an obstruction Θn−loop ∈ H1

loc(E) to extending
this to a quantization to order h̄n.

Now we turn to the question of the equivariant quantization; more specifically, the
quantization of L-backgrounds as defined above. Here is the summary of the defini-
tion, we refer to [CG21][Definition 13.2.2.1] for the full definition.

Definition 2.2. Suppose {I[L]} is an effective family of interactions describing a quan-
tum field theory (satisfies, amongst other conditions, the ordinary quantum master
equation (2.13)). A quantum L-background is a family of effective actions

(2.15) IL[L] ∈ O(L[1]⊕ E)/O(L[1])[[h̄]]

which agrees with I[L] modulo functionals of L[1] and satisfies the following equi-
variant master equation

(2.16) dL IL[L] + QIL[L] +
1
2
{IL[L], IL[L]}L + h̄4L IL[L] = 0

in O(L[1]⊕ E)/O(L[1])[[h̄]].

Likewise, an inner quantum L-background is an effective family in a bigger class of
functionals

(2.17) IL[L] ∈ O(L[1]⊕ E)[[h̄]]

satisfying the same quantum master equation.

In the equivariant context the dg Lie algebras Act(L,E) and InnerAct(L,E) control
different equivariant quantization situations, analogously to how the dg Lie algebra
Oloc(E)[−1] controls the non-equivariant situation. For simplicity, we consider the
problem of quantization to one-loop. Throughout, we assume that a fixed quanti-
zation of the classical BV theory (E, ω, Q) is fixed at one-loop (in particular the one-
loop obstruction Θ1−loop vanishes). The complex which controls quantizations of a
classical L-background while leaving this quantization of the BV theory fixed is pre-
cisely Act(L,E).

Proposition 2.3. Let SL ∈ Act(L,E) be a classical L-background and suppose S1−loop =

S + h̄S(1) is a one-loop quantization of a classical BV theory (E, ω, S). The obstruction to
lifting this to a one-loop L-background is an element

(2.18) ΘL,E ∈ H2 (Act(L,E)) ,
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which, in this situation, lifts to an element

(2.19) ΘL,E ∈ H1
loc (Ln E[−1] | L) .

Similarly, the obstruction to lifting this to a one-loop inner L-background is an element

(2.20) ΘL ∈ H2 (InnerAct(L,E))

which, in this situation, lifts to an element

(2.21) ΘL ∈ H1
loc(L) = H2 (C•loc(L)[−1]) .

2.2. Central charges. The local cohomology classes of cohomological degree one de-
serve a special name which takes the form of the following terminological definition.

Definition 2.4. The space of central charges for a local Lie algebra L is the vector space

(2.22) H1
loc(L).

In particular, an obstruction to a quantum inner L-background determines a central
charge for L.

The motivation for this definition is the following. Suppose that our local Lie al-
gebra L = Γ(L) is defined on Rd. Typically, a current is a (d − 1)-form valued in
Lagrangian densities. More generally, for L a local Lie algebra, we obtain the space
of currents valued in Lc by evaluating on the codimension one sphere Sd−1. Here
Lc = Γc(L) is the cosheaf of compactly supported sections of the underlying vec-
tor bundle L. Some care must be taken in this definition, since strictly it only makes
sense to evaluate L on open subsets; thus one should consider the value of L on open
sets which are infinitesimal neighborhoods of the (d − 1)-sphere. In nice situations,
which we will turn to momentarily, the value of L on a neighborhood of the form
(−ε, ε)× Sd−1 can be written as

(2.23) Ω•c (−ε, ε)⊗ gSd−1

where gSd−1 is some dg Lie (or more generally L∞) algebra. We call gSd−1 the Lie algebra
of Sd−1-currents associated to L.

Now suppose that φ ∈ C1
loc(L) is a local cocycle of cohomological degree +1. As-

sume its value on (−ε, ε)× Sd−1 can be expressed as
∫ ε
−ε�ψ where

•
∫ ε
−ε : Ω•c (−ε, ε)→ C[−1] is the (degree one) integration map along the interval,

and
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• ψ is a degree two cocycle for the Lie algebra gSd−1 . Automatically, ψ is of coho-
mological degree two since integration along the interval is of cohomological
degree one.

In this situation, ψ determines a central extension

(2.24) 0→ C→ ĝSd−1 → gSd−1 → 0,

and we interpret gSd−1 as the Lie algebra of centrally extended currents associated to L

and φ.

We consider an example, studied in [GW21]. Let g be an ordinary Lie algebra and
consider the following local Lie algebra defined on Cn = R2n

(2.25) L = g⊗Ω0,•(Cn).

Take the neighborhood Cn − 0 = R× S2n−1 of the sphere. In this situation, there is a
dense embedding of g-valued derived algebraic sections of the structure sheaf into the
spherical currents

(2.26) g⊗ RΓ(Dn − 0,O) ↪→ gS2n−1 .

Any invariant and symmetric homogenous polynomial θ ∈ Symn+1(g)G determines a
local cocycle for g⊗Ω0,•(Cn) defined by

(2.27) φ(α0, . . . , αn) =

∫
Cn

θ(α0∂α1 · · · ∂αn).

The corresponding cocycle ψ is precisely the higher dimensional Kac–Moody cocycle
[FHK19]:

(2.28) ψ( f0, . . . , fn) =

∮

S2n−1

θ(α0∂α1 · · · ∂αn)

where f0, . . . , fn ∈ g⊗ RΓ(Dn − 0,O) ⊂ gS2n−1 . Thus, every choice of “level” θ defines
a central extension of the spherical currents. In [GW21] we prove that such θ label
all such central charges for this local Lie algebra which are GL(n) and translation
invariant.

Similarly, one could start with the local Lie algebra T resolving holomorphic vector
fields on Cn. We will explain a characterization of central charges in this case in the
next section. We will not, however, return to the resulting higher dimensional Virasoro
algebras such central charges determine. We refer to [BW23] for results in the complex
two-dimensional setting.
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2.3. Diffeomorphism anomalies and Gelfand–Fuks cohomology. We turn our atten-
tion to the holomorphic version of diffeomorphism, or gravitational, anomalies. As
recollected, the underlying local Lie algebra describing infinitesimal holomorphic dif-
feomorphisms is T, which resolves the Lie algebra of holomorphic vector fields.

The following result characterizes, in any dimension, the local anomalies to holo-
morphic reparametrization invariance.

Theorem 2.5. [Wil24] On flat space X = Cn there is a quasi-isomorphism

(2.29) C•loc (T(C
n)) ' C•red(vect(n))[2n].

The space of central charges (on flat space) for T is

(2.30) H1
loc(L(C

n)) ' H2n+1(vect(n)).

Consider the one-dimensional case n = 1. Then the space of central charges for
holomorphic vector fields is H3(vect1), which is one-dimensional. By transgression
this space is naturally isomorphic to the cohomology of the holomorphic Witt algebra
witt = C((z))∂z, which is the Lie algebra of vector fields on the punctured formal disk.
The unique (up to scale) central charge for the local Lie algebra T(C) corresponds to
the usual central charge in conformal field theory. As a local cocycle for T(C), a local
representative for this central charge is

(2.31) φ(µ, µ′) =

∫
C

Jµ ∧ ∂(Jµ′).

Of course, in coordinates µ = f (z, z)∂z, where f (z, z) is a Dolbeault form of type (0, •),
this recovers the familiar expression for the Virasoro cocycle.

In the notation of the previous section, the space of spherical currents in this ex-
ample receives a dense embedding of the Lie algebra of algebraic vector fields on the
punctured disk C[z, z−1]∂z ↪→ gS1 . The corresponding cocycle for C[z, z−1]∂z, denoted
ψ above, is the standard Virasoro cocycle.

We comment that the result above can be generalized. In [Wil24], see also [Wil], it
is shown that for any complex manifold X of complex dimension n that there is an
isomorphism

(2.32) H•loc(T(X)) ' H•dR(X)⊗ H•(vect(n))[2n].

When X = Cn we recover the result as stated above.
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2.4. The holomorphic a, c anomalies. In the last section we have seen how the space
of central charges for the local Lie algebra of holomorphic vector fields can be ex-
pressed in terms of the Gelfand–Fuks cohomology of formal vector fields. In this sec-
tion we recall an elegant description of this cohomology, following [Fuk86] and match
with explicit representatives of the corresponding local cocycles in complex dimension
two.

Let Gr(n, k) be the complex Grassmannian of n-planes in Ck. Denote by Gr(n, ∞)

the colimit of the natural sequence of topological spaces

(2.33) {?} → Gr(n, n + 1)→ Gr(n, n + 2)→ · · · .

It is a standard fact that Gr(n, ∞) is a model for the classifying space BGL(n) of rank
n vector bundles. From the colimit description, this results in the skeletal filtration of
the classifying space:

(2.34) skkBGL(n) = Gr(n, k).

Let Xn denote the restriction of the universal bundle EGL(n) over the 2n-skeleton:

(2.35)

Xn EGL(n)

sk2nBGL(n) BGL(n).

Theorem 2.6 ([Fuk86] Theorem 2.2.4). There is an isomorphism of graded commutative
algebras

(2.36) H•(vect(n)) ∼= H•dR(Xn).

The commutative product is the trivial one.

Note that when n = 1 we have sk2BU(1) = P1 ⊂ P∞ = BU(1). Moreover, the
restriction of the universal bundle is the Hopf fibration U(1) → S3 → P1 so that
X1 ' S3.

It will be useful to say a few words about the proof of this theorem, as we will need
a more general version to discuss mixed anomalies shortly.

For a Lie algebra g with a subalgebra h ⊂ g the relative Lie algebra cohomology is
defined to be the cohomology of the subcomplex

(2.37) C•(g | h) ⊂ C•(g)

which consists of h-invariant cochains φ ∈ C•(g) satisfying ιXφ = 0. Here ιX : C•(g)→
C•−1(g) is the contraction with an element X ∈ h. The Hochschild–Serre spectral
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sequence for a subalgebra h ⊂ g is a spectral sequence whose E2 page is given in
terms of relative Lie algebra cohomology

(2.38) E2 ' H•(g, h)⊗ H•(h),

and converges to the absolute Lie algebra cohomology H•(g).

In the current context we are interested in the absolute cohomology of vect(n).
The key idea is that the Hochschild–Serre spectral sequence for the subalgebra gln ⊂
vect(n) consisting of linear vector fields can be interpreted geometrically in terms of
classifying spaces. One can identify the relative Lie algebra cohomology H•(vect(n) | gln)
with the cohomology of the 2n-skeleton sk2n BGL(n). This identification can be ex-
tended to an isomorphism of spectral sequences between the Serre spectral sequence
computing the cohomology of Xn, as a GL(n) space over the 2n-skeleton, and the
Hochschild–Serre spectral sequence for the subalgebra gln ⊂ vect(n) converging to
the absolute cohomology of vect(n).

An immediate application of the Serre spectral sequence shows that first nontrivial
cohomology above degree zero of Xn is in degree 2n + 1 and we have

(2.39) H2n+1(vect(n)) ' H2n+1(Xn) ' H2n+2(BGL(n)).

In other words, the degree 2n + 1 cohomology of formal vector fields is isomorphic to
degree 2n + 2 polynomials built from universal characteristic classes of rank n vector
bundles.

In the previous section we have argued that the space of holomorphic diffeomor-
phism anomalies in n-dimensions, the space of central charges for T, is precisely this
first non-trivial cohomology group of Xn. When n = 1 we have that X1 ' S3 hence
the space of central charges for holomorphic vector fields in complex dimension one is
one-dimensional, as expected (all being multiples of the universal characteristic class
is c2

1 ∈ H4(BGL1)). When n = 2 we see that the space of central charges is two-
dimensional

(2.40) H1
loc(T(C

2)) ' H5(vect2) ' H6(BGL(2)) = C · c3
1 ⊕ C · c1c2

spanned by the universal characteristic classes c3
1 and c1c2.

It will be convenient for our purposes to relabel this cohomology in terms of the
degree six components of the universal Chern character:

(2.41) ch3
1 = c3

1, ch1 ch2 =
1
2
(
c3

1 − 2c1c2
)

.
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Any holomorphic diffeomorphism anomaly represented by a class Θ ∈ H5(vect(n))
can be written as a linear combination of these universal classes

(2.42) Θ = ahol · ch1 ch2 +chol · ch3
1 .

We will see momentarily how the coefficients ahol , chol are related to the standard a, c
anomalies in four-dimensional conformal geometry.

We state explicit local models for the central charges ch1 ch2, ch3
1.

Proposition 2.7. The following are explicit degree one local cocycle representatives for the
classes ch1 ch2 and ch3

1:

(2.43) Θahol =
1
12

∫

C2

tr(Jµ) tr(∂Jµ∂Jµ),

and

(2.44) Θchol =
1
6

∫

C2

tr(Jµ) tr(∂Jµ) tr(∂Jµ)

respectively.

Proof. The arguments that follow are elaborated in [Wil24].

There are two main steps. The first is to identify explicit representatives in the coho-
mology of formal vector fields. The second is in passing from Gelfand–Fuks classes in
H5(vect(2)) to local cohomology classes in H1

loc(T(C
2)). Both steps follow the general

principle of descent.

The first step is accomplished by considering the double complex associated to
the Lie algebra cohomology of vect(2) with coefficients in the formal de Rham com-
plex Ω•(D̂2). Since the de Rham complex is quasi-isomorphic to C in degree zero,
the resulting spectral sequence converges to H•(vect(2)). The first page of the spec-
tral sequence is generated, as an bigraded algebra, by generators a1, a2 of bidegree
(0, 1), (0, 3) respectively and by generators (τ1, τ2) of bidegree (1, 1), (2, 2) respectively.
These generators are subject to the relations τ3

1 = τ1τ2 = τ2
2 = 0. In degree five, the

following two classes remain at the E∞ page: a1τ2
1 , a1τ2 which are represented by the

totally skew symmetric tri-linear functionals on vect(2) with values in Ω2(D̂2):

a1τ2
1 : (X0, X1, X2) 7→ tr(JX0) tr(dJX1 ∧ tr(dJX2) + · · ·

a1τ2 : (X0, X1, X2) 7→ tr(JX0) tr(dJX1 ∧ dJX2) + · · · .

The · · · denote appropriate skew-symmetrization.
14



The passage from Gelfand–Fuks classes to local cohomology classes uses descent for
the ∂-operator. If φ is one of the representatives above, we can extend it to a functional
on T = Ω0,•(C2, T) with values in densities on C2 and can then take the local class.
The resulting local functional is of total degree +1 since the functionals are cubic and
must have anti-holomorphic Dolbeault degree which sums to two. �

2.5. Mixed anomalies. In this section we generalize the discussion of holomorphic
diffeomorphism anomalies on Cn to anomalies for a local Lie algebra built from both
infinitesimal holomorphic diffeomorphisms and infinitesimal holomorphic gauge sym-
metries. For gauge symmetries of the trivial holomorphic G-bundle, the local Lie al-
gebra is the semi-direct product local Lie algebra

(2.45) TX n g⊗Ω0,•
X .

Where the local Lie algebra TX resolving holomorphic vector fields acts by Lie deriva-
tive on the Dolbeault complex for the trivial bundle.

Our goal is to describe, just as we did in the case of TX, the space of anomalies for
the existence of quantum backgrounds with respect to this local Lie algebra. Follow-
ing the discussion of section 2.1 the space of such anomalies is the degree one local
cohomology

(2.46) H1
loc(TX n g⊗Ω0,•

X ).

We will use the characterization, in particular, to describe diffeomorphism anomalies
for holomorphic gauge theory in 3.4. In analogy with the case that the group G is
trivial, we have the following result, which can be proved by similar methods as in
theorem 2.5.

Theorem 2.8. On flat space X = Cn there is a quasi-isomorphism

(2.47) C•loc
(
T(Cn)n g⊗Ω0,•(Cn)

)
' C•red(vect(n)n g⊗On)[2n].

In particular, the space of mixed anomalies can be identified with the following Lie algebra
cohomology

(2.48) H1
loc ' H2n+1(vect(n)n g⊗On).

Like in the case of pure holomorphic diffeomorphism anomalies, we will identify
the space of mixed anomalies with certain characteristic classes. This will be facilitated
by the following result.

15



Theorem 2.9 ([Kho06]). Let G be a compact Lie group and g its complexified Lie algebra.
There is a graded ring isomorphism

(2.49) H•(vect(n)n g⊗On | gln ⊕ g) ' H•≤2n (BGL(n)× BG) ,

where the right hand side is the cohomology of the 2n-skeleton of the product of classifying
spaces.

In this theorem appears the relative Lie algebra cohomology. In our context we are
considering the relative cohomology with respect to the subalgebra

(2.50) gln ⊕ g ⊂ vect(n)n g⊗On

consisting of linear vector fields and constant g-valued functions. Using Khoroshkin’s
result we can proceed similarly as in the case g = 0 (see theorem 2.6 and the discus-
sion following) to identify the absolute Lie algebra cohomology in terms of classifying
spaces. Indeed, let Yn be the restriction of the universal bundle over the 2n-skeleton of
BGL(n)× BG. As in the case g = 0, there is an isomorphism between the Hochschild–
Serre spectral sequence for the subalgebra (2.50) and the Serre spectral sequence for
the GL(n)× G-space Yn over the 2n-skeleton of BGL(n)× BG. This leads to the fol-
lowing.

Theorem 2.10. Let G be a compact connected Lie group and g is complexified Lie algebra.
There is an isomorphism of graded rings

(2.51) H•(vect(n)n g⊗On) ' H•(Yn).

In particular, there is an isomorphism

(2.52) H2n+1(vect(n)n g⊗On) ' H2n+2(BGL(n)× BG).

Notice that when G is the trivial group we have Yn = Xn and this result recovers
the result of Fuks that we recollected in theorem 2.6. From this theorem we see that
the space of mixed anomalies is isomorphic to H2n+2(BGL(n)× BG). As in the case of
pure holomorphic diffeomorphism anomalies, we can match such cohomology classes
with explicit classes in the local cohomology of T(X)n g⊗Ω0,•(X).

Let chj ∈ H2j(BGL(n)), j = 1, . . . , n be the universal Chern characters as before.
Also, let

(2.53) θk ∈ Symk(g∗)G ' H2k(BG)
16



denote an invariant polynomial of polynomial degree k. Then the degree one local
functional corresponding to the class

(2.54) chj⊗θn−j+1 ∈ H2n+2(BGL(n)× BG), j = 0, . . . , n,

for example, is proportional to

(2.55)
∫

Cn

tr(Jµ(∂Jµ)j−1) θn−j+1(∂A, . . . , ∂A).

This can further be extended to the case j = 0. In this case, the local functional corre-
sponding an invariant polynomial θn+1 on g of polynomial degree n + 1 is

(2.56)
∫

Cn

θn+1(A, ∂A, . . . , ∂A).

This type of local cocycle, which does not involve any holomorphic vector fields, was
studied in [GW21] where it is shown how it relates to higher dimensional Kac–Moody
algebras [FHK19].

3. HOLOMORPHIC THEORIES AND THEIR QUANTUM ANOMALIES

3.1. A local index theorem from free field theory. To any elliptic complex (E, Q) on
a manifold M there exists a free theory in the Batalin–Vilkovisky formalism whose
complex of fields (including ghosts, fields, anti-fields, etc.) is ‘double’ the size of E:

(3.1) T∗[−1]E = E⊕ E![−1],

see [CG21, Section ??]. Here E! stands is the elliptic complex which is given by sections
of the bundle E∗⊗DensM and whose differential is Q∗⊗ 1; here E is the bundle whose
sections is the underlying graded vector space of the elliptic complex E. A field is a
section of T∗[−1]E which we denote by the tuple (γ, β). The BV anti-bracket on ob-
servables is determined by the natural (−1)-shifted symplectic structure on the shifted
cotangent space—explicitly this utilizes the natural integration pairing between sec-
tions of E and sections of E∗ ⊗DensM. The action functional is given by

(3.2)
∫
M

β(Qγ),

so that the equations of motion imply, in particular, that γ is Q-closed.

Some examples of this constructions may be familiar. If M is just a smooth manifold,
then taking E = Ω•(M)[1] to be the shifted smooth de Rham complex of M results in
the BV description of abelian topological BF theory. If M = Σ is a Riemann surface
then E = Ω0,•(Σ, K⊗r) recovers the spin r bosonic ghost system used in string theory.

17



Next, let L be a local L∞ algebra on M and suppose that the elliptic complex E is a
local L-module. The coupling

(3.3) SL(α; β, γ) =

∫
M

β(α · γ),

determines an element SL ∈ Act(L; T∗[−1]E). By the virtue that E is a L-module this
coupling automatically satisfies the equivariant classical master equation (2.12). Thus,
any local L-module E defines a classical L-background for the resulting free BV theory
T∗[−1]E.

Since E is a free theory there is no obstruction to lifting SL to a quantum L-background.
There is, nevertheless, an obstruction to lifting this to an inner quantum L-background.
This obstruction admits an elegant description.

Theorem 3.1 ([Gwi12]). Let (E, Q) be an elliptic complex which is equipped with a local L-
action, where L is some local Lie algebra. Endow the BV theory T∗[−1]E with the structure of
a classical L-background via SL in equation (3.3). The anomaly to the existence of a quantum
inner L-background for T∗[−1]E is the trace of the action of L on T∗[−1]E.

We specialize to when M = X is a complex n-manifold. The basic free holomorphic
theory we consider is labeled by a holomorphic vector bundle V on X. The elliptic
complex is the Dolbeault complex resolving the sheaf of holomorphic sections of V:

(3.4) EV = Ω0,•(X, V).

The action functional
∫

X β∂γ returns the familiar free action of the βγ-ghost system
used in string theory. Notice that in dimension n, however, that the field β is an ele-
ment

(3.5) β ∈ Ωn,•(X, V∗)[n− 1],

whose degree zero component is a field of Dolbeault type (n, n− 1).

The following will be the most important case for us. We assume that V → X is a
natural holomorphic vector bundle; meaning a bundle built from the tangent bundle
by taking duals, tensor products, direct sums, cohomological shifts etc.. This implies
that the space of holomorphic sections of V is equipped with the structure of a rep-
resentation for the Lie algebra of holomorphic vector fields. The action is by the Lie
derivative. This action extends in a natural way to a local TX-module structure on the
elliptic complex EV resolving the sheaf of holomorphic sections of V.

Summarizing, we have the following.
18



Proposition 3.2. If V → X is a natural holomorphic vector bundle then the corresponding
BV theory T∗[−1]EV is equipped with a TX-background defined by the coupling

(3.6) ST(µ; β, γ) =

∫
X

β(Lµγ),

where Lµ denotes the Lie derivative.

In this context we can use 3.1 to obtain a geometric description of the obstruction to
this lifting to an inner TX-background.

3.2. Riemann–Roch theorem and anomalies. Let M denote the moduli stack of com-
plex n-manifolds. For the purposes of this note we will not need a precise model for
this moduli space, but we will use the following features:

(1) There is a universal complex manifold π : X → M whose fiber over an n-
manifold X ∈M is X itself.

(2) Any natural bundle (one built from the holomorphic tangent bundle by taking
duals, tensor products, direct sums etc.) defines a vector bundle on the uni-
versal n-manifold. For example, there is a universal tangent bundle Tuniv → X

whose restriction to a complex n-manifold X yields TX.
(3) A model for the tangent complex of M at a fixed complex n-manifold X is the

dg Lie algebra

(3.7) TXM ' TX = Ω0,•(X, TX).

The last item is a formal version of the formalism of Kodaira and Spencer which
says that the formal moduli problem for deforming complex structures is controlled by
the dg Lie algebra TX. This means that a formal deformation of a complex n-manifold
is a Beltrami differential

(3.8) µ ∈ Ω0,1(X, TX)

which satisfies the Maurer–Cartan equation

(3.9) ∂µ +
1
2
[µ, µ] = 0.

The deformed complex n-manifold has Dolbeault complex

(3.10)
(

Ω0,•(X), ∂ + µ
)

.

In other words, a formal deformation has the effect of modifying the ∂ operator as
∂  ∂ + µ. The condition that this squares to zero is precisely the Maurer–Cartan
equation.
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Now suppose that V → X is a universal holomorphic vector bundle. We then obtain
a family of elliptic complexes EV over X whose fiber over a complex n-manifold X ∈M

is the elliptic complex EX,V from (3.4). To get a family over the moduli of complex
structures M we take the (derived) pushforward along π : X→M to get the family of
elliptic complexes Rπ∗EV over M. The determinant of this virtual bundle is a special
case of the determinant, or anomaly, line bundle [Fre87; Kvi85] associated to a family
of ∂-operators parameterized by a moduli of complex structures.

Now we consider the formal completion of M at X. By the expectation (3) above,
the formal moduli space MX̂ is described by the dg Lie algebra TX:

(3.11) MX̂ ' BTX.

The resulting family Rπ∗EV over the formal completion corresponds to a TX-representation
which is precisely encoded by the TX-background (3.6).

The consequence of theorem 3.1 is that the one-loop anomaly for an inner TX-
background is the first Chern class of the virtual bundle Rπ∗EV .

Proposition 3.3. Let V be a natural holomorphic vector bundle and consider the resulting
TX-background for the BV theory T∗[−1]EX,V . When X = Cn, the anomaly to lifting this to
an inner TX-background is given by the class

(3.12) Td · ch(V)|2n+2 ∈ H2n+2(BU(n)) ' H2n+1(vect(n)) ↪→ H1
loc(T(X)).

The consequence of this result in the complex one-dimensional case is hopefully
familiar. The ghost system for the bosonic string is the free theory based off of the
complex EΣ,TΣ[1], where TΣ[1] is the holomorphic tangent bundle shifted down by one.
The resulting anomaly in terms of universal Chern characters is

(3.13) Td · ch(T[1])|4 = −
(

1 +
1
2

c1 +
1

12
c2

1

)(
1 + c1 +

1
2

c2
1

)
|4 = −13

12
c2

1.

The typical normalization for the generator of the Virasoro central charge is 1
24 c2

1, im-
plying that the central charge of this free system is c = −26 as expected. To compare,
the anomaly associated to the complex free boson CFT is 1

12 c2
1; thus recovering the

fact that the obtained by gauging 13 complex copies of the free boson by holomorphic
vector fields is anomaly free.

Let’s move to the complex n = 2 dimensional situation. As an example, consider
the case where V is the trivial rank one bundle. Then the universal Riemann–Roch
theorem implies that the anomaly is represented by the local cocycle corresponding to
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the universal class

(3.14) Td |6 = − 1
24

ch1 ch2 +
1
48

ch3
1 .

In other words ahol(V = triv) = −1/24, chol(V = triv) = 1/48 so that

(3.15) − 4π2ΘV=triv = − 1
24

∫

C2

tr(Jµ) tr(∂Jµ∂Jµ) +
1
48

∫

C2

tr(Jµ) tr(∂Jµ) tr(∂Jµ).

We can generalize this example to an arbitrary natural line bundle which we will
write as V = Kλ for λ a rational number, where K is the canonical bundle on C2. We
record the result here.

Lemma 3.4. There are the following expressions for the holomorphic central charges associated
to the free holomorphic theory T∗[−1]EKλ :

(3.16) ahol(Kλ) =
1
24

r and chol(Kλ) = − 1
48

r3,

where r = 2λ− 1.

Proof. This follows from the expression in universal Chern classes

(3.17) Td · ch(Kλ)
∣∣∣
6
=

1
12

(
λ− 1

2

)
ch1 ch2−

1
6

(
λ− 1

2

)3

ch3
1,

which is straightforward to verify. �

Observe that under λ 7→ 1− λ one has r 7→ −r. In particular, ahol and chol satisfy

(3.18) ahol(Kλ) = −ahol(K1−λ), chol(Kλ) = −chol(K1−λ).

3.3. Computing the anomaly using the holomorphic gauge. Recall that the free part
of a holomorphic theory is determined by the ∂ operator associated to some holo-
morphic vector bundle. In [Wil20] it is shown that any holomorphic theory admits
a natural gauge where the gauge fixing operator is QGF = ∂

?
. The corresponding

renormalization is well-behaved. On flat space Cn the main results concerning renor-
malization for holomorphic theories can be summarized as follows.

Theorem 3.5 ([Wil20]). Suppose (E, ω, S = S f ree + I) is a holomorphic theory on Cn and
let S[L] denote the effective action, at scale L, constructed using the gauge fixing operator
QGF = ∂

?
whose corresponding propagator is Pε<L.
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(1) To first-order in h̄ the effective action is finite

(3.19) I[L] = lim
ε→0

W(PL
ε , I) mod h̄2

In particular, all one-loop counterterms are identically zero.
(2) Suppose the free part of the action is of the form S f ree(Φ) = ω(Φ, ∂Φ). The anomaly

to solving the quantum master equation to first-order in h̄ can be expressed as the sum
over wheels with exactly (d+ 1)-vertices. Explicitly, as a local functional this anomaly
is

(3.20) Θ1−loop = lim
L→0

lim
ε→0

∑
Γ∈Wheeln+1,e

WΓ(Pε<L, Kε, I).

where the sum is over all wheels with (n + 1)-vertices and distinguished edges thereof.
Here Kε is the heat kernel associated to the generalized Laplacian built using the gauge
fixing operator ∂

?
.

Let’s return to the context of the previous section. We consider the free BV theory EV

on X = Cn, where V is some natural vector bundle, in the T-background ST(ξ; β, γ)

from (3.6). In this case we can use the trivialization V ' Cn × V0 to identify the
∂-operator for V with ∂⊗ 1 where ∂ is simply the ordinary ∂-operator on Cn. Corre-
spondingly, we choose the gauge fixing operator is ∂

? ⊗ 1 where ∂
?

is Hodge adjoint
of ∂ constructed using the flat hermitian metric on Cn. Explicitly, the heat kernel is
given by

(3.21) KL(z, w) =
1

(2πiL)n e−|z−w|2/4L ⊗ 1V ∈ EV⊗̂EV [1]

where 1V ∈ V0 ⊗V∗0 represents the identity morphism V0 → V0. The propagator is

(3.22) Pε<L(z, w) =

L∫
T=ε

dT (∂
? ⊗ 1)KT(z, w).

Since T∗[−1]EV is a free BV theory, item (1) of theorem 3.5 implies that

(3.23) SL[L] def
= lim

ε→0
W(PL

ε , I) mod h̄2

is a one-loop quantum T-background. Further, item (2) implies that the obstruction to
lifting this to a one-loop inner T-background is

(3.24) Θ = lim
L→0

lim
ε→0

∑
Γ∈Wheeln+1,e

WΓ(Pε<L, Kε, I),

which automatically determines a degree one cocycle in C•loc(T(C
n)).
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We specialize to complex dimension n = 2. In this case, the anomaly Θ is ex-
pressed as a sum over wheels with three vertices. Since the effective action is GL(2, C)-
invariant it is straightforward to see that based on symmetry the anomaly local cocycle
Θ is cohomologous to a linear combination of the cocycles Θhol

a and Θhol
c from propo-

sition 2.7. That is

(3.25) − 4π2ΘV = ahol(V)Θahol + chol(V)Θchol

for some coefficients ahol(V), chol(V). Instead of computing these coefficients explicitly
using the effective action, which appears to be quite cumbersome, we will refer to the
Riemann–Roch theorem as outlined in the previous subsection to fix them.

3.4. Riemann–Roch theorem for mixed anomalies. So far we have only discussed
anomalies for the action of holomorphic vector fields on free theories within the BV
formalism. These anomalies are avatars of gravitational, or conformal, anomalies as
portrayed in the physics literature. For non-free theories, like gauge theories, there are
also possible internal anomalies, like gauge anomalies, which must be trivial in order
for quantization to exist.

In this section we consider anomalies present when holomorphic gauge theory is
put in a T-background. In addition to the holomorphic gravitational anomalies we
have been focused on thus far, there will also be pure gauge and mixed anomalies
which must be trivialized. To make the discussion as parallel as possible with the case
of pure diffeomorphism anomalies, we consider the case that both diffeomorphisms
and gauge symmetries are considered as background fields. From this we will be able
to deduce mixed anomalies for interacting gauge theories.

Let G be a Lie group. Let MG denote the moduli of pairs (X, P) of a complex n-
manifold X together with a principal holomorphic G-bundle P on X.

As in the case of complex n-manifolds, we will not develop a precise model for this
moduli space, but we will use the following expected features:

(1) There is a universal moduli π : XG →MG whose fiber over a pair (X, P) ∈MG

is the principal bundle P→ X itself.
(2) Any natural bundle (one built from the holomorphic tangent bundle by taking

duals, tensor products, direct sums etc.) together with a representation of G
defines a vector bundle on the universal n-manifold.
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(3) A model for the tangent complex of M at the pair (X, Ptriv), where Ptriv is the
trivial G-bundle, is the semi-direct product dg Lie algebra

(3.26) TXMG '= Ω0,•(X, TX)n Ω0,•(X)⊗ g.

This dg Lie algebra is a resolution of the sheaf of holomorphic sections of the
sheaf of Lie algebras Thol

X nOhol ⊗ g.

The last point says that a formal deformation of a pair (X, Ptriv) is a Beltrami differ-
ential µ ∈ Ω0,1(X, TX), satisfying (3.9), as before together with a (0, 1) connection

(3.27) A ∈ Ω0,1(X)⊗ g

which together satisfy the Maurer–Cartan equation

(3.28) (∂ + µ)A +
1
2
[A, A] = 0.

The deformed complex n-manifold has Dolbeault operator ∂ + µ and the deformed
principal bundle has Dolbeault operator ∂ + A.

Proposition 3.6. Let V be a natural holomorphic vector bundle equipped with a G-action
and consider the resulting TX n Ω0,•

X ⊗ g-background for the BV theory T∗[−1]EX,V . When
X = Cn, the anomaly to lifting this to an inner TX n Ω0,•

X ⊗ g-background is given by the
class

(3.29) Td · chGL(n)×G(V)
∣∣∣
2n+2

∈ H2n+2(BGL(n)× BG) ↪→ H1
loc(T(X)nΩ0,•(X)⊗ g),

where chGL(n)×G(V) is the GL(n)× G-character of the representation V.

Let’s consider a simple example when the complex dimension n = 1 and G =

GL1(C) = C×. Suppose that V is the trivial super vector bundle W[ε] = W ⊕ ΠW
where W is some natural vector bundle on a curve. In this case, the pure holomor-
phic gravitational anomaly for the BV theory T∗[−1]EC,W[ε] vanishes. So, the anomaly
corresponds to an element in

(3.30) H2(BGL1)⊗ H2(BG) ⊂ H4(BGL1 × BG),

which turns out to be proportional to c1c̃1 where c1 represents the ‘gravitational’ first
Chern class and c̃1 is the background gauge G = GL1(C) class. Explicitly, as a local
functional this class is represented by

(3.31)
∫
C

Jµ Tr(∂A)

where µ is a background holomorphic vector field and A is a background gauge field.
This anomaly was found independently in [GRW21] where it is interpreted as the
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famous Calabi–Yau anomaly for the two-dimensional B-model. Indeed, the holomor-
phic theory we are considering here is a holomorphic twist of the two-dimensional
N = 2 chiral multiplet valued in W. The GL1(C)× GL1(C) represents, at the group
level, the dilations and R-symmetry which remains inside of the two-dimensional
N = 2 superconformal algebra after twisting.

3.5. Holomorphic gauge theories. In this section we have only discussed anomalies
for background holomorphic diffeomorphism symmetry or background holomorphic
gauge symmetry where it suffices to just consider the underlying free theory. For non-
free theories, like gauge theories, there are also possible internal anomalies, like gauge
anomalies, which must be trivial in order for quantization to exist. In this section
we explain how holomorphic diffeomorphism symmetry mixes with possible internal
gauge symmetries.

The idea is the following. We start with a holomorphic gauge theory which has a
background symmetry by holomorphic vector fields. Before discussing the issue of
quantizing this background symmetry, we first need to know that the gauge theory
has no internal anomaly. Once this internal anomaly is trivialized, we can then treat
the underlying free theory as a theory with a background symmetry by T n Ω0,• ⊗ g.
We then treat the problem just as we did before with two caveats. First, since we have
already trivialized the pure gauge anomaly, it suffices to only look at anomalies which
depend non-trivially on a holomorphic vector field. Second, the terms in the anomaly
which have a nontrivial dependence on the gauge field represent the anomaly to hav-
ing a quantum T-background. Once these are trivialized, we can then contemplate the
anomaly to having a quantum inner T-background; this is represented by the terms in
the anomaly which are independent of the gauge field.

Let’s consider an explicit example. Let g be a Lie algebra of a compact Lie group G.
The basic holomorphic gauge theory we consider is holomorphic BF theory which
can be defined on any complex manifold X. Globally, holomorphic BF theory is the
shifted cotangent bundle to the moduli stack of holomorphic G-bundles on X. Within
the perturbative BV formalism the fields consist of pairs

A ∈ Ω0,•(X, g)[1]

B ∈ Ωn,•(X, g∗)[n− 2]
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and the action is of standard BF-type: SBF =
∫

X BFA. This theory enjoys a classical
backround T-symmetry defined by

(3.32) ST =

∫
X

B(Lµ A).

Holomorphic BF theory suffers from an internal gauge anomaly. As usual, we focus
just on the case X = Cn. Using theorem 3.5 one can show the following.

Proposition 3.7. Holomorphic BF theory on Cn is anomalous at one-loop in perturbation
theory. The local functional representing this anomaly is

(3.33) − 1
(n + 1)!

∫
Cn

Trad (A(∂A)n) ,

where the trace denotes the trace is in the adjoint representation of g on itself.

For example, in complex dimension one n = 1, the holomorphic BF theory associ-
ated to any semi-simple Lie algebra is anomalous. In complex dimension two n = 2
the anomaly for holomorphic BF theory vanishes for complex semi-simple Lie alge-
bras.

We now turn to thinking of the underlying free theory as a theory with a back-
ground symmetry by Tn Ω0,• ⊗ g. Such anomalies to quantization will be labeled by
certain elements in

(3.34) H2n+2(BGL(n)× BG)

as in the last section. The thing that distinguishes this discussion from the last section
is that we are assuming that the component in H2n+2(BG), which we just summarized
in the previous proposition, vanishes Explicitly, this is the component− chn+1(TBg) =

− chG
n+1(gad).

The following is a consequence of proposition 3.6.

Proposition 3.8. Suppose chn+1(TBg) = 0. The anomaly to lifting ST to a quantum T-
background is represented by the class

(3.35) − Td · chG(gad)
∣∣∣?
2n+2

= −
n

∑
j=1

Tdj chn+1−j(TBg[1])

∈ ⊕jH2j(BGL(n))⊗ H2n+2−2j(BG) ⊂ H2n+2(BGL(n)× BG)

where the ? indicates that we do not include the component Td2n+2.
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The reason we have not included the term Td2n+2 is that this term represents the
anomaly to having an inner T-action, which is only well-defined once the above class
vanishes. It is very rare that pure holomorphic BF theory admits a quantum T-background;
the above anomaly conditions are very restrictive. We obtain many examples how-
ever, once we include matter. We will detail an explicit example motivated by four-
dimensional supersymmetry in the next section, but for now we state the general re-
sult.

Suppose that V is a G-equivariant natural holmorphic vector bundle on X. Exam-
ples of such bundles include K⊗λ

X ⊗U where U is a G-representation. In particular, on
X = Cn, we can consider its GL(n)× G-character

(3.36) chGL(n)×G(V) ∈ H•(GL(n)× G).

We consider coupling to holomorphic BF theory for the Lie group G the following
holomorphic matter system valued in V. The fields, in the BV formalism, are

(3.37) γ ∈ Ω0,•(X, V)

together with the conjugate field β ∈ Ωn,•(X, V)[n− 1]. The total action functional is

(3.38)
∫
X

BFA +

∫
X

β∂Aγ

where ∂A = ∂+ A. We refer to this as holomorphic BF theory coupled to the βγ system
with values in V. The classical T-background is

(3.39) ST = ST =

∫
X

B(Lµ A) +

∫
X

β(Lµγ).

The proof of the proposition below combines the results above.

Proposition 3.9. Holomorphic BF theory coupled to the βγ system with values in V on Cn is
anomalous at one-loop in perturbation theory. The invariant representing this anomaly is

(3.40) chG
n+1(V)− chG

n+1(g
ad) ∈ H2n+2(BG).

Suppose the invariant (3.40) vanishes. The anomaly to lifting ST to a quantum T-background
is represented by the class

(3.41) Td ·
(

chGL(n)×G(V)− chG(gad)
)∣∣∣?

2n+2
∈ H2n+2(BGL(n)× BG)

where the ? indicates that we do not include the component in H2n+2(BGL(n)).
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Suppose the invariant (3.41) vanishes. Then the T-central charge of the system is

(3.42) Td ·
(

chGL(n)×G(V)− chG(gad)
)∣∣∣

2n+2
∈ H2n+2(BGL(n)).

3.6. Compactification. Suppose we have a holomorphic theory defined on Cn × X
where X is some compact complex manifold of dimension m. Then, we obtain a holo-
morphic theory on Cn via compactification along Cn × X → Cn. We turn to the prob-
lem of characterizing the TCn -anomaly polynomial from the anomaly polynomial in
n + m dimensions.

Recall that the space of anomalies in (n + m)-dimensions is

(3.43) H1
loc(TCn+m) = H2n+2m+1(vect(n + m)) = H2n+2m+2(BU(n + m)).

Let X be a compact m-dimensional manifold, then we have the composition
(3.44)

H2n+2m+2(BU(n + m)) H2n+2m+2(BU(n)× BU(m)) H2n+2(BU(n))

H1
loc(TCn+m) H1

loc(TCn).
∫

X

The first map on the top line is induced from the block diagonal U(n) × U(m) →
U(n + m) and the second map restricts along the tangent classifier X → BU(m) and
then integrates along X. We denote this composition by

∫
X.

Proposition 3.10. If Θ is the anomaly to a quantum T-background on Cn × X then
∫

X Θ is
the anomaly to a quantum T-background on Cn.

As an example, consider the basic higher dimensional βγ system on C× Σ where Σ
is a Riemann surface. The fields are

γ ∈ Ω0,•(C× Σ)

β ∈ Ω2,•(C× Σ)[1].

The compactification along Σ is simply the ordinary βγ system on C with values in
the graded vector space H•(Σ,O)1, whose fields are

γ2d ∈ Ω0,•(C)⊗ H•(Σ,O)

β2d ∈ Ω1,•(C)⊗ H•(Σ, K)[1].

1More accurately, this is the two-dimensional bosonic βγ system with values in H0(Σ,O) coupled to
the two-dimensional fermionic bc system with values in H1(Σ,O).
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In particular, the the TC anomaly polynomial is simply

(3.45) χhol(Σ,O) · 1
12

c2
1 ∈ H4(BU(1)),

where χhol(Σ,O) is the holomorphic Euler characteristic.

On the other hand, we have seen that the universal anomaly on C2 for this higher
dimensional βγ system is simply

(3.46) Td |6 = − 1
24

ch1 ch2 +
1
48

ch3
1 ∈ H6(BU(2)).

Now,
∫

Σ ch = 1 + ch1 +
∫

Σ c1(Σ) where c1(Σ) is the first Chern class of the tangent
bundle of Σ, and

∫
Σ ch2 = 1

2 ch2
1. Since χhol(Σ,O) = 1

2

∫
Σ c1(Σ) we have

(3.47)∫
Σ

Td |6 = − 1
24
· 1

2

∫
Σ

c1(Σ) ch2
1 +

1
48
· 3 ·

∫
Σ

c1(Σ) ch2
1 =

1
12

χhol(Σ,O) ch2
1 ∈ H4(BU(1)).

4. RELATIONSHIP TO THE a, c ANOMALIES

Most of the work up until now held in arbitrary complex dimension. Now we
specialize to complex dimension two, and specifically to holomorphic quantum field
theories obtained from twisting four-dimensional superconformal theories.

As reviewed in the introduction, to a four-dimensional conformal theory one asso-
ciates two invariants. These are the coefficients c of (Weyl)2 and a of (Euler) in the
conformal anomaly 〈Tµ

µ 〉.

A four-dimensional superconformal theory is, in part, a theory which has a symme-
try by the four-dimensional superconformal algebra. There are variants of this algebra
depending on the amount of supersymmetry, but in this section we will only need the
minimal N = 1 supersymmetric version. In particular, being superconformal means
that the theory has a symmetry by the so-called R-symmetry group U(1) which com-
mutes with supersymmetry (and conformal transformations). Crucially, for this sec-
tion, in such a four-dimensional superconformal theory, the coefficients a, c are related
to certain coefficients in the R-symmetry anomaly which we recall momentarily.

This paper concerns holomorphic quantum field theories. To any four-dimensional
supersymmetric theory there is a twist (unique up to R-symmetry, if it exists) which
renders the theory holomorphic [Cos13a; Cos13b; ESW22]. A natural question is: what
structure does the holomorphic twist of a superconformal field theory posess? The an-
swer to this question is one of the main results of [SW23].
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Theorem 4.1 ([SW23]). Suppose T is the holomorphic twist of four-dimensional N = 1
superconformal theory of Yang–Mills type.2 Then T admits a classical T-background.

In other words, the holomorphic twist of a N = 1 superconformal theory admits a
symmetry by holomorphic vector fields. In this sense, we argue in [SW23] that the Lie
algebra of holomorphic vector fields is an enhanced twisted superconformal algebra.

The main result of this section shows how the coefficients a, c of the supersymmetric
theory relate to the T-equivariant anomaly polynomial of the holomorphically twisted
theory.

Theorem 4.2. Consider the holomorphic twist of a four-dimensional superconformal theory
on R4 of Yang–Mills type and let a, c be the gravitational anomaly coefficients of this super-
symmetric theory. The anomaly polynomial for T-equivariant quantization of the holomorphic
twist is

(4.1) Θ =
2
3
(a− c) ch1 ch2 +

1
9

(
c− 5

3
a
)

ch3
1 .

In other words, there is the following relation involving the holomorphic anomalies
ahol , chol (see equation (2.42)):

ahol =
2
3
(a− c)

chol =
1
9

(
c− 5

3
a
)

Alternatively, the expression for a, c in terms of ahol , chol is

(4.2)
a = −9

4

(
ahol + 6chol

)
c = −3

4

(
5ahol + 18chol

)
.

4.1. R-symmetry and twisting data. A four-dimensional superconformal theory is,
in particular, a theory with R-symmetry. The minimal amount of R-symmetry is with
respect to the group U(1), which we denote by U(1)R when speaking of R-symmetry.

Let R be the generator of the U(1)R-symmetry in the original supersymmetric the-
ory. We will utilize the following well-known relationship between the a, c coefficients

2By this, we mean a theory consisting of some number of chiral and vector multiplets with both
gauge interactions and possibly a superpotential. In particular this is not just pure gauge theory as there
are possibly matter fields as well.
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of the anomaly polynomial and the R-symmetry, see [Ans+98a; Ans+98b]:

(4.3)
a =

3
32
(
3 Tr R3 − Tr R

)
c =

1
32
(
9 Tr R3 − 5 Tr R

)
.

For standard multiplets, the R-charges appearing in the above formulas are those of
the chiral fermions in the theory. In terms of the anomaly polynomial for mixed grav-
itational and R-symmetry (in this case, U(1)R) the coefficients (Tr R3), (Tr R) appear
as

(4.4) ΘN=1 =
1
3!

(
(Tr R3)c̃3

1 −
1
4
(Tr R)c̃1 p1

)
where c̃1 is the generator of H2(BU(1)R) and p1 ∈ H4(BSO(4)) is the universal first
Pontryagin class, which we have normalized with a factor of −1/4 to fit with physics
conventions. Our goal is to relate these coefficients to objects in the holomorphic twist.

Generally speaking, the operation of ‘twisting’ a supersymmetric theory involves
the following steps. Throughout, we fix a supersymmetry algebra together with an
R-symmetry group GR.

(1) Find a supercharge Q, which is square zero. That is, Q is an odd element of the
supersymmetry algebra which satisfies [Q, Q] = 0.

(2) Find a ‘grading homomorphism’ α : U(1) → GR, where GR is the R-symmetry
group. The supercharge Q must be weight one with respect to this homomor-
phism.

(3) Find a ‘twisting homomorphism’. This amounts to choosing a Lie group G,
together with homomorphisms ι : G → Spin(n) and φ : G → GR with the
property that Q is G-invariant with respect to the induced homomorphism
ι× φ : G → Spin(n)× GR.

The four-dimensional N = 1 supersymmetry algebra has an essentially unique
supercharge which is square-zero [ES19]. Any other supercharge is in the same R-
symmetry orbit. We fix such a supercharge Qhol . This supercharge is holomorphic, in
the sense that the rank of the map [Qhol ,−] is two (half the dimension of spacetime).
For more details on twisting we refer to [Cos13a; ESW22; SW20].

Proposition 4.3. Consider a free supersymmetric theory on R4 built from chiral and vector
multiplets with R-symmetry generator R = (ri) where ri is the R-charge of the ith multi-
plet. Our convention is that for chiral (respectively, vector) multiplets, the scalar (respectively
gauge) field has R-charge ri + 1 (respectively, ri − 1).
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Then, there exists twisting data such that the holomorphic twist of of this theory is equiva-
lent to the cotangent theory (in the BV sense) to

(4.5) ⊕i Ω0,•(C2, K(ri+1)/2).

As an example, consider a single free vector multiplet with its standard R-charge
r = 1 (so that the gauge field in the multiplet has vanishing R-charge R(A) = 0). This
lemma implies that the holomorphic twist is the cotangent theory to Ω0,•(C2, K) =

Ω2,•(C2) which consists of fields

(4.6) (B, A) ∈ Ω2,•(C2)⊕Ω0,•(C2)[1],

thus recovering the free limit of holomorphic BF theory.

As another example, the R-charge for a single chiral multiplet which saturates the
BPS bound for the superconformal algebra is r = − 1

3 (so that the scalar in the multiplet
has R-charge R(φ) = 2

3 ). The holomorphic twist of this theory is the theory whose
underlying space of BV fields is

(4.7) (γ, β) ∈ Ω0,•(C2, K1/3)⊕Ω0,•(C2, K2/3)[1],

and action is
∫

β∂γ. This is the two-dimensional βγ system twisted by K1/3.

Proof of theorem 4.2. To compute the T-anomaly it suffices to consider the underlying
free theory, hence we can appeal to proposition 4.3.

From (4.3) we have the following relation between the R-symmetry generator and
the gravitational anomaly coefficients:

(4.8) Tr R = 16(a− c), Tr R3 =
16
3

(
5
3

a− c
)

.

From proposition 4.3 we know that we can express the holomorphic twist as a βγ-
system with coefficients in a sum of line bundles determined by R. Using Lemma 3.4
we see that

(4.9) ahol =
1

24
16(a− c) =

2
3
(a− c)

and

(4.10) chol = − 1
48
· 16

3

(
5
3

a− c
)
=

1
9

(
c− 5

3
a
)

as desired.
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N multiplet a c ahol chol

N = 1 vector 3
16

1
8

1
24 − 1

48
chiral 1

48
1

24 − 1
72

1
1296

N = 2 vector 5
24

1
6

1
36 − 13

648
hyper 1

24
1

12 − 1
36

1
648

N = 4 vector 1
4

1
4 0 − 1

54
TABLE 1. A list of a, c and ahol , chol for basic supersymmetric gauge the-
ories and their twists.

There is an alternative way of deducing these holomorphic anomaly coefficients
from the anomaly polynomial of the supersymmetric theory. Indeed, we can start
with the R-symmetry anomaly polynomial of the untwisted theory in equation (4.4)
and proceed with the following two steps: first, break SO(4) to MU(2) and second,
twist by setting c̃1 = − 1

2 ch1. The first step has the effect of setting p1 7→ 2 ch2 (this is
the induced homomorphism H4(BSO(4)) → H4(BU(2)) and the second step follows
from the standard twisting homomorphism for four-dimensional supersymmetry, see
[ESW22].

4.2. Anomalies for basic supersymmetric theories. We unpack the anomaly polyno-
mial for basic four-dimensional supersymmetric gauge theories. The results, includ-
ing anomalies for theories with more supersymmetry, are summarized in table 1.

4.2.1. N = 1 gauge theory. In N = 1 gauge theory there are vector multiplets and
chiral multiplets. We have described the twist of the superconformal vector and chiral
multiplet after the statement of proposition 4.3. To compute the coefficients ahol , chol

we could refer to the formula (4.1). Instead, we will compute the coefficients directly
from the Riemann–Roch theorem.

In fact, we have already done this. The anomaly polynomial for the chiral multi-
plet is obtained by plugging λ = 1

3 into the coefficients of lemma 3.4. Similarly, the
anomaly polynomial for a single vector multiplet is obtained as the negative of the
coefficients in proposition 3.4 when λ = 0. The sign arises because this is a gauge
theory.

Translating back to the physical coefficients as in equation (4.2) we obtain the ex-
pected values of a, c [Duf20].
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4.2.2. N = 2 gauge theory. We focus on two multiplets relevant for four-dimensional
N = 2 supersymmetric gauge theory. The first is the vector multiplet, which is defined
from the data of a Lie group G and a principal bundle, which we take to be trivial. The
second is the hypermultiplet, which depends on the choice of a representation R of G.

In the BV formalism, the holomorphic twist of pure gauge theory is holomorphic
BF theory for the holomorphic local Lie algebra whose underlying holomorphic vector
bundle is

(4.11) g⊗∧•K1/3 = g⊕Πg⊗ K1/3.

The Lie algebra structure is determined by the Lie bracket on g. Note that

(4.12) ch
(
g[1]⊗∧•K1/3

)
=

(
−1

3
ch1 +

1
18

ch2
1−

1
162

ch3
1

)
dim G.

Thus

(4.13) Td ch
(
g[1]⊗∧•K1/3

)
|6 =

(
1
36

ch1 ch2−
13
648

ch3
1

)
dim G.

(Alternatively, note that as N = 1 multiplets a N = 2 vector is the same as a N = 1
vector plus a N = 1 chiral).

The hypermultiplet is the cotangent theory to

(4.14) R⊗∧•K1/3 ⊗ K1/3 = R⊗ K1/3 ⊕ΠR⊗ K2/3,

From this we see that the anomaly polynomial for the hypermultiplet valued in R is

(4.15)
(
− 1

36
ch1 ch2 +

1
648

ch3
1

)
dim R.

Translating back to the physical coefficients as in equation (4.2) we obtain the ex-
pected values of a, c [Duf20].

4.2.3. N = 4 gauge theory. Consider four-dimensional N = 4 supersymmetric gauge
theory for gauge group G near the trivial G-bundle. In the BV formalism, the holo-
morphic vector bundle underlying the holomorphic twist of this theory is

(4.16) g[1]⊗∧•
(

K1/3 ⊗ C3
)

.

Notice that in the cohomology of BGL(2) we have the formal expression

(4.17) ch(Kλ/3) = 1− λ

3
ch1 +

λ2

2 · 32 ch2
1−

λ3

3! · 33 ch3
1 .
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where λ is any integer. From this we compute

ch∧•
(

K1/3 ⊗ C3
)
= 1− 3 ch(K1/3) + 3 ch(K2/3)− ch(K)

=
1
27

ch3
1 .

Thus, we see directly that for N = 4 supersymmetric Yang–Mills theory we have
ahol = 0 and

(4.18) chol = − 1
2 · 27

dim G = −dim G
54

.

Translating back to the physical coefficients as in equation (4.2) we obtain the ex-
pected values of a, c [Duf20].

5. ANOMALY MATCHING IN HOLOMORPHIC QCD

In this section we consider anomalies in the holomorphic twist of four-dimensional
N = 1 supersymmetric quantum chromodynamics (QCD).

5.1. The holomorphic theory. Four-dimensional N = 1 supersymmetric Yang–Mills
theory depends on a choice of compact Lie group G, with complexified Lie algebra g,
and a representation V that comprises the supersymmetric matter.

Typically, in supersymmetric QCD one takes G = SU(Nc) and

(5.1) V = (CNc)⊕N f ⊕ (C
Nc)⊕N f

where CNc (respectively, C
Nc ) denotes the fundamental (respectively, anti-fundamental)

SU(Nc) representation. One says that Nc is the number of ‘colors’ and N f is the num-
ber of ‘flavors’.

In the N = 1 supersymmetry algebra there is (up to equivalence) a unique twisting
supercharge.

Theorem 5.1 ([Cos13b; ESW22; SW20]). The twist of four-dimensional N = 1 supersym-
metric Yang–Mills theory on R4 associated to the pair (G, V) is equivalent to holomorphic BF
theory on C2 with gauge group GC coupled to the holomorphic βγ system on C2 valued in V.

If the supersymmetric theory is equipped with a superpotential W, then there is a holomor-
phic superpotential in the twisted theory, see below.
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Following this theorem, we arrive at the holomorphic version of supersymmetric
QCD obtained from the previous theorem as the twist of supersymmetric QCD with
Nc colors and N f flavors. Explicitly, this the holomorphic theory whose fields are:

• the gauge fields are those of holomorphic BF theory valued in sl(Nc), whose
fields are

A ∈ Ω0,•(C2, sl(Nc))[1] and B ∈ Ω2,•(C2, sl(Nc)
∗);

• the “quarks” are fields of a holomorphic βγ system valued in

V = (CNc)N f ,

where CNc is the fundamental SU(Nc) representation whose fields are

γ ∈ Ω0,•(C2, V) and β† ∈ Ω2,•(C2, V∗)[1];

• the “antiquarks” are fields of a holomorphic βγ system valued in the dual rep-
resentation

V∗ ∼= (C
Nc)N f ,

where C
Nc is the anti-fundamental SU(Nc) representation whose fields are

γ† ∈ Ω0,•(C2, V∗) and β ∈ Ω2,•(C2, V)[1].3

The action functional is

SQCD =

∫
BFA +

∫
β†∂Aγ +

∫
β∂Aγ†,

where ∂A = ∂ + A is the covariant ∂-operator.

If, additionally, the supersymmetric theory is equipped with a superpotential W,
then there is a term in the holomorphic action

(5.2)
∫

d2z W(γ) =

∫
d2z

(
1
2

W ′′(γ0)γ0,1γ0,1 + W ′(γ0)γ0,2
)

.

Notice that this depends on the choice of a holomorphic volume form and does not
define a theory with a cohomological Z-grading. Both of these drawbacks stem from
the fact that the superpotential breaks R-symmetry in the original supersymmetric
theory.

In the above description we have described the fields on flat space. Even on flat
space, a T-background will depend on which bundle the quark fields transform under.
For example, for a single superconformal chiral multiplet, the field γ is twisted by the
line bundle K1/3

C2 .

3The superscript † does not refer to adjoint here.
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For holomorphic QCD we will do something more general. We suppose that γ

(and γ†) transform as sections of K⊗λ
C2 ⊗ V (and K⊗λ

C2 ⊗ V∗) where λ is some rational
number. From section 4, recall that this corresponds to the twist of a chiral multiplet
with r = 2λ− 1.

The T-background is

(5.3) IT,r =

∫
BLµ A +

∫
β†Lµγ +

∫
βLµγ†.

With respect to the standard coordinates µ = µi(z)∂zi and this coupling reads

(5.4) IT,r =

∫
Bµi∂zi A + (1− r)

∫
β†µi∂zi γ + (1− r)

∫
βµi∂zi γ

† + r
∫

∂zi µi(β†γ + βγ†).

5.2. There are no gauge anomalies. Consider holomorphic QCD with gauge group
SU(Nc) and N f flavors valued in the fundamental representation. First we consider
the internal anomalies. For pure sl(Nc) holomorphic gauge theory is no pure gauge
anomaly as Tradj(X3) = 0 for any X ∈ sl(Nc), see proposition 3.7. The mixed gauge-
matter anomalies vanish since the matter comprises an equal number of fundamental
and anti-fundamental representations.

5.3. Anomaly to a quantum T-background. Next we consider the anomaly to having
background of holomorphic vector fields T using the generalized coupling IT,r from
equation (5.3). We find an exact agreement with the anomaly cancelation for the R-
symmetry current in supersymmetric QCD.

Proposition 5.2. Holomorphic QCD admits a quantum T-background with classical cou-
pling IT,r if and only if

(5.5) r = −Nc

N f
,

equivalently, λ = 1
2 (1−

Nc
N f
).

Proof. This is a consequence of proposition 3.9. The graded holomorphic vector bun-
dle underlying holomorphic QCD is

(5.6) VQCD = g[1]⊕ K⊗λ ⊗V ⊕ K⊗λ ⊗V∗.

In the expansion of (3.35) we see that since the gauge group is simple, the only the
terms in anomaly live in

(5.7) H2(BGL(2))⊗ H4(BG),
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where here G = SU(Nc). Explicitly, this is the term

(5.8) Td0 chGL(2)×G
3 (VQCD) + Td1 chG

2 (VQCD).

Using the form of VQCD above, we see that the first term in equation (5.8) is

(5.9) 2F ch2(K⊗λ) = −2λF ch1 chG
2 ( f un).

We have used the relation ch1(K⊗λ) = −λ ch1 where, as usual, ch1 is the standard
generator of H2(BGL(2)). The factor of two comes from the fact that we have quarks
and anti-quarks.

Likewise, the second term in (5.8) is

(5.10)
1
2

ch1

(
− ch1 chG

2 (adj) + ·2F · chG
2 ( f un)

)
.

In total we see that the anomaly to a quantum T-background is

(5.11) ch1

(
−1

2
chG

2 (adj) + 2
(
−λ +

1
2

)
F chG

2 ( f un)
)

.

For any X ∈ sl(Nc) we have the relation Tradj(X2) = 2Nc Tr f un(X2). In other words,
for G = SU(Nc), we have chG

2 (adj) = 2Nc chG
2 ( f un). Using this relation, the result

follows. �

5.4. a, c for QCD. We are now in a position to compute the values of ahol , chol for holo-
morphic QCD. As always, this only depends on the underlying holomorphic vector
bundle of holomorphic QCD

(5.12) VQCD = g[1]⊕ K⊗λ ⊗V ⊕ K⊗λ ⊗V∗,

where, as we found in the last section, one has λ = 1
2 (r + 1) = 1

2

(
1− N

F

)
in order to

guarantee anomaly cancellation for the T-background.

According to this decomposition, the ahol coefficient decomposes as ahol
QCD = ahol

gauge +

ahol
quark + ahol

anti−quark, and similarly for chol . Notice that ahol
quark = ahol

anti−quark and chol
quark =

chol
anti−quark as they transform identically under the action of holomorphic vector fields.

We read these coefficients directly.

First ahol
gauge =

1
24 dim g = 1

24

(
N2

c − 1
)
, as read off from table 1. From lemma 3.4 we

see

(5.13) ahol
quark =

1
24

(
−Nc

N f

)
dim V = − 1

24
N2

c .
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Thus in total we see that

(5.14) ahol
QCD = − 1

24
(

N2
c + 1

)
Interestingly, this is independent of the number of flavors N f .

Similarly, from table 1, chol
gauge = − 1

48 dim g = − 1
48 (N2 − 1), and from 3.4 we see

(5.15) chol
quark = −

1
48

(
−Nc

N f

)3

dim V =
1

48
N4

c

N2
f
.

Thus

(5.16) chol
QCD =

1
48N2

f

(
2N4

c − N2
c N2

f + N2
f

)
.

Plugging into equation (4.2) we recover the expected physical values for these coef-
ficients

aQCD = − 3
16N2

f

(
3N4

c − 2N2
c N2

f + N2
f

)
cQCD = − 1

16N2
f

(
9N4

c − 7N2
c N2

f + 2N2
f

)
.

5.5. Magnetic anomalies. In [Sei95], Seiberg discovered a duality in four-dimensional
supersymmetric gauge theory that posits an equivalence between N = 1 supersym-
metric QCD for gauge group SU(Nc), called the ‘electric’ theory, and another N = 1
supersymmetric QCD, called the ‘magnetic’ theory.

The magnetic theory has gauge group SU(N f − Nc) and the matter consists of N f

fundamental chiral multiplets together with N2
f ‘mesons’ which transform trivially

under the gauge group. There is also a superpotential which we will not need so do
not comment any further on. Therefore, at the level of the holomorphic twist, the
bundle underlying the magnetic dual to holomorphic QCD is thus of the form

(5.17) ṼQCD = g̃[1]⊕ K⊗λ̃ ⊗ Ṽ ⊕ K⊗λ̃ ⊗ Ṽ∗ ⊕ K⊗λM ⊗ End(CF),

where g̃ = sl(N f −Nc) and the matter is labeled by the representation Ṽ = (CN f−Nc)N f .

Since the holomorphic mesons transform trivially under g̃ they do not contribute to
any possible gauge anomalies. In particular, we can compute the anomaly to a quan-
tum T-background just as we did in section 5.3. We find that a quantum T-background
exists if and only if

(5.18) λ̃ =
Nc

2N f
,
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equivalently r̃ = −N f−Nc
N f

.

From this, we can proceed as above to calculate the a, c anomalies for the magnetic
version of QCD. As a function of rM = 2λM − 1, we find

ãhol
QCD =

1
24

(
−1 + 2N f Nc − N2

c + N2
f (rM − 1)

)
c̃hol

QCD =
1

48N2
f

(
N2

f + N4
f − 6N3

f Nc + 11N2
f N2

c − 8N f N3
c + 2N4

c − r3
MN4

f

)
.

Proposition 5.3. The a, c anomalies match for the holomorphic twists of Seiberg dual theories

(5.19) aQCD = ãQCD, cQCD = c̃QCD

if and only if rM = 1− 2Nc
N f

.

Proof. It suffices to prove the statement for the holomorphic coefficients ahol , chol . Im-
mediate computation shows that ahol

QCD from equation (5.14) matches with ãhol
QCD if and

only if rM = 1− 2Nc
N f

. Plugging this value of rM into c̃hol
QCD we find a match with equa-

tion (5.16). �
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