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Abstract. We formulate the abelian six-dimensional N “ p2, 0q theory perturbatively, in a

generalization of the Batalin–Vilkovisky formalism. Using this description, we compute the

holomorphic and non-minimal twists at the perturbative level. This calculation hinges on the

existence of an L8 action of the supersymmetry algebra on the abelian tensor multiplet, which

we describe in detail. Our formulation appears naturally in the pure spinor superfield formalism,

but understanding it requires developing a presymplectic generalization of the BV formalism,

inspired by Dirac’s theory of constraints. The holomorphic twist consists of symplectic-valued

holomorphic bosons from the N “ p1, 0q hypermultiplet, together with a degenerate holomorphic

theory of holomorphic one-forms from the N “ p1, 0q tensor multiplet, which can be be seen

to describe the infinitesimal intermediate Jacobian variety. We check that our formulation and

our results match with known ones under various dimensional reductions, as well as comparing

the holomorphic twist to Kodaira–Spencer theory. Matching our formalism to five-dimensional

Yang–Mills theory after reduction leads to some issues related to electric–magnetic duality; we

offer some speculation on a nonperturbative resolution.
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1. Introduction

There is a supersymmetric theory in six dimensions whose fields include a two-form with

self-dual field strength. Concrete and direct formulations of this theory, whose field content

is referred to as the tensor multiplet, have remained elusive, despite an enormous amount of

work and numerous applications, predictions, and consistency checks. One main difficulty is

that the theory is believed not to admit a Lagrangian description, meaning that its equations of

motion—even for the free theory—do not arise from a standard covariant action functional via

the usual methods of variational calculus.

Part of the desire to better understand theories of tensor multiplets is due to their ubiquity

in the context of string theory and M -theory. A nonabelian theory of tensor multiplets with

N “ p2, 0q supersymmetry, associated to the AN´1 series of Lie algebras, is famously expected

to appear as the worldvolume theory of N coincident M5-branes; this theory has been the topic

of, and inspiration for, an enormous amount of research. The literature is too large to survey

here, but we give a few selected references below.

Our main objective in this paper is to compute the twists of the abelian tensor multiplet.

(We restrict to a perturbative analysis of the free theory with abelian gauge group; as such,

we do not touch on issues relating to the interacting superconformal theories expected in the

nonabelian case N ą 1, although we believe that some of our structural insights should be of

use in that setting as well.) On general grounds, the N “ p2, 0q supersymmetry algebra in six

dimensions admits two twists: a holomorphic or minimal twist, together with a non-minimal

twist that is defined on the product of a Riemann surface and a smooth four-manifold. Just at

the level of the physical fields, a first rough statement of our results is as follows.

Theorem. The abelian N “ p2, 0q admits two inequivalent classes of twists described as follows.

(1) The holomorphic twist exists on any complex three-fold X equipped with a square-root of

the canonical bundle K
1
2
X . It is equivalent to a theory whose physical fields are a p1, 1q-

form χ1,1, a p0, 2q-form χ0,2, and a symplectic pair of fermionic fields ϕ3{2,1, i “ 1, 2,
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which transform as p0, 1q forms with values in K
1
2
X . These fields obey the equations

Bχ1,1 ` Bχ0,2 “ 0,

Bχ0,2 “ 0,

Bϕ
3{2,1
i “ 0.

The gauge symmetries of this theory are parameterized by form fields χ0,1 and χ1,0,

together with a pair of symplectic bosonic gauge fields ϕ
3{2,0
i , i “ 1, 2, which are sections

of K
1
2
X . They act by the formulas

χ1,1 ÞÑ χ1,1 ` Bχ0,1 ` Bχ1,0,

χ0,2 ÞÑ χ0,2 ` Bχ0,1,

ϕ3{2,1 ÞÑ ϕ
3{2,1
i ` Bϕ

3{2,0
i .

(2) The non-minimal twist exists on any manifold of the form M ˆC, where M is a smooth

four-manifold and C is a Riemann surface. It is equivalent to a theory whose physical

fields are a pair

pχ2;0,0, χ1;0,1q P Ω2pMq b Ω0pCq ‘ Ω1pMq b Ω0,1pCq.

This pair obeys the equations of motion

Bχ2;0,0 ` dχ1;0,1 “ 0

dχ2;0,0 “ 0.

Here B is the B-operator on C and d is the de Rham operator on M . The theory has

gauge symmetries by fields χ1;0,0 and χ0;0,1, which act via χ2;0,0 ÞÑ χ2;0,0 ` dχ1;0,0 and

χ1;0,1 ÞÑ χ1;0,1 ` dχ0;0,1 ` Bχ1;0,0.

The full statements of these results appear below in Theorems 4.2 and 5.9. Making sense

of these twists and proving the theorems rigorously requires a great deal of groundwork, which

leads us to develop some general theoretical tools that we expect to be of use outside the context

of six-dimensional supersymmetry.

The main subtlety of the N “ p2, 0q theory, and the twists above, is that they do not arise

as the variational equations of motion of a local action functional. Thus, our first goal is to

give a precise mathematical formulation of the perturbative theory of the free N “ p2, 0q tensor

multiplet. (Of course, a corresponding formulation of the N “ p1, 0q tensor multiplet follows

immediately from this.) Throughout the paper, we make use of the Batalin–Vilkovisky (BV)

formalism; see [CG; Cos11] for a modern treatment of this setup, and [Sch93; BV84] for a more

traditional outlook. Roughly, the data of a classical theory in the BV formalism is a graded space

of fields EBV (given as the space of sections of some graded vector bundle on spacetime), together

with a symplectic form ωBV of cohomological degree p´1q on EBV and an action functional. The

(degree-one) Hamiltonian vector field associated to the action functional defines a differential

on EBV. Under appropriate conditions, this differential provides a free resolution to the sheaf of

solutions to the equations of motion of the theory, modulo gauge equivalence.
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It is clear that this formalism does not extend to the tensor multiplet in a straightforward

way. The issue arises from the presence of the self-duality constraint on the field strength of

the two-form, and is independent of supersymmetry and of other details about this particular

theory. In Lorentzian signature, self-dual constraints on real 2k-form fields can be imposed in

spacetime dimension 4k` 2, where k “ 0, 1, . . ..1 We will always work in Euclidean signature in

this paper, and therefore also with complexified coefficients; for us, the self-dual constraint in

six dimensions therefore takes the form

(1) b P Ω2pM6q, ‹db “
?
´1 db.

The Yang–Mills style action of a higher form gauge theory would be given by the L2-norm

}db}L2 “
∫

db ^ ‹db. It is clear that the self-duality condition implies the norm vanishes iden-

tically, so an action functional of Yang–Mills type is not feasible [Wit04]. Writing a covariant

Lagrangian of any standard form for the tensor multiplet has been the subject of much effort,

and is generally thought to be impossible (although various formulations have been proposed

in the abelian case; see, for example, [Ban+97a; Aga+97; HS97a; HS97b]). A standard BV

formulation of the theory, along the lines of more familiar examples, is thus out of reach for this

reason alone.

The formulation we use was motivated by the desire to understand the pure spinor super-

field formalism for N “ p2, 0q supersymmetry; the relevant cohomology was first computed

in [CNT02], and was rediscovered and reinterpreted in [ESW18]. Roughly speaking, this formal-

ism takes as input an equivariant sheaf over the space of Maurer–Cartan elements, or nilpotence

variety, of the supertranslation algebra, and produces a chain complex of locally free sheaves over

the spacetime, together with a homotopy action of the corresponding supersymmetry algebra.

The resulting multiplet can be interpreted as the BRST or BV formulation of the corresponding

free multiplet, according to whether the action of the supersymmetry algebra closes on shell or

not; the differential, which is also an output of the formalism, corresponds in the latter case to

the Hamiltonian vector field mentioned above.

In the case of N “ p2, 0q supersymmetry, the action of the algebra is, as always, guaranteed on

general grounds. The fields exhibit an obvious match to the content of the p2, 0q tensor multiplet,

and the differential includes the correct linearized equations of motion. (In fact, the resulting

multiplet contains no auxiliary fields at all.) One thus expects to have obtained an on-shell

formalism, but the interpretation of the resulting resolution as a BV theory is subtle for a new

reason: there is no obvious or natural shifted symplectic pairing. In fact, developing a framework

for studying the multiplets produced by pure-spinor techniques requires a generalization of the

standard formalism, which necessarily allows for degenerate pairings.

In classical symplectic geometry, symplectic pairings that are not required to be nondegenerate

are called presymplectic. In fact, presymplectic structures have played a role in physics before,

in Dirac’s theory of constrained systems. In this context, the origin is clear: while symplectic

structures do not pull back, presymplectic structures (which are just closed two-forms) do. Any

submanifold of a symplectic phase space, such as a constraint surface, thus naturally inherits a

presymplectic structure.

1In the literature, such constraints are sometimes called “chiral.” To avoid confusion, we will reserve this

term for a different constraint that can be defined on complex geometries, and that will play a large role in what

follows.
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The simplest situation where the issues of self-duality constraints arise occurs for k “ 0, in the

context of two-dimensional conformal field theory. Here, the constraint is precisely the condition

of holomorphy, and the theory of a self-dual zero-form is just the well-known chiral boson. We

take a brief intermezzo to remark on this theory briefly, to offer the reader some familiar context

for our more general considerations.

The chiral boson. In Lorentzian signature, the theory of the (periodic) chiral boson describes

left-moving circle-valued maps. Working perturbatively, as we do throughout this paper, the

periodicity plays no role, so that the field is simply a left-moving real function; after switching

to Euclidean signature (and correspondingly complexifying), we have a theory of maps χ that

are simply holomorphic functions on a Riemann surface.

As discussed above, one role of the BV formalism is to provide a resolution of the sheaf of

solutions to the equations of motion by smooth vector bundles. For the sheaf of holomorphic

functions, such a resolution is straightforward to write down: it is just given by the Dolbeault

complex Ω0,‚pCq.

The chiral boson is not a theory in the usual sense of the word, perturbatively or otherwise,

as it is not described by an action functional: the equations of motion, namely that χ be

holomorphic, do not arise as the variational problem of a classical action functional. Relatedly,

the free resolution Ω0,‚pCq is not a BV theory, as it does not admit a nondegenerate pairing

of an appropriate kind. Nevertheless, there is a way to formulate the chiral boson in a slightly

modified version of the BV formalism, by interpreting holomorphy (which, in this setting, is the

same as self-duality) as a constraint.

To do this, we first consider a closely related theory, the (non-chiral) free boson, which does

have a description in the BV formalism. The free boson is a two-dimensional conformal field

theory whose perturbative fields, in Euclidean signature, are just a smooth complex-valued

function σ on C; the equations of motion impose that σ is harmonic. In the BV formalism, one

can model this free theory by the following two-term cochain complex

(2)
0 1

EBV “ Ω0pCq
BB
ÝÑ Ω2pCq.

We can equip E with a degree p´1q antisymmetric non-degenerate pairing, which in this case is

just given by multiplication and integration. That is

ωBVpσ, σ
`q “

∫
σσ`

where σ P Ω0pCq and σ` P Ω2pCq. This is the p´1q-shifted symplectic form, and the differential

in (2) is the Hamiltonian vector field associated to the free action functional, as described in

general above.

Now, there is a natural map of cochain complexes

i : Ω0,‚pCq Ñ EBV

which in degree zero is the identity map on smooth functions, and in degree one is defined by

the holomorphic de Rham operator B : Ω0,1pCq Ñ Ω2pCq. We can pull back the degree p´1q
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symplectic form ω on E to a two-form i˚ω on Ω0,‚pCq, which is closed because i is a cochain

map. Explicitly, this two-form on the space Ω0,‚pCq is pi˚ωqpχ, χ1q “
∫
χBχ1.

Since i is not a quasi-isomorphism, i˚ω is degenerate, and hence does not endow Ω0,‚pCq with

a BV structure. However, it is useful to think of i˚ω as a shifted presymplectic structure on

the chiral boson, encoding “what remains” of the standard BV structure after the constraint of

holomorphy has been imposed.

In analogy with ordinary symplectic geometry, we will refer to the data of a pair pE, ωq where

E is a graded space of fields, and ω is a closed two-form on E, as a presymplectic BV theory. We

make this precise in Definition 2.1, at least for the case of free theories. In the example of the

chiral boson this pair is pΩ0,‚pCq, i˚ωBVq.

The theory of the self-dual two-form in six-dimensions (more generally a self-dual 2k-form

in 4k ` 2 dimensions) arises in an analogous fashion. There is an honest BV theory of a

nondegenerate two-form on a Riemannian six-manifold, which endows the theory of the self-

dual two-form with the structure of a presymplectic BV theory. Among other examples, we give

a precise formulation of the self-dual two-form in §2.

As for standard BV theories, one would hope to have a theory of observables, techniques for

quantization, and so on in the context of presymplectic BV theories. To develop a theory of

classical observables, we make use of the theory of factorization algebras. Costello and Gwilliam

have developed a mathematical approach to the study of observables in perturbative field theory,

of which local operators are a special case. The general philosophy is that the observables of

a perturbative (quantum) field theory have the structure of a factorization algebra on space-

time [CG17; CG]. Roughly, this factorization algebra of observables assigns to an open set U

of spacetime a cochain complex ObspUq of “observables with support contained in U .” When

two open sets U and V are disjoint and contained in some bigger open set W , the factorization

algebra structure defines a rule of how to “multiply” observables ObspUq bObspV q Ñ ObspW q.

For local operators, one should think of this as organizing the operator product expansion in a

sufficiently coherent way.

In the ordinary BV formalism, the factorization algebra of observables has a very impor-

tant structure, namely a Poisson bracket of cohomological degree `1 induced from the shifted

symplectic form ωBV. This is reminiscent of the Poisson structure on functions on an ordinary

symplectic manifold, and is a key ingredient in quantization.

In the case of a presymplectic manifold, the full algebra of functions does not carry such a

bracket. But there is a subalgebra of functions, called the Hamiltonian functions, that does.

This issue persists in the presymplectic BV formalism, and some care must be taken to define

a notion of observables that carries such a shifted Poisson structure. We tentatively solve this

problem, and for special classes of free presymplectic BV theories we provide an appropriate

notion of “Hamiltonian observables.” The corresponding factorization algebra carries a shifted

Poisson structure, which is a direct generalization of the work of Costello–Gwilliam that works

to include presymplectic BV theories.2 While the Hamiltonian observables provide a way of

2The development of the theory of observables for more general presymplectic BV theories is part of ongoing

work with Eugene Rabinovich.

6



understanding a large class of observables in presymplectic BV theories, we emphasize that a full

theory should be expected to contain additional, nonperturbative observables: the Hamiltonian

observables of the chiral boson, for example, agree with the Up1q current algebra, and therefore

do not see observables (such as vertex operators) that have to do with the bosonic zero mode.

Using this formalism, we formulate the abelian tensor multiplet as a presymplectic BV theory,

and go on to work out the full L8 module structure encoding the on-shell action of supersym-

metry. Our formalism is distinguished from other formulations of the abelian tensor multiplet

in that it extends supersymmetry off-shell without using any auxiliary fields, in the homotopy-

algebraic spirit of the BV formalism. Using this L8 module structure, we rigorously compute

both twists; like the full theory, these are presymplectic BV theories. In eliminating acyclic pairs

to obtain more natural descriptions of the twisted theories, we are forced to carefully consider

what it means for a quasi-isomorphism to induce an equivalence of shifted presymplectic struc-

tures; understanding these equivalences is crucial for correctly describing both the presymplectic

structure on the holomorphic twist and the action of the residual supersymmetry there.

Our results allow us to compare concretely to Kodaira–Spencer theory on Calabi–Yau three-

folds, which is expected to play a role in the proposed description of holomorphically twisted

supergravity theories due to Costello and Li [CL16a]. It would be interesting to try and incor-

porate our results into the framework of the nonminimal twist of 11d supergravity, which we ex-

pect to agree with the proposals for “topological M-theory” considered in the literature [Dij+05;

GS04; Nek05]; branes in topological M-theory were considered in [BCN08]. However, we reserve

more substantial comparisons for future work.

We are also able to perform a number of consistency checks with known results on holomor-

phic twists of theories arising by dimensional reduction of the tensor multiplet. At the level of

the holomorphic twist, we show that the reduction to four-dimensions yields the expected super-

symmetric Yang–Mills theories. Furthermore, when we compactify along along a four-manifold

we recover the ordinary chiral boson on Riemann surfaces.

Finally, we discuss dimensional reduction to five-dimensional Yang–Mills theory at the level

of the untwisted theory. Issues related to electric–magnetic duality appear naturally and play a

key role here; furthermore, obtaining the correct result on the nose requires correctly accounting

for nonperturbative phenomena that are missed by our perturbative approach. Although we do

not rigorously develop the presymplectic BV formalism at a nonperturbative level in this work,

we speculate about a nonperturbative formulation for gauge group Up1q, and argue that our

proposal gives the correct dimensional reduction on the nose at the level of chain complexes of

sheaves. Doing this requires a conjectural description of the theory of abelian p-form fields in

terms of a direct sum of two Deligne cohomology groups, which can be interpreted as a complete

(nonperturbative) presymplectic BV theory in novel fashion.

Previous work. There has been an enormous amount of previous work in the physics literature

on topics related to M5 branes and N “ p2, 0q superconformal theories in six dimensions, and

any attempt to provide exhaustive references is doomed to fail. In light of this, our bibliography

makes no pretense to be complete or even representative. The best we can offer is an extremely

brief and cursory overview of some selected past literature, which may serve to orient the reader;
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for more complete background, the reader is referred to the references in the cited literature,

and in particular to the reviews [SS99; Ber08; Dij98].

Tensor multiplets in six dimensions were constructed in [HST83]. The earliest approaches

to the M5-brane involved the study of relevant “black brane” solutions in eleven-dimensional

supergravity theory [Güv92]; perhaps the first intimation that corresponding six-dimensional

theories should exist was made by considering type IIB superstring theory on K3 singularities

in [Wit95]. The abelian M5-brane theory was worked out, including various proposals for La-

grangian formulations, in [HS97a; HS97b], in [Aga+97], in [CNS98], and in [Ban+97a], following

the general framework for chiral fields in [PST97]. These formulations were later shown to be

equivalent in [Ban+97b]. The connection of the tensor multiplet to supergravity solutions on

AdS7ˆS
4 was discussed in [CKVP98] with an emphasis on N “ p2, 0q superconformal symmetry.

As to twisting the theory, the non-minimal twist was studied in [AL14; GLN14], and a close

relative earlier in [BW98]. (The approach of the latter paper effectively made use of the twisting

homomorphism appropriate to the unique topological twist in five-dimensional N “ 2 supersym-

metry; this is the dimensional reduction of the six-dimensional non-minimal twist.) While these

studies compute the nonminimal twist at a nonperturbative level, [AL14; GLN14] do so only

after compactification to four dimensions along the Riemann surface in the spacetime C ˆM4,

and thus do not see the holomorphic dependence on C explicitly. Our results are thus in some

sense orthogonal. The relevance of the full nonminimal twist for the AGT correspondence was

emphasized in [Yag12]; it would be interesting to connect our results to the AGT [AGT10] and

3d-3d [DGG14] correspondences.

The holomorphic twist has, as far as we know, not been considered explicitly before, al-

though the supersymmetric index of the abelian theory was computed in [BG16]. We expect

agreement between the character of local operators in the holomorphic theory [SW20] and the

index studied there, after correctly accounting for nonperturbative operators, but do not con-

sider that question in the present work and hope to study it in the future. We note, however,

that the P0 factorization algebra arising as the Hamiltonian observables of the holomorphi-

cally twisted (1,0) theory was studied in [GRW20] as a boundary system for seven-dimensional

abelian Chern–Simons theory. (The relation between the six-dimensional self-dual theory and

seven-dimensional Chern–Simons theory is the subject of earlier work by [BM06], among oth-

ers.) We see both these results and our results here as progress towards an understanding of the

holomorphically twisted version of the AdS7/CFT6 correspondence.

Recently, there has been new progress on the question of finding a formulation of the non-

abelian theory; much of this progress makes use of higher algebraic or homotopy-algebraic struc-

ture. See, for example, [FSS14], [SS18], and [LP10; Lam19]. It would be interesting either to

study twisting some of these proposals, or to attempt to make further progress on these ques-

tions by searching for nonabelian or interacting generalizations of the twisted theories studied

here. These might be easier to find than their nontwisted counterparts and offer new insight

into the nature of the interacting p2, 0q theory. We look forward to working on such questions

in the future, and hope that others are inspired to pursue similar lines of attack.

For the physicist reader, we emphasize that we deal here with a formulation that is lacking,

even at a purely classical level, in at least three respects. Firstly, we make no rigorous effort to

formulate the theory non-perturbatively, even for gauge group Up1q; in a sense, our discussion
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deals only with the gauge group R. (Some more speculative remarks about nonperturbative

versions of the abelian theory, though, are given in §7.) In keeping with this, our analysis

here does not yet deal carefully with issues of charge quantization; as such, the subtle issues

considered in [Wit97; HS05] and generalized in [Fre02] make no appearance, although we expect

them to play a role in correctly extending our theory to the “nonperturbative” setting of gauge

group Up1q. Lastly, we start with a formulation which does not involve any coupling to eleven-

dimensional supergravity, and makes no attempt to connect to the M5 brane, in the sense that

we ignore the formulation of the theory in terms of a theory of maps. Associated issues (such

as WZW terms and kappa symmetry) therefore make no appearance, although the connection

to Kodaira–Spencer theory is indicated to show how we see our results as fitting into a larger

story about twisted supergravity theories in the sense of Costello and Li [CL16a], as mentioned

above.

An outline of the paper. We begin in §2 by setting up a presymplectic version of the BV

formalism for free theories. After stating some general results and reviewing a list of examples,

the section culminates with a definition of the factorization algebra of Hamiltonian observables

for a class of presymplectic BV theories. In §3 we recall the necessary tools of six-dimensional

supersymmetry and provide a definition of the N “ p1, 0q and N “ p2, 0q versions of the tensor

multiplet in the presymplectic BV formalism. We review the classification of possible twists,

and then give an explicit description of the presymplectic BV theory as an L8 module for the

supersymmetry algebra. We perform the calculation of the minimal twist of the tensor multiplet

in §4, and of the non-minimal twist in §5. We touch back with string theory in §6, where we

relate our twisted theories to the conjectural twist of Type IIB supergravity due to Costello–Li.

Finally, in §7, we explore some consequences of our description of the twisted theories upon

dimensional reduction. We perform some sanity checks with theories that are conjecturally

obtained as the reduction of the theory on the M5 brane, culminating in a computation of the

dimensional reduction of the untwisted theory along a circle. Some interesting issues related

to electric-magnetic duality appear naturally; we discuss these, and end with some speculative

remarks on nonperturbative generalizations of our results.

Conventions and notations.

‚ If E Ñ M is a graded vector bundle on a smooth manifold M , then we define the new

vector bundle E! “ E˚ b DensM , where E˚ is the linear dual and DensM is the bundle

of densities on M . We denote by E the space of smooth sections of E, and E! the space

of sections of E!. The notation Ec refers to the space of compactly supported sections

of E. The notation (Ec) E refers to the space of (compactly supported) distributional

sections of E.

‚ The sheaf of (smooth) p-forms on a smooth manifold M will be denoted ΩppMq and

Ω‚pMq “
À

ΩppMqr´ps is the Z-graded sheaf of de Rham forms, with ΩppMq in degree

p. Often times when M is understood we will denote the space of p-forms by Ωp.

More generally, our grading conventions are cohomological, and are chosen such that the

cohomological degree of a chain complex of differential forms is determined by the (total)

form degree, but always taken to start with the lowest term of the complex in degree

zero. Thus Ωp is a degree-zero object, Ωďp is a chain complex with support in degrees
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zero to p, and ΩěppRdq begins with p-forms in degree zero and runs up to d-forms in

degree d´ p.

‚ On a complex manifold X, we have the sheaves Ωi,hol, gpXq of holomorphic forms of

type pi, 0q. The operator B : Ωi,hol, gpXq Ñ Ωi`1,holpXq is the holomorphic de Rham

operator. The standard Dolbeault resolution of holomorphic i-forms is pΩi,‚pXq, Bq where

Ωi,‚pXq “ ‘kΩ
i,kpXqr´ks is the complex of Dolbeault forms of type pi, ‚q with pi, kq in

cohomological degree `k. Again, when X is understood we will denote forms of type

pi, jq by Ωi,j .

‚ We attempt to adhere to the following notational convention for fields in the various

theories we will consider (see §2 for definitions): χ for chiral 2k-forms, including the

chiral boson; b for self-dual 2k-forms for k ą 0; σ for free bosons (or, more generally,

nondegenerate 2k-forms); ϕ for symplectic bosons (or odd abelian Chern–Simons the-

ories); β and γ for the βγ system; ψ for chiral fermions. We will use φ to generically

denote any field in any theory without further specification.
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residence at the Mathematical Sciences Research Institute in Berkeley, California, during the

semester of Spring 2020.

2. A presymplectic Batalin–Vilkovisky formalism

In the standard Batalin–Vilkovisky (BV) formalism [Sch93], one is interested in studying the

(derived) critical locus of an action functional. On general grounds, derived critical loci are

equipped with canonical p´1q-shifted symplectic structures [Pan+13]. In perturbation theory,

where we work around a fixed classical solution, we can assume that the space of BV fields E are

given as the space of sections of some graded vector bundle E ÑM , where M is the spacetime.

In this context, the p´1q-symplectic structure boils down to an equivalence of graded vector

bundles ω : E – E!r´1s.

We remind the reader that in the standard examples of “cotangent” perturbative BV theories,

E is of the form

(3) E “ T ˚r´1sF
def
“ F ‘ F !r´1s,

10



where F is some graded vector bundle, which carries a natural p´1q-symplectic structure. The

differential QBV is constructed such that

(4) H0pE, QBVq – CritpSq,

i.e. so that the sheaf of chain complexes pE, QBVq is a model of the derived critical locus.

In general, we can think of the p´1q-symplectic structure ω as a two-form (with constant

coefficients) on the infinite-dimensional linear space E. Moreover, this two-form is of a very

special nature: it arises locally on spacetime. For a more detailed introduction to the BV

formalism its description of perturbative classical field theory, see [Cos11; CG].

We will be interested in a generalization of the BV formalism, motivated by the classical

theory of presymplectic geometry and its appearance in Dirac’s theory of constrained systems

in quantum mechanics. In ordinary geometry, a presymplectic manifold is a smooth manifold

M equipped with a closed two-form ω P Ω2pMq, dω “ 0. Equivalently, ω can be viewed as a

skew map of bundles TM Ñ T ˚M . This is our starting point for the presymplectic version of

the BV formalism in the derived and infinite dimensional setting of field theory.

2.1. Presymplectic BV formalism. We begin by introducing the presymplectic version of

the BV formalism in terms of a two-form on the space of classical fields. This generalization

shares many features with the usual BV setup: the two-form of degree p´1q on arises “locally”

on spacetime, in the sense that it is defined by a differential operator acting on the fields. In

this paper we are only concerned with free theories, so we immediately restrict our attention to

this case.

It is important for us that our complexes are bigraded by the abelian group Z ˆ Z{2. We

will refer to the integer grading as the cohomological or ghost degree, and the supplemental Z{2
grading as parity or fermion number.

Before stating the definition of a free presymplectic BV theory, we set up the following notion

about the skewness of a differential operator. Let E be a vector bundle on M and suppose

D : EÑ E!rns is a differential operator of degree n. The continuous linear dual of E is E_ “ E
!
c

(see §1). So, D defines the following composition

D : Ec ãÑ E
D
ÝÑ E!rns ãÑ E

!
rns.

The continuous linear dual of D is a linear map of the same form D
_

: Ec Ñ E
!
rns. We say the

original operator D is graded skew symmetric if D “ p´1qn`1D
_

.

Definition 2.1. A (perturbative) free presymplectic BV theory on a manifold M is a tuple

pE,QBV, ωq where:

‚ E is a finite-rank, Z ˆ Z{2-graded vector bundle on M , equipped with a differential

operator

QBV P DiffpE,Eqr1s

of bidegree p1, 0q;

‚ a differential operator

ω P Diff
´

E,E!
¯

r´1s

of bidegree p´1, 0q;

11



which satisfy:

p1q the operator QBV satisfies pQBVq
2 “ 0, and the resulting complex pE, QBVq is elliptic;

p2q the operator ω is graded skew symmetric with regard to the totalized Z{2 grading;

p3q the operators ω and QBV are compatible: rQBV, ωs “ 0.

We refer to the fields φ P E of cohomological degree zero as the “physical fields”. For free

theories, the linearized equations of motion can be read off as QBVφ “ 0. As is usual in the

BRST/BV formalism, gauge symmetries are imposed by the fields of cohomological degree ´1.

The differential operator ω determines a bilinear pairing of the form
∫
M

ω : Ec ˆ Ec Ñ DensM r´1s

∫
M
ÝÝÑ Cr´1s

which endows the compactly supported sections Ec with the structure of a p´1q-shifted presym-

plectic vector space. Often, we will refer to a shifted presymplectic structure by prescribing the

data of such a bilinear form on compactly supported sections.

Of course, it should be clear that a (perturbative) free BV theory [CG, Definition 7.2.1.1] is a

free presymplectic BV theory such that ω is induced from a bilinear map of vector bundles which

is fiberwise non-degenerate. The notion of a free presymplectic BV theory is thus a weakening

of the more familiar definition. Indeed, when ω is an order zero differential operator such that

ω : E
–
ÝÑ E!r´1s is an isomorphism, the tuple pE,QBV, ωq defines a free BV theory in the usual

sense.

Remark 2.2. There are two natural ways to generalize Definition 2.1 that we do not pursue here:

´ Non-constant coefficient presymplectic forms: More generally, one can ask that ω be given as

a polydifferential operator of the form

ω P
ź

ně0

PolyDiffpEbn b E,E!qr´1s.

The right-hand side is what one should think of as the space of “local” two-forms on E.

´ “Interacting” presymplectic BV formalism: Here, we require that L “ Er´1s be equipped

with the structure of a local L8 algebra. Thus, the space of fields E should be thought

of as the formal moduli space given by the classifying space BL. In the situation above,

the free theory corresponds to an abelian local L8 algebra, in which only the unary

operation (differential) is nontrivial.

There is a natural compatibility between these two more general structures that is required.

Using the description of the fields as the formal moduli space BL, for some L8 algebra L, one

can view ω as a two-form ω P Ω2pBLq “ C‚pL,^2Lr1s˚q. There is an internal differential on

the space of two-forms given by the Chevalley–Eilenberg differential dCE corresponding to the

L8 structure. There is also an external, de Rham type, differential of the form ddR : Ω2pBLq Ñ

Ω3pBLq. In this setup we require dCEω “ 0 and ddRω “ 0. We could weaken this condition

further by replacing strictly closed two-forms on BL by Ωě2pBLq and asking that ω be a cocycle

here.

12



Since we only consider free presymplectic BV theories in this paper, we will simply refer to

them as presymplectic BV theories.

2.2. Examples of presymplectic BV theories. We proceed to give some examples of presym-

plectic BV theories, beginning with simple examples of degenerate pairings and proceeding to

more ones more relevant to six-dimensional theories. The secondary goal of this section is to set

up notation and terminology that will be used in the rest of the paper.

Example 2.3. Suppose pV,wq is a finite dimensional presymplectic vector space. That is, V is

a finite dimensional vector space and w : V Ñ V ˚ is a (degree zero) linear map which satisfies

w˚ “ ´w. Then, for any 1-manifold L, the elliptic complex

pE, QBVq “ pΩ
‚ b V, ddRq

is a presymplectic BV theory on L with

ω “ 1Ω‚ b w : Ω‚ b V Ñ Ω‚L b V
˚ “ E!r´1s.

Similarly, if C is a Riemann surface equipped with a spin structure K
1
2 , then the elliptic complex

pE, QBVq “

´

Ω0,‚ bK
1
2 b V, B

¯

is a presymplectic BV theory on C with

ω “ 1
Ω0,‚bK

1
2
b w : Ω0,‚ bK

1
2 b V Ñ Ω0,‚ bK

1
2 b V ˚.

Each theory in this example arose from an ordinary presymplectic vector space, which was

also the source of the degeneracy of ω. The first example that is really intrinsic to field theory,

and also relevant for the further discussion in this paper, is the following.

Example 2.4. Let C be a Riemann surface and suppose pW,hq is a finite dimensional vector

space equipped with a symmetric bilinear form thought of as a linear map h : W ÑW ˚. Then

pE, QBVq “
`

Ω0,‚ bW, B
˘

is a presymplectic BV theory with

ω “ B b h : Ω0,‚ bW Ñ Ω1,‚ bW ˚ “ E!r´1s.

We refer to this free presymplectic BV theory as the chiral boson with values in W , and will

denote it by χp0,W q (see the next example). In the case that W “ C, we will simply denote

this by χp0q.

There is an immediate generalization of the above definition that allows W to be a graded

vector space or a cochain complex. We will not make much use of this here, though we remark

that the nonminimal twist of the p2, 0q theory can be understood in this way.

Remark 2.5. While we did not require pW,hq to be nondegenerate in the above example, the

theory is a genuinely presymplectic BV theory even if h is nondegenerate. This corresponds to

the standard notion of the chiral boson in the physics literature, and we will have no cause to

consider degenerate pairings h in what follows.
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Example 2.6. Suppose X is a p2k`1q-dimensional complex manifold. Let Ω‚,hol “
`

Ω‚,hol, B
˘

be

the holomorphic de Rham complex and let Ωěk`1,hol be the complex of forms of degree ě k` 1.

By the holomorphic Poincaré lemma, Ωěk`1,hol, g is a resolution of the sheaf of holomorphic

closed pk ` 1q-forms. Further, Ωěk`1,holr´k ´ 1s is a subcomplex of Ω‚,hol and there is a short

exact sequence of sheaves of cochain complexes

Ωěk`1,holr´k ´ 1s Ñ Ω‚,hol, g Ñ Ωďk,hol

which has a locally free resolution of the form

(5) Ωěk`1,‚r´k ´ 1s Ñ Ω‚,‚ Ñ Ωďk,‚.

In this sequence, all forms are smooth and the total differential is B ` B in each term. We use

this quotient complex Ωďk,‚ to define another class of presymplectic BV theories.

Let pW,hq be as in the previous example. (Following Remark 2.5, it may as well be nonde-

generate.) The elliptic complex

pE, QBVq “

´

Ωďk,‚X bW r2ks,d “ B ` B
¯

.

is a presymplectic BV theory with

ω “ B b h : Ωďk,‚X bW r2ks Ñ Ωěk`1,‚
X bW ˚rks.

We denote this presymplectic BV theory by χp2k,W q, which we will refer to as the chiral

2k-form with values in W . In the case W “ C we will simply denote this by χp2kq.

Remark 2.7. When W “ C, the sheaf of cochain complexes Ωěk`1,‚
X rk ´ 1s is a resolution for

the sheaf of holomorphic B-closed pk ` 1q-forms Ωk`1,hol
X,cl rk ´ 1s placed in cohomological degree

´k` 1. Similarly, the sheaf Ωďk,‚X r2ks is the quotient of the full de Rham complex shifted by 2k

by the subspace Ωěk`1,‚
X rk´ 1s. Thought of as an abelian dg Lie algebra, the complex Ωďk,‚X r2ks

underlying χp2kq is a model for the infinitesimal neighborhood at zero of the intermediate

Jacobian variety of X [FM20; Gre94].

Example 2.8. Let M be a Riemannian p4k ` 2q-manifold, and pW,hq as above. The Hodge star

operator ‹ defines a decomposition

(6) Ω2k`1pMq “ Ω2k`1
` pMq ‘ Ω2k`1

´ pMq

on the middle de Rham forms, where ‹ acts by ˘
?
´1 on Ω2k`1

˘ pMq.

Consider the following exact sequence of sheaves of cochain complexes:

(7) 0 Ñ Ωě2k`1
´ r´2k ´ 1s Ñ Ω‚ Ñ Ωď2k`1

` Ñ 0

where

(8) Ωď2k`1
` “

´

Ω0 d
ÝÑ Ω1r´1s

d
ÝÑ ¨ ¨ ¨

d
ÝÑ Ω2kr´2ks

d`
ÝÝÑ Ω2k`1

` r´2k ´ 1s
¯

,

with d` “
1
2p1´

?
´1‹qd, and

(9) Ωě2k`1
´ “

´

Ω2k`1
´

d
ÝÑ Ω2k`2r´1s

d
ÝÑ ¨ ¨ ¨

d
ÝÑ Ω4k`2r´2k ´ 1s

¯

.

Let

(10) pE, QBVq “ pΩ
ď2k`1
` bW r2ks, d q
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and

ω “ db h : Ωď2k`1
` bW r2ks Ñ Ωě2k`1

´ bW ˚.

This data defines a presymplectic BV theory χ`p2k,W q on any Riemannian p4k ` 2q-manifold,

which we will refer to as the self-dual 2k-form with values in W . Again, in the case W “ C
we will simply denote this by χ`p2kq.

Remark 2.9. In general, the theories χp2kq and χ`p2kq are defined on different classes of man-

ifolds; they can, however, be simultaneously defined when X is a complex manifold equipped

with a Kähler metric. Even in this case, they are distinct theories (although, for k “ 1, their

dimensional reductions along CP 2 both agree with the usual chiral boson; see §7). In §4 we

will show explicitly that the N “ p1, 0q tensor multiplet (which consists of χ`p2q together with

fermions and one scalar) becomes precisely χp2q under a holomorphic twist.

There is, however, one case where the two theories χp2kq and χ`p2kq coincide. A choice of

metric on a Riemann surface determines a conformal class, which then corresponds precisely to

a complex structure. As such, both of the theories χp0q and χ`p0q are always well-defined, and

in fact agree; both are the theory of the chiral boson defined in Example 2.4.

We now recall a couple of examples of nondegenerate theories, for later convenience and to

fix notation, that fit the definition of a standard free BV theory [CG, Definition 7.2.1.1].

Example 2.10. Let M be a Riemannian manifold of dimension d. Let pW,hq be a complex

vector space equipped with a non-degenerate symmetric bilinear pairing h : W – W ˚. The

theory Σp0,W q of the free boson with values in W is the data

(11) pE, QBVq “

´

Ω0pMq bW
d‹db1W
ÝÝÝÝÝÑ ΩdpMq bW r´1s

¯

,

and ω “ 1Ω0 b h ` 1Ωd b h. Notice this is a BV theory, the p´1q presymplectic structure is

non-degenerate.

Example 2.11. Let pW,hq be as in the previous example, p ě 0 an integer, and suppose M is a

Riemannian manifold of dimension d ě p. The theory Σpp,W q of free p-form fields valued

in W is defined [Ell19] by the data

(12) pE, QBVq “

´

Ωďp bW rps
d‹db1W
ÝÝÝÝÝÑ Ωěd´p bW rp´ 1s

¯

,

with p´1q-symplectic structure ω “ 1Ωďp b h ` 1Ωěd´p b h. Notice again this is an honest BV

theory, the presymplectic structure is non-degenerate. If σ P E denotes a field, the classical

action functional reads 1
2

∫
hpσ, d ‹ dσq.

This example clearly generalizes the free scalar field theory, and also does not depend in any

way on our special choice of dimension. We will simply write Σppq for the case W “ C when the

spacetime M is understood.

Example 2.12. Let M be as in the last example, and suppose in addition it carries a spin structure

compatible with the Riemannian metric. Let pR,wq be a complex vector space equipped with an

antisymmetric non-degenerate bilinear pairing. The theory Ψ´pRq of chiral fermions valued

in R is the data

(13) pE, QBVq “ ΓpΠS´ bRq
{Bb1R
ÝÝÝÑ ΓpΠS` bRqr´1s,
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with p´1q-symplectic structure ω “ idS` b w ` idS´ b w.

We depart from the world of Riemannian manifolds to exhibit theories natural to the world

of complex geometry that will play an essential role later on in the paper.

Example 2.13. Suppose X is a complex manifold of complex dimension 3 which is equipped with

a square-root of its canonical bundle K
1
2
X . Let pS,wq be a Z{2-graded vector space equipped with

a graded symmetric non-degenerate pairing. Abelian holomorphic Chern–Simons theory

valued in S is the free BV theory hCSpSq whose complex of fields is

Ω0,‚pX,K
1
2
X b Sqr1s

with p´1q-symplectic structure ω “ idΩ0,‚ b w. This theory is naturally Z ˆ Z{2-graded and

has action functional 1
2

∫
wpϕ^ Bϕq. Notice that the fields in cohomological degree zero consist

of ϕ P Ω0,1pX,K
1
2
X b Sq, and the equation of motion is Bϕ “ 0. This theory thus describes

deformations of complex structure of the Z{2-graded bundle K
1
2
X b S.

We will be most interested in the case S “ ΠR where R is an ordinary (even) symplectic

vector space; see Theorem 4.2. In this case, we can think of the theory as (an appropriate shift

of) the theory of holomorphic maps from X to R; thinking of it this way, we could generalize

the theory to non-flat target spaces. For this reason, we prefer to call it the theory of symplectic

bosons, and will use the notation ΦpRq, where R is a symplectic manifold; for flat targets, R is

a symplectic vector space, and ΦpRq “ hCSpΠRq. Nontrivial targets will play no role in this

paper.

2.3. Presymplectic BV theories and constraints. Perturbative presymplectic BV theories

stand in the same relationship to perturbative BV theories as presymplectic manifolds do to

symplectic manifolds. Presymplectic structures obviously pull back along embeddings, whereas

symplectic structures do not. There is thus always a preferred presymplectic structure on sub-

manifolds of any (pre)symplectic manifold. In fact, this is the starting point for Dirac’s theory

of constrained mechanical systems [Dir50; GNH78].

Each of the examples of presymplectic BV theories we have given so far can be similarly

understood as constrained systems relative to some (symplectic) BV theory. By this, we mean

that the presymplectic BV theory maps to a nondegenerate theory, and that presymplectic

structure arises by pullback.

Example 2.14 (The chiral boson and the free scalar). The chiral boson χp0,W q on a Riemann

surface C, from Example 2.4, can be understood as a constrained system relative to the free

scalar Σp0,W q, see Example 2.10. At the level of the equations of motion this is obvious: the

constrained system picks out the harmonic functions that are holomorphic.

In the BV formalism, this constraint is realized by the following diagram of sheaves on C:

(14)

Ω0,0 Ω1,1

Ω0,0 Ω0,1

BB̄

1

B̄

B
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It is evident that the diagram commutes, and that the vertical arrows define a cochain map

upon tensoring with W :

(15) χp0,W q Ñ Σp0,W q.

Furthermore, a moment’s thought reveals that the p´1q-shifted presymplectic pairing on χp0,W q

arises by pulling back the p´1q-shifted symplectic pairing on Σp0,W q.

Example 2.15 (The self-dual 2k-form and the free 2k-form). It is easy to form generalizations

of the previous example. Consider the following diagram of sheaves on a Riemannian p4k ` 2q-

manifold:

(16)

Ω0 ¨ ¨ ¨ Ω2k Ω2k`2 ¨ ¨ ¨ Ω4k`2

Ω0 ¨ ¨ ¨ Ω2k Ω2k`1
`

d˚d

1 1

d`

d

Just as above, the vertical arrows of this commuting diagram define a cochain map

(17) χ`p2k,W q Ñ Σp2k,W q,

under which the natural p´1q-shifted presymplectic structure of Example 2.8 arises by pulling

back the p´1q-shifted symplectic form on Σp2k,W q.

If X is a complex manifold of complex dimension 2k ` 1, the presymplectic BV theory of

the chiral 2k-form χp2kq is defined, see Example 2.6. As a higher dimensional generalization of

Example 2.14, χp2kq can also be understood as a constrained system relative to theory of the

free 2k-form Σp2k,W q, see Example 2.11. It is an instructive exercise to construct the similar

diagram that witnesses the presymplectic structure on the chiral 2k-form χp2k,W q by pullback

from the ordinary (nondegenerate) BV structure on Σp2k,W q.

2.4. The observables of a presymplectic BV theory. The classical BV formalism, as

formulated in [CG], constructs a factorization algebra from a classical BV theory, which plays

the role of functions on a symplectic manifold in the ordinary finite dimensional situation.

In symplectic geometry, functions carry a Poisson bracket. In the classical BV formalism there

is a shifted version of Poisson algebras that play a similar role. By definition, a P0-algebra is a

commutative dg algebra together with a graded skew-symmetric bracket of cohomological degree

`1 which acts as a graded derivation with respect to the commutative product. Classically, the

BV formalism outputs a P0-factorization algebra of classical observables [CG, §5.2].

In this section, we will see that there is a P0-factorization algebra associated to a presymplectic

BV theory, which agrees with the construction of [CG] in the case that the presymplectic BV

theory is nondegenerate. Unlike the usual situation, this algebra is not simply the functions on

the space of fields, but consists of certain class of functions. We begin by recalling the situation

in presymplectic mechanics.

To any presymplectic manifold pM,ωq one can associate a Poisson algebra. This construction

generalizes the usual Poisson algebra of functions in the symplectic case, and goes as follows.

Let VectpMq be the Lie algebra of vector fields on M , and define the space of Hamiltonian pairs

(18) HampM,ωq Ă VectpMq ‘ OpMq
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to be the linear subspace of pairs pX, fq satisfying iXω “ df . Correspondingly, we can define

the space of Hamiltonian functions or Hamiltonian vector fields to be the image of HampM,ωq

under the obvious (forgetful) maps to OpMq or VectpMq respectively. We will denote these

spaces by OωpMq and VectωpMq. Notice that OωpMq is the quotient of HampM,ωq by the Lie

ideal kerpωq Ă HampM,ωq.

There is a bracket on HampM,ωq, defined by

rpX, fq, pY, gqs “ prX,Y s, iXiY pωqq.

On the right-hand side the bracket r´,´s is the usual Lie bracket of vector fields. Furthermore,

there is a commutative product on HampM,ωq defined by

pX, fq ¨ pY, gq “ pgX ` fY, fgq.

Together, they endow HampM,ωq with the structure of a Poisson algebra. This Poisson bracket

on Hamiltonian pairs induces a Poisson algebra structure on the algebra of Hamiltonian functions

OωpMq.

In some situations, one can realize the Poisson algebra of Hamiltonian functions OωpMq as

functions on a particular symplectic manifold. Associated to the presymplectic form ω is the

subbundle

(19) kerpωq Ď TM

of the tangent bundle. The closure condition on ω ensures that kerpωq is always involutive. If

one further assumes that the leaf space M{ kerpωq is a smooth manifold, then ω automatically

descends to a symplectic structure along the quotient map q : M Ñ M{ kerpωq. Pulling back

along this map determines an isomorphism of Poisson algebras

q˚ : OpM{ kerpωqq
–
ÝÑ OωpMq.

In particular, one can view the Poisson algebra of Hamiltonian functions as the kerpωq-invariants

of the algebra of functions OωpMq “ OpMqkerpωq. Notice that this formula makes sense without

any conditions on the niceness of the quotient M{ kerpωq.

In our setting, the presymplectic data is given by a presymplectic BV theory. A natural

problem is to define and characterize a version of Hamiltonian functions in this setting.

2.4.1. The factorization algebra of observables. As we’ve already mentioned, given a (nondegen-

erate) BV theory the work of [CG] produces a factorization algebra of classical observables. If

pE, ω,QBVq is the space of fields of a free BV theory on a manifold M then this factorization

algebra ObsE assigns to the open set U ĂM the cochain complex ObsEpUq “ pO
smpEpUqq, QBVq.

Here OsmpEpUqq refers to the “smooth” functionals on EpUq, which by definition are3

OsmpEpUqq “ Sym
´

E!
cpUq

¯

.

Furthermore, since ω is an isomorphism, it induces a bilinear pairing

ω´1 : E!
c ˆ E!

c Ñ Cr1s.

3Notice E!
cpUq ãÑ EpUq_, so Osm is a subspace of the space of all functionals on EpUq.
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By the graded Leibniz rule, this then determines a bracket

t´,´u : OsmpEpUqq ˆ OsmpEpUqq Ñ OsmpEpUqqr1s

endowing ObsE with the structure of a P0-factorization algebra, see [CG, Lemma 5.3.0.1].

In this section, we turn our attention to defining the observables of a presymplectic BV

theory, modeled on the notion of the algebra of Hamiltonian functions in the finite dimensional

presymplectic setting. Suppose that pE, ω,QBVq is a free presymplectic BV theory. The shifted

presymplectic structure is defined by a differential operator

ω : EÑ E!r´1s.

In order to implement the structures we recounted in the ordinary presymplectic setting, the first

object we must come to terms with is the solution sheaf of this differential operator kerpωq Ă E.

In general kerpωq is not given as the smooth sections of a finite rank vector bundle, so it

is outside of our usual context of perturbative field theory. However, suppose we could find a

semi-free resolution pK‚ω, Dq by finite rank bundles

kerpωq
»
ÝÑ pK‚ω, Dq

which fits in a commuting diagram

kerpωq K‚ω

E

»

π

where the bottom left arrow is the natural inclusion, and π is a linear differential operator. In

the more general case, where ω is nonlinear, we would require that K‚ω have the structure of a

dg Lie algebra resolving kerpωq Ă VectpEq.

Given this data, the natural ansatz for the classical observables is the (derived) invariants of

OpEq by K‚ω. A model for this is the Lie algebra cohomology:

C‚pK‚ω,OpEqq “ C‚pK‚ω ‘ Er´1sq.

In this free case that we are in, this cochain complex is isomorphic to functions on the dg vector

space K‚ωr1s ‘ E where the differential is D `QBV ` π.

As in the case of the ordinary BV formalism, in the free case we can use the smoothed version

of functions on fields.

Definition 2.16. Let pE, ω,QBVq be a free presymplectic BV theory on M , and suppose pK‚, Dq

is a semi-free resolution of kerpωq Ă E as above. The cochain complex of classical observables

supported on the open set U ĂM is

ObsωEpUq “ Osm pK‚ωpUq ‘ EpUqr´1s, D `QBV ` πq

“

ˆ

Sym
´

pK‚ωq
!
cpUq ‘ E!

cpUqr1s
¯

, D `QBV ` π

˙

.

By [CG17, Theorem 6.0.1] the assignment U ÞÑ ObsωEpUq defines a factorization algebra on M ,

which we will denote by ObsωE .
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Example 2.17. Consider the chiral boson presymplectic BV theory χp0q, see Example 2.4, on a

Riemann surface C. The kernel of ω “ B is the sheaf of constant functions

kerpωq “ CC Ă Ω0,‚pCq.

By the Poincaré lemma, the de Rham complex
`

Ω‚C ,ddR “ B ` B
˘

is a semi-free resolution of

CC . Thus, the classical observables are given as the Lie algebra cohomology of the abelian dg

Lie algebra
´

Ω‚C ‘ Ω0,‚
C r´1s,ddR ` B ` π

¯

where π : Ω‚C Ñ Ω0,‚
C is the projection. This dg Lie algebra is quasi-isomorphic to the abelian

dg Lie algebra Ω1,‚
C r´1s, so the factorization algebra of classical observables is

Obsωχp0q » OsmpΩ1,‚
C q “ Sym

´

Ω0,‚
C,cr1s

¯

.

There are two special cases to point out.

(1) Suppose the shifted presymplectic form ω is an order zero differential operator. Then,

kerpωq is a subbundle of E, so there is no need to seek a resolution. Furthermore, in this

case E{ kerpωq is also given as the sheaf of sections of a graded vector bundle E{ kerpωq,

and ω descends to a bundle isomorphism ω : E{ kerpωq
–
ÝÑ pE{ kerpωqq! r´1s.

In other words, pE{ kerpωq, ω,QBVq defines a (nondegenerate) free BV theory. The

factorization algebra of the classical observables of the pre BV theory ObsωE agrees with

the factorization algebra of the BV theory E{ kerpωq

ObsE{ kerpωq “ pO
smpE{ kerpωq, QBVq .

In this case, the observables inherit a P0-structure by [CG, Lemma 5.3.0.1].

(2) This next case may seem obtuse, but fits in with many of the examples we consider.

Suppose that the two-term complex
0 1

Conepωqr´1s : E E!r´1s,ω

defined by the presymplectic form ω, is itself a semi-free resolution of kerpωq. (Though it

is not quite precise, one can imagine this condition as requiring that ω have trivial cok-

ernel.) In this case, it is immediate to verify that the factorization algebra of observables

is

ObsωE “
´

OsmpE!r´1sq, QBV

¯

.

We mention that in this case ObsωE is also endowed with a P0-structure defined directly

by ω.

We can summarize the discussion in the two points above as follows.

Proposition 2.18. If the presymplectic BV theory pE, ω,QBVq satisfies p1q or p2q above then

the classical observables ObsωE form a P0-factorization algebra.

Remark 2.19. Generally speaking, the resolution of the solution sheaf kerpωq is given by the

Spencer resolution. We expect a definition of a P0-factorization algebra of observables associated

to any (non-linear) presymplectic BV theory, though we do not pursue that here.
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For any k, the self-dual 2k-form χp2k,W q and the chiral 2k-form satisfy condition (2) and so

give rise to a P0-factorization algebra of Hamiltonian observables. We will study this factoriza-

tion algebra in depth in §6.

3. The abelian tensor multiplet

We provide a definition of the (perturbative) abelian N “ p2, 0q tensor multiplet in the

presymplectic BV formalism, together with the N “ p1, 0q tensor multiplet and hypermultiplet.

As discussed in the previous section, in the BV formalism one must specify a p´1q-shifted

symplectic (infinite dimensional) manifold, the fields, together with the data of a homological

vector field which is compatible with the shifted symplectic form. The tensor multiplets in six

dimensions are peculiar, because they only carry a presymplectic BV (shifted presymplectic)

structure, as opposed to a symplectic one.

Roughly speaking, the fundamental fields of the tensor multiplet consist of a two-form field

whose field strength is constrained to be self-dual, a scalar field valued in some R-symmetry

representation, and fermions transforming in the positive spin representation of Spinp6q. The

degeneracy of the shifted symplectic structure arises from the presence of the self-duality con-

straint on the two-form in the multiplet, just as in the examples in §2.2.

We begin by defining the field content of each multiplet precisely and giving the presymplectic

BV structure. A source for the definition of the fields of the tensor multiplet in the BV formalism

can be traced to the description in terms of the six-dimensional nilpotence variety given in [ESW].

See Remark 3.2.

The next step is to formulate the action of supersymmetry on the p1, 0q and p2, 0q tensor

multiplets at the level of the BV formalism. Here, one makes use of the well-known linear

transformations on physical fields that are given in the physics literature. See, for example,

[BSVP99] for the full superconformal transformations of the N “ p2, 0q multiplet; we will review

the linearized super-Poincaré transformations below.

However, these transformations do not define an action of pp2,0q on the space of fields. In the

physics terminology, they close only on-shell (and after accounting for gauge equivalence). In

the BV formalism, this is rectified by extending the action to an L8 action on the BV fields.

(See, just for example, [Bau+90] for an application of this technique.) For the hypermultiplet,

this was performed explicitly in [ESW]; the hypermultiplet, however, is a symplectic BV theory

in the standard sense. For the tensor multiplet, supersymmetry also only exists on-shell; no

strict Lie module structure can be given. We work out the required L8 correction terms, which

play a nontrivial role in our later calculation of the non-minimal twist.

We will first recall the definitions of the relevant supersymmetry algebras; afterwards, we will

construct the multiplets as free perturbative presymplectic BV theories, and go on to give the L8
module structure on the N “ p2, 0q tensor multiplet. Of course the N “ p1, 0q transformations

follow trivially from this by restriction.

3.1. Supersymmetry algebras in six dimensions. Let S˘ – C4 denote the complex four-

dimensional spin representations of Spinp6q and let V – C6 be the vector representation. There
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exist natural Spinp6q-invariant isomorphisms

^2pS˘q
–
ÝÑ V

and a non-degenerate Spinp6q-invariant pairing

p´,´q : S` b S´ Ñ C.

The latter identifies S` – pS´q
˚ as Spinp6q-representations. Under the exceptional isomorphism

Spinp6q – SUp4q, S˘ are identified with the fundamental and antifundamental representation

respectively.

The odd part of the complexified six-dimensional N “ pn, 0q supersymmetry algebra is of the

form

Σn “ S` bRn,

where Rn is a p2nq-dimensional complex symplectic vector space whose symplectic form we

denote by ωR. There is thus a natural action of Sppnq on Rn by the defining representation.

Note that we can identify the dual Σ˚n “ S´ bRn as representations of Spinp6q ˆ Sppnq.

The full N “ pn, 0q supertranslation algebra in six dimensions is the super Lie algebra

tpn,0q “ V ‘ΠΣn

with bracket

(20) r´,´s “ ^b ωR : ^2pΠΣnq Ñ V.

This algebra admits an action of Spinp6qˆSppnq, where the first factor is the group of (Euclidean)

Lorentz symmetries and the second is called the R-symmetry group GR “ Sppnq. Extending

the Lie algebra of Spinp6q ˆ Sppnq by this module produces the full N “ pn, 0q super-Poincaré

algebra, denoted ppn,0q.

Remark 3.1. We can view ppn,0q as a graded Lie algebra by assigning degree zero to the summand

sop6q‘sppnq, degree one to Σn, and degree two to V . In physics, this consistent Z-grading plays

the role of the conformal weight. Both this grading and the R-symmetry action become inner

in the superconformal algebra , which is the simple super Lie algebra

(21) cpn,0q “ ospp8|nq.

The abelian N “ p2, 0q multiplet in fact carries a module structure for ospp8|2q; computing the

holomorphic twist of this action should lead to an appropriate algebra acting by supervector

fields on the holomorphic theory we compute below, which should then extend to an action

of all holomorphic vector fields on an appropriate superspace, following the pattern of [SW19].

However, we leave this computation to future work.

For theories of physical interest, one considers n “ 1 or 2. In the latter case, an accidental

isomorphism identifies Spp2q with Spinp5q, which further identifies R2 with the unique complex

spin representation of Spinp5q.
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3.1.1. Elements of square zero. With an eye towards twisting, we recall the classification of

square-zero elements in ppn,0q for n “ 1 and 2, following [ES18; ESW18]. As above, we are

interested in odd supercharges

(22) Q P ΠΣn “ ΠS` bRn,

which satisfy the condition rQ,Qs “ 0. Such supercharges define twists of a supersymmetric

theory.

We will find it useful to refer to supercharges by their rank with respect to the tensor product

decomposition (22) (meaning the rank of the corresponding linear map Rn Ñ pS`q
˚). It is

immediate from the form of the supertranslation algebra that elements of rank one square to

zero for any n.

When n “ 1, it is also easy to see that any square-zero element must be of rank one, so

that the space of such elements is isomorphic to the determinantal variety of rank-one matrices

in M4ˆ2pCq. This can in turn be thought of as the image of the Segre embedding

(23) P3 ˆ P1 ãÑ P7.

For n “ 2, there are two distinct classes of such supercharges: those of rank one, which we

will also refer to as minimal or holomorphic, and a certain class of rank-two elements, also called

non-minimal or partially topological. A closer characterization of the two types of square-zero

supercharges is the following:

Minimal (or holomorphic): A supercharge of this type is automatically square-zero. More-

over, such a supercharge has three invariant directions, and so the resulting twist is a

holomorphic theory defined on complex three-folds. Similarly to the n “ 1 case, the

space of such elements is isomorphic to the determinantal variety of rank-one matrices

in M4ˆ4pCq, which is the image of the Segre embedding

(24) P3 ˆ P3 ãÑ P15.

We remark that in the case n “ 2, the supercharge Q of rank one defines a N “ p1, 0q

subalgebra pp1,0q Ă pp2,0q, and therefore a decomposition R2 “ R1 ‘ R11, where R11 can

be identified with the symplectic reduction of R2 along the line defined by Q.

Non-minimal (or partially topological): SupposeQ P ΠΣ2 is a rank-two supercharge (there

is no such supercharge when n “ 1). It can be written in the form

(25) Q “ ξ1 b r1 ` ξ2 b r2.

Since ^2S` – V , such an element must satisfy a single quadratic condition

(26) wpr1, r2q “ 0

in order to be of square zero. Such a supercharge has five invariant directions, and the

resulting twist can be defined on the product of a smooth four-manifold with a Riemann

surface. The space of all such supercharges is a subvariety of the determinantal variety

of rank-two matrices in M4ˆ4pCq, cut out by this single additional quadratic equation.

Just as for the determinantal variety itself, its singular locus is precisely the space of

rank-one (holomorphic) supercharges.
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We will compute the holomorphic twist below in §4 and the rank-two twist in §5. There,

we will also recall some further details about nilpotent elements in tp2,0q, showing how the non-

minimal twist can be obtained as a deformation of a fixed minimal twist.

Remark 3.2. In fact, a study of the space of Maurer–Cartan elements in pp2,0q was also a major

motivation for the formulation of the supersymmetry multiplets that we use throughout this

paper. In physics, the pure spinor superfield formalism [Ced14] has been used as a tool to

construct multiplets for some time. The relevant cohomology, corresponding to the field content

of Tp2,0q, was first computed in [CNT02].

In [ESW18], the pure spinor superfield formalism was reinterpreted as a construction that

produces a supermultiplet (in the form of a cochain complex of vector bundles) from the data

of an equivariant sheaf over the nilpotence variety. It was further observed that, when the

nilpotence variety is Calabi–Yau, Serre duality gives rise to the structure of a shifted symplectic

pairing on the resulting multiplet, so that the full data of a BV theory is produced. More

generally, when the canonical bundle is not trivial, the multiplet resulting from the canonical

bundle admits a pairing with the multiplet associated to the structure sheaf.

As mentioned before, applying this formalism to the structure sheaf of the nilpotence variety

for pp2,0q—the geometry of which was reviewed above—produces a cochain complex with a

homotopy action of pp2,0q that corresponds precisely to the formulation we use in this paper and

explore in detail in the following section. For this space, however, the canonical bundle is not

trivial; the multiplet associated to the canonical bundle is, roughly speaking, T!
p2,0q, which can

be identified with the space of linear Hamiltonian observables of Tp2,0q. It would be extremely

interesting to give a geometric description of the origin of the presymplectic pairing on Tp2,0q,

but we do not pursue this here; our use of this pairing, as described above, is motivated by

interpreting self-duality as a constraint and pulling back the pairing from the standard structure

on the nondegenerate two-form.

3.2. Supersymmetry multiplets. The two theories we are most interested in are the abelian

p1, 0q and p2, 0q tensor multiplets. We define these here at the level of (perturbative, free)

presymplectic BV theories, and then go on to discuss the N “ p1, 0q hypermultiplet, which will

also play a role in what follows.

First, we define the p1, 0q theory. Recall that R1 denotes the defining representation of Spp1q.

Definition 3.3. The six-dimensional abelian N “ p1, 0q tensor multiplet is the presymplectic

BV theory Tp1,0q defined by the direct sum of presymplectic BV theories:

(27) Tp1,0q “ χ`p2q ‘Ψ´pR1q ‘ Σp0,Cq,

defined on a Riemannian spin manifoldM . This theory has a symmetry by the groupGR “ Spp1q

which acts on R1 by the defining representation and trivially on the summands χ`p2q, Σp0,Cq.

This theory admits an action by the supertranslation algebra tp1,0q, which will be constructed

explicitly below in §3.3.

Note that the fields of cohomological degree zero together with their linear equations of motion

are:

‚ a two-form b P Ω2pMq, satisfying the linear constraint d`pbq “ 0 P Ω3
`pMq;
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‚ a spinor ψ P Ω0pM,S´ bR1q, satisfying the linear equation of motion p{B b 1R1qψ “ 0 P

Ω0pM,S` bR1q;

‚ a scalar ϕ P Ω0pMq, satisfying the linear equation of motion d ‹ dϕ “ 0 P Ω6pMq.

Next, we define the p2, 0q theory. Recall, R2 denotes the defining representation of Spp2q. Let

W be the vector representation of Spinp5q – Spp2q.

Definition 3.4. The six-dimensional abelian N “ p2, 0q multiplet is the presymplectic BV

theory Tp2,0q defined by the direct sum of presymplectic BV theories:

(28) Tp2,0q “ χ`p2q ‘Ψ´pR2q ‘ Σp0,W q.

defined on a Riemannian spin manifold. This theory has a symmetry by the group GR “ Spp2q

which acts on R2 by the defining representation and W by the vector representation upon the

identification Spp2q – Spinp5q. Note, GR “ Spp2q acts trivially on the summand χ`p2q.

This theory admits an action by the supertranslation algebra tp2,0q, which will be constructed

explicitly below in §3.3.

Note that the fields of cohomological degree zero consist of

‚ a two-form b P Ω2pMq, satisfying the linear constraint d`pbq “ 0 P Ω3
`pMq;

‚ a spinor ψ P Ω0pM,S´ bR2q, satisfying the linear equation of motion p{B b 1R2qψ “ 0 P

Ω0pM,S` bR2q;

‚ a scalar ϕ P Ω0pM,W q, satisfying the linear equation of motion pd ‹ d b 1W qϕ “ 0 P

Ω6pM,W q.

Lastly, we discuss the six-dimensional N “ p1, 0q hypermultiplet.

Definition 3.5. Let R be a finite-dimensional symplectic vector space over C, as above. The

N “ p1, 0q hypermultiplet valued in R is the following free (nondegenerate) BV theory in six

dimensions:

(29) T
hyp
p1,0qpRq “ Σp0, R1 bRq ‘Ψ´pRq

The theory admits an action of the flavor symmetry group SppRq. (Note that R1 bR obtains a

symmetric pairing from the tensor product of the symplectic pairings on R and R1.)

Exhibiting each of these theories as an L8-module for the relevant supersymmetry algebra is

the subject of the next subsection.

3.3. The module structure. The main goal of this section is to define an action of the p2, 0q

supersymmetry algebra pp2,0q on the tensor multiplet Tp2,0q. The action of the p1, 0q supersym-

metry algebra on the constituent multiplets Tp1,0q and T
hyp
p1,0qpR

1
1q will then be obtained trivially

by restriction, which we will spell out at the end of this section.

This action is only defined up to homotopy, which means we will give a description of Tp2,0q
as an L8-module over pp2,0q. This amounts to giving a Lorentz- and R-symmetry invariant L8
action of the supertranslation algebra tp2,0q.

Associated to the cochain complex Tp2,0q is the dg Lie algebra of endomorphisms EndpTp2,0qq.

Sitting inside of this dg Lie algebra is a sub dg Lie algebra consisting of linear differential
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operators DiffpTp2,0q,Tp2,0qq. The differential is given by the commutator with the classical BV

differential QBV. For us, an L8-action will mean a homotopy coherent map, or L8 map, of dg

Lie algebras ρ : pp2,0q ù DiffpTp2,0q,Tp2,0qq.

Such an L8 map is encoded by the data of a sequence of polydifferential operators tρpjqujě1

of the form

(30)
ÿ

jě1

ρpjq :
à

j

Symj
`

tp2,0qr1s
˘

b Tp2,0q Ñ Tp2,0qr1s,

satisfying a list of compatibilities. For instance, the failure for ρp1q : tp2,0q b Tp2,0q Ñ Tp2,0q to

define a Lie algebra action is by the homotopy ρp2q:

(31) ρp1qpxqρp1qpyq ´ ρp1qpyqρp1qpxq ´ ρp1qprx, ysq “ rQBV, ρ
p2qpx, yqs.

In the case at hand, ρp1q will be given by the known supersymmetry transformations from the

physics literature, extended to the remaining complex by the requirement that it preserve the

shifted presymplectic structure. While ρp1q does not define a representation of tp2,0q, we can find

ρpjq, j ě 2 so as to define an L8 module structure. In fact, we will see that ρpjq “ 0 for j ě 3,

so we will only need to work out the quadratic term ρp2q.

Theorem 3.6. There are linear maps tρp1q, ρp2qu that define an L8-action of tp2,0q on Tp2,0q.

Furthermore, both ρp1q and ρp2q strictly preserve the p´1q-shifted presymplectic structure.

We split the proof of this result into two steps. First, we will construct the linear component

ρp1q and verify that it preserves the BV differential and shifted presymplectic form. Then we

will define the quadratic homotopy ρp2q and show that together with the linear term defines an

L8-module structure on Tp2,0q.

3.3.1. The physical transformations. We define the linear component ρp1q of the action of su-

persymmetry on Tp2,0q. The map ρp1q consists standard supersymmetry transformations on

the physical fields (in cohomological degree zero), together with certain transformations on the

antifields which guarantee that ρp1q preserve the shifted presymplectic structure on Tp2,0q.

The linear term ρp1q is a sum of four components:

(32)

ρV : V b Tp2,0q Ñ Tp2,0q

ρΨ : Σ2 bΨ´pR2q Ñ χ`p2q ‘ Σp0,W q

ρΣ : Σ2 b Σp0,W q Ñ Ψ´pR2q

ρχ : Σ2 b χ`p2q Ñ Ψ´pR2q

We will define each of these component maps in turn.

The first transformation is simply the action by (complexified) translations on the fields. An

translation invariant vector field X P V Ă VectpR6q acts via the Lie derivative LXα, where α is

any BV field. That is, ρV pX b αq “ LXα.

We now turn to describe the supersymmetry transformations. We will first describe the action

on the physical fields, that is, the fields in cohomological degree zero. We will deduce the action

on the antifields in the next subsection.
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The transformation of the physical fermion field (the component pΠS´ b R2q of the BV

complex Ψ´pR2q in degree zero) is given by ρΨ, which is defined as follows. Consider the

isomorphism

(33) pΠS` bR2q b pΠS´ bR2q –
`

C‘^2V
˘

b
`

C‘W ‘ Sym2pR2q
˘

of Spinp6qˆSpp2q representations. It is clear by inspection that there are equivariant projection

maps onto the irreducible representations ^2V b C and C bW . These projections allow us to

define ρΨ as the composition of the following sequence of maps:

(34)

Ω0 bW

ΠΣ2 b ΓpΠS´ bR2q pS` bR2q b pS´ bR2q χ`p2q ‘ Σp0,W q.

Ω2

Ă

“

ρΨ,0

ρΨ,2

Ă

Of course, this map is canonically decomposed as the sum of two maps (along the direct sum in

the target), which we will later refer to as ρΨ,0 and ρΨ,2 respectively.

The transformation of the physical scalar field (the component C8pR6;W q of the BV complex

Σp0,W q in degree zero) is defined as follows. We observe that there is a map of Spinp6q ˆ Spp2q

representations of the form

(35) pΠS` bR2q b pV bW q Ñ S´ bR2,

which can be thought of (using the accidental isomorphism B2 – C2) as the tensor product

of the six- and five-dimensional Clifford multiplication maps. ρ
p1q
Σ can then be defined as the

composition of the maps in the diagram

(36)

ΠΣ2 b pΩ
0 bW q pΠS` bR2q b pΩ

1 bW q

ΓpΠS´ bR2q Ψ´pR2q.

d

Ă

The vertical map is induced by (35).

On the degree zero component Ω2pR4q of the presymplectic BV complex χ`p2q, the map ρχ
is defined as follows. Recall that there is a projection map of Spinp6q representations

π : S` b^
3
´pV q Ñ S´

obtained via the isomorphism ^3
´pV qbS` – S´‘r012s.4 This isomorphism is most easily seen

using the accidental isomorphism with SUp4q, where it can be derived using the standard rules

for Young tableaux and takes the form

(37) b – ‘ .

4The notation refers to the Dynkin labels of type D3.
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The map ρχ is then defined on physical fields by the following sequence of maps:

(38)

ΠΣ2 b Ω2 pΠS` bR2q b Ω3
´

ΓpΠS´ bR2q Ψ´pR2q.

d´

Ă

3.3.2. Supersymmetry transformations on the antifields. In the standard BV approach, there is

a prescribed way to extend the linear action of any Lie algebra on the physical fields to an action

on the BV complex in a way that preserves the shifted symplectic structure. The idea is that

the action of a physical symmetry algebra g is usually defined by a map

(39) ρ : gÑ VectpF q

that implements the physical symmetry transformations on the physical (BRST) fields, just as

in the previous section. Of course there are strong conditions on ρ coming from, for example,

the requirement of locality. In the BV formalism, there is additionally the requirement that the

action of g on the BV fields must preserve the shifted symplectic structure. There is an immediate

way to extend the vector fields (39) to symplectic vector fields on the space E “ T ˚r´1sF of BV

fields: one can take the transformation laws of the antifields to be determined by the condition

of preserving the shifted symplectic form. (In fact, such vector fields are always Hamiltonian in

the standard case.)

For the anti-map component of ρΣ, no complexity appears: we can simply define it as the

composition

(40)

Ω6 bW r´1s Σp0,W q.

ΠΣ2 b ΓpΠS`r´1s bR2q pS` bR2q b ΓpS´r´1s bR2q

Ă

{B

The anti-map component of ρΨ,0 is similarly straightforward, and can be expressed with the

diagram

(41)

ΠΣ2 b Σp0,W q pΠS` bR2q b pΩ
6 bW qr´1s ΓpΠS`r´1s bR2q Ψ´pR2q

Ă

where the middle arrow is simply Clifford multiplication.

The anti-map to ρΨ,2 is determined by the nature of the shifted presymplectic pairing ωχ`
on χ`p2q. As such, the number of derivatives appearing is, at first glance, somewhat surprising.

It is given by

(42)

ΓpΠS`r´1s bR2q Ψ´pR2q.

ΠΣ2 b Ω3
`r´1s pΠS` bR2q b Ω4r´1s

Ă

d

Finally, the anti-map component of ρχ takes the form

(43)

ΠΣ2 b ΓpS`r´1s bR2q pΠS` bR2q b ΓpΠS`r´1s bR2q Ω3
`r´1s χ`p2q.

“ Ă
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We have thus constructed the linear component of supersymmetry. It is straightforward

to check that ρp1q commutes with the classical BV differential and preserves the p´1q-shifted

presymplectic structure.

3.3.3. The L8 terms. We turn to the proof of the remaining part of Theorem 3.6. We will show

that ρp1q sits as the linear component of an L8-action of tp2,0q on the p2, 0q theory. In fact, we

will only need to introduce a quadratic action term

ρp2q : tp2,0q b tp2,0q b Tp2,0q Ñ Tp2,0qr´1s

and will show the following. This quadratic term splits up into the following three components:

(44)

ρp2qχ : tp2,0q b tp2,0q b χ`p2q Ñ χ`p2qr´1s

ρ
p2q
Ψ : tp2,0q b tp2,0q bΨ´pR2q Ñ Ψ´pR2qr´1s

ρ
p2q
Σ : tp2,0q b tp2,0q b Σp0,W q Ñ χ`p2qr´1s.

First, ρ
p2q
χ “

ř

ρ
p2q
χ,j is defined by the sum over form type of the linear maps

ρ
p2q
χ,j : pΣ2 b Σ2q b Ωj r¨,¨sb1

ÝÝÝÝÑ V b Ωj ip¨q
ÝÝÑ Ωj´1

where r¨, ¨s is the Lie bracket defining the N “ p2, 0q algebra and iX denotes contraction with

the vector field X.

The next map, ρ
p2q
Ψ , acts on a fermion antifield and produces a fermion field. To define

it, we introduce the following notation. Recall that ^2pS`q – V as Spinp6q-representations

and ^2R2 – C ‘ W as Spp2q-representations. Thus, there is the following composition of

Spinp6q ˆ Spp2q-representations

‹ : Σ2 b Σ2 Ñ p^2S`q b p^
2R2q Ñ V bW.

So, given Q1, Q2 P Σ2 the image of Q1bQ2 along this map is an element in V bW that we will

denote by Q1 ‹Q2. Now, we define ρ
p2q
Ψ as the sum ρ

p2q
Ψ,0 ` ρ

p2q
Ψ,2 where ρ

p2q
Ψ,0 is the composition

ρ
p2q
Ψ,0 : pΣ2 b Σ2q b ΓpS` bR2q

‹b1
ÝÝÑ pV bW q b ΓpS` bR2q Ñ ΓpS´ bR2q

where the second arrow is the map of Spinp6q ˆ Spp2q-representations in (35). Next, ρ
p2q
Ψ,2 is

defined by the composition

ρ
p2q
Ψ,2 : pΣ2 b Σ2q b ΓpS` bR2q

r¨,¨sb1
ÝÝÝÝÑ V b ΓpS` bR2q Ñ ΓpS´ bR2q

where the last map is Clifford multiplication.

Finally, the map ρ
p2q
Σ acts on a scalar field and produces a ghost one-form in χ`p2q. Using

the map ‹ above, ρ
p2q
Σ is described by the composition

pΣ2 b Σ2q b
`

Ω0 bW
˘ ‹
ÝÑ Ω1 b pW bW q Ñ Ω1

where the last map utilizes the symmetric form on W .

To finish the proof of Theorem 3.6 we must show that ρp1q and ρp2q satisfy (31) for all x, y P

tp2,0q.

29



Ω0 b C Ω1 b C Ω2 b C Ω3
` b C

ΓpS´ bR2q ΓpS` bR2q

Ω0 bW Ω6 bW

irQ1,Q2s
d irQ1,Q2s

d`dirQ1,Q2s

ρχ

irQ1,Q2s
d``dirQ1,Q2s

ρΨ,2

d`irQ1,Q2s

{BpQ1‹Q2`rQ1,Q2sq

ρΨ,2

ρΨ,0

{BpQ1‹Q2`rQ1,Q2sq

ρχ

ρΣρΣ

pQ1‹Q2qd

ρΨ,0

Figure 1. The failure of ρp1q to be a Lie map.

It will be convenient to define the following linear map.

(45)
µ : tp2,0q b tp2,0q b Tp2,0q Ñ Tp2,0q,

xb y b f ÞÑ ρp1qprx, ys, fq ´ ρp1qpx, ρp1qpy, fqq ` p´1q|x||y|ρp1qpy, ρp1qpx, fqq

This map µ represents the failure of ρp1q to define a strict Lie algebra action. In terms of µ, (31)

simply reads

(46) rQBV, ρ
p2qpx, yqs “ µpx, yq.

We have represented µ via the orange arrows in Figure 1. In this figure, the dashed and dotted

arrows denote the action of Q1 and Q2 through the linear term ρp1q.

It is sufficient to consider the case when x “ Q1, y “ Q2 P Σ2. We observe that the first term

in µ simply produces the Lie derivative of any field in the direction rQ1, Q2s. Since µ is an even

degree-zero map, we can consider each degree and parity separately, beginning with the ghosts:

here, it is easy to see that

(47)
µpQ1, Q2q|Ω0 “ LrQ1,Q2s : Ω0r2s Ñ Ω0r2s,

µpQ1, Q2q|Ω1 “ LrQ1,Q2s : Ω1r1s Ñ Ω1r1s,

since the supersymmetry variations make no contribution. We next work out the action of µ on

the two-form field, which is given by

(48) µpQ1, Q2q|Ω2 “ LrQ1,Q2s ´ ρΨpQ1q ˝ ρχpQ2q ´ ρΨpQ2q ˝ ρχpQ1q

which is a map of the form Ω2 Ñ Ω2 ‘ pΩ0 b W q Ă χ`p2q ‘ Σp0,W q. The map must be

symmetric in the two factors of Σ2; since Ω2 is neutral under Spp2q R-symmetry, the only possible

contractions of pR2q
b2 land in the trivial representation or in W , and both are antisymmetric.

So the pairing on S` must also be antisymmetric, showing that

(49) µpQ1, Q2q|Ω2 “ LrQ1,Q2s ´ irQ1,Q2sd´ “ dirQ1,Q2s ` irQ1,Q2sd`.
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In degree one, there is also a unique equivariant map that can contribute: it is not difficult to

show that

(50) µpQ1, Q2q|Ω3
`
“ LrQ1,Q2s ´ π`irQ1,Q2sd.

Since rQ1, Q2s is a constant vector field, the Lie derivative preserves the self-duality condition;

from this, it follows via Cartan’s formula that the anti-self-dual part of irQ1,Q2sd is equal to

´d´irQ1,Q2s, so that

(51) µpQ1, Q2q|Ω3
`
“ d`irQ1,Q2s.

Similar arguments apply for the component of µ acting on the scalar field. The symmetric

square of Σ2 decomposes as

(52) Sym2pΣ2q “ pV b Cq ‘ pV bW q ‘ pΩ3
` b spp2qq.

The component of µ that maps the scalar field to itself contains one derivative. In order to

contain a Lorentz-covariant map, only the first two irreducibles in (52) can appear. R-symmetry

then rules out the second contraction (Q1 ‹Q2), since W does not appear in the decomposition

of W bW into irreducibles. There is a unique equivariant map that can appear, which, upon

applying Cartan’s magic formula, is identical to the Lie derivative along rQ1, Q2s. An identical

argument applies for the component of µ carrying the scalar antifield to itself. The restriction

of µ to the scalar field valued in W is thus of the form

(53) µpQ1, Q2q|Ω0bW : Ω0 bW Ñ Ω2 Ă χ`p2q.

The map (53) can only arise from the second contraction of the supersymmetry generators

in (52), together with the de Rham differential acting on the scalar. There is precisely one such

map, which takes the form

(54) µpQ1, Q2q|Ω0bW “ d ˝ pQ1 ‹Q2, ¨qW

where p¨, ¨qW is the symmetric form on W .

It remains to consider the component of µ that maps the scalar antifield to Ω3
` b C. From

the form of the supersymmetry transformations, such a map must be order zero in derivatives,

and therefore must arise from the third contraction in (52). But there is no copy of the trivial

representation inside spp2qbW , and therefore no R-symmetry-equivariant map that can appear.

Finally, the component of µ acting on Ψ´pR2q maps a fermion to itself and a fermion antifield

to itself. For the fermion field, the restriction of µ is given as a sum of two terms

µpQ1, Q2q|ΓpS´bR2q “ µΨ,0pQ1, Q2q ` µΨ,2pQ1, Q2q

where µΨ,0 is given by the composition

(55) µΨ,0 : ΓpS´ bR2q
Q1‹Q2
ÝÝÝÝÑ ΓpS` bR2q

{B
ÝÑ ΓpS´ bR2q

and µΨ,2 is given by the composition

(56) µΨ,2 : ΓpS´ bR2q
rQ1,Q2s
ÝÝÝÝÝÑ ΓpS` bR2q

{B
ÝÑ ΓpS´ bR2q.

The action of µpQ1, Q2q on the anti-fermion fields is completely analogous.

We proceed to verify (46). For the restriction of µpQ1, Q2q to χ`p2q the equation follows from

repeated use of Cartan’s formula.
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Next, the restriction of µpQ1, Q2q to the scalar is given by (53). The restriction of the left-hand

side of (46) to the scalar is

QBV ˝ ρ
p2q
Σ pQ1, Q2q “ dΩ1ÑΩ2 ˝ pQ1 ‹Q2, ¨qW

as desired.

Finally, the restriction of µpQ1, Q2q to the fermion is given by the sum of (55) and (56). The

left-hand side of (46) also splits into two pieces. For the first (involving scalars), we note that

rQBV, ρ
p2q
Ψ,0pQ1, Q2qs “ {B ˝ pQ1 ‹Q2 ¨ p¨qq

which is precisely µΨ,0pQ1, Q2q acting on Ψ´pR2q. The other term is

rQBV, ρ
p2q
Ψ,2pQ1, Q2qs “ {B ˝ prQ1, Q2s ¨ p¨qq

which agrees with µΨ,2pQ1, Q2q acting on Ψ´pR2q.

We conclude by noting the following result:

Proposition 3.7. With respect to a fixed N “ p1, 0q subalgebra of pp2,0q, the abelian tensor

multiplet decomposes as

(57) Tp2,0q – Tp1,0q ‘ T
hyp
p1,0qpR

1
1q.

Proof. At the level of field content, the statements reduce to simple representation-theoretic

facts: under the subgroup Spp1qˆSpp1q1 Ď Spp2q, the vector and spinor representations decom-

pose as

(58) W – pR1 bR
1
1q ‘ C, R2 – R1 ‘R

1
1

respectively. (Here Spp1q denotes the R-symmetry of pp1,0q, and Spp1q1 its commutant inside of

the p2, 0q R-symmetry.)

The L8 module structure for pp2,0q obviously restricts to an L8 module structure for pp1,0q,

and it is trivial to see that the resulting module structure extends the physical N “ p1, 0q

transformations. (At the level of physical transformations, the proposition is standard.) �

4. The minimal twists

In this section we will compute the holomorphic twist of the abelian N “ p1, 0q and p2, 0q

tensor multiplets, using the formulation and supersymmetry action developed in the preceding

sections. We will begin by placing the theory on a Kähler manifold and decomposing the fields

with respect to the Kähler structure; at the level of representation theory, this corresponds to

recalling the branching rules from SOp6q to Up3q (more precisely, at the level of the double covers

MUp3q ãÑ Spinp6q), followed by a regrading.

We will then deform the differential by a compatible holomorphic supercharge. (As is usual

in twist calculations, choices of holomorphic supercharge are in one-to-one correspondence with

choices of complex structure on R6.) Since the L8 module structure worked out in the previous

section preserves the presymplectic structure, we are guaranteed that the twisted theory T
Q
p1,0q

is a well-defined presymplectic BV theory after deforming the differential.
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One subtlety appears when we attempt to simplify the resulting theory by discarding acyclic

portions of the BV complex. There is a natural quasi-isomorphism of chain complexes of the

form

(59) Φ : TQ
p1,0q Ñ χp2q,

whose kernel consists of an acyclic subcomplex of T
Q
p1,0q. However, Φ does not respect the

presymplectic structure on T
Q
p1,0q in a naive fashion!

Generally, given a morphism

(60) f : T Ñ T1

of cochain complexes underlying some presymplectic BV theories, one obtains another presym-

plectic form f˚ω1 on T by pullback. The appropriate notion of compatibility is to ask that this

shifted presymplectic form is equivalent to ω on T; in other words, that

(61) f˚ω1 ´ ω “ rQBV, hs.

Here h is a degree-p´2q element in the space of presymplectic structures, witnessing a homotopy

between the two p´1q-shifted structures. In other words, we should not require that the difference

of the presymplectic structures vanish strictly, but only that it be QBV-exact.

Remark 4.1. Indeed, suppose kerpfq is a nondegenerate BV theory whose differential is acyclic.

For instance, suppose the complex of fields is of the form

(62) T ˚r´1s pV ‘ V r´1sq – pV ‘ V r´1sq ‘ pV _r´1s ‘ V _q,

where V is some chain complex of vector bundles, and the acyclic differential is the shift mor-

phism between the two copies of V and its anti-map between the two copies of V _. Now, the

symplectic form pairs V with V _r´1s and V r´1s with V _; there is an obvious nullhomotopy

given by the degree-p´2q pairing that pairs V r´1s with V _r´1s, which witnesses the equivalence

of this pairing with the zero pairing.

In our case, the kernel of Φ pairs nontrivially with the rest of T
Q
p1,0q, so that the homotopy

equivalence plays an essential role in determining the appropriate presymplectic BV structure

on the holomorphic theory. With this in mind, we demonstrate an equivalence between T
Q
p1,0q

and χp2q, not just as chain complexes, but as presymplectic BV theories. Of course, an identical

phenomenon occurs in the holomorphic twist of the p2, 0q multiplet, which can be thought of

as one p1, 0q tensor multiplet and one p1, 0q hypermultiplet. Together, these rigorous twist

computations are our main result in this section, which we state precisely as follows:

Theorem 4.2. Let Q be a rank one supercharge in either of the supersymmetry algebras pp1,0q
or pp2,0q. The respective twists of the abelian p1, 0q and p2, 0q tensor multiplets on C3 are as

follows.

‚ (1,0) The holomorphic twist TQ
p1,0q is equivalent to the Z-graded presymplectic BV theory of the

chiral 2-form:

T
Q
p1,0q » χp2q.
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‚ (2,0) The holomorphic twist TQ
p2,0q is equivalent to the ZˆZ{2-graded presymplectic BV theory

defined by the chiral 2-form plus symplectic bosons with values in the symplectic vector

space R11:

(63) T
Q
p2,0q » χp2q ‘ ΦpR11q.

Moreover, this equivalence is Spp1q1-equivariant.

The remainder of the section is devoted to a detailed proof. We start off with some reminders

about the general yoga of twisting.

4.1. Supersymmetric twisting. In this section we briefly recall the procedure of twisting a

supersymmetric field theory. For a more complete formulation see [Cos13; ESW], though we

modify the construction very slightly (see [ESW, Remark 2.19]). As we’ve already mentioned,

the key piece of data is that of a square-zero supercharge Q. Roughly, the twisted theory is

given by deforming the classical BV operator QBV by Q.

In the cited references, the twisting procedure is performed starting with the data of a super-

symmetric theory in the BV formalism. This means that one starts with the data of a classical

theory in the BV formalism together with an (L8) action by the super Lie algebra of super-

translations. In our context, we have exhibited an L8 action of the supersymmetry algebra on a

presymplectic BV theory, which acts compatibly with the p´1q-shifted presymplectic structure.

The twisted theory will therefore also have the structure of a presymplectic BV theory, which

descends to smaller quasi-isomorphic descriptions after attending to the subtlety alluded to in

the introduction.

Classical supersymmetric theories are (at least) Z ˆ Z{2-graded, where the first grading is

the cohomological degree and the second grading is the parity. By definition, a square-zero

supercharge Q is of bidegree p0, 1q, whereas the classical BV differential is of bidegree p1, 0q.

After making the deformation QBV ù QBV ` Q, one could choose to remember just the

totalized Z{2 grading, with respect to which both operators are odd.

Instead, one typically uses additional data to regrade the theory so that Q,QBV have the same

homogenous degree. In addition to the action by supertranslations, a classical supersymmetric

theory on Rd carries an action by the Lorentz group Spinpdq. It also often carries an action by

the R-symmetry group GR, which is the set of automorphisms of ΠΣn preserving the pairing.

For us, d “ 6 and GR “ Sppnq for N “ pn, 0q supersymmetry.

In order to perform the twist, we use the R-symmetry to define a consistent graded structure,

as well as to ensure that the twisted theory is well-defined not just on affine space, but on all

manifolds with appropriate holonomy group. To do this, we use two additional pieces of data,

which we now describe in turn.

Definition 4.3. Given a square-zero supercharge Q, a regrading homomorphism is a homo-

morphism α : Up1q Ñ GR such that the weight of Q under α is `1.

Suppose E “ pE, QBVq is the cochain complex of fields of the classical theory, and for ϕ P E,

denote by |ϕ| “ pp, q mod 2q P Z ˆ Z{2 the bigrading. Given a regrading homomorphism α,

we define a new Z ˆ Z{2-graded cochain complex of fields Eα “ pEα, QBVq which agrees with
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pE, QBVq as a totalized Z{2-graded cochain complex with new bigrading

|ϕ|α “ |ϕ| ` pαpϕq, αpϕq mod 2q P Zˆ Z{2

where αpϕq denotes the weight of the field ϕ P E under α. Note that QBV and Q are both of

bidegree p1, 0q as operators acting on the regraded fields Eα. Our convention is that Eα denotes

the cochain complex of fields that are regraded, but equipped with the original BV differential

QBV. The shifted (pre) symplectic structure remains unchanged.

There is one last step before performing the deformation of the classical differential by the

supercharge Q in the regraded theory. In general, the symmetry group Spinpnq ˆ GR will no

longer act on the deformed theory since Q is generally not invariant under this group action.

Definition 4.4. Let Q be a square-zero supercharge, and suppose ι : G Ñ Spinpnq is a group

homomorphism. A twisting homomorphism (relative to ι) is a homomorphism φ : GÑ GR
such that Q is preserved under the product ιˆ σ : GÑ Spinpnq ˆGR.

Given such a σ, we can restrict the regraded theory to a representation for the group G, which

we will denote by σ˚rEα. We will refer to as the G-regraded theory.

Given a square-zero supercharge Q, a regrading homomorphism α, and twisting homomor-

phism σ we can finally define a twist of a supersymmetric theory E. It is the Z ˆ Z{2-graded

theory whose underlying cochain complex of fields is

EQ “ pσ˚Eα, QBV `Qq .

4.2. Holomorphic decomposition. Throughout the rest of this section we fix the data of a

rank-one supercharge Q P Σ1 (which is automatically square-zero in pp1,0q), and characterize the

resulting twist of the p1, 0q tensor multiplet Tp1,0q. As discussed in §3.1.1, such a Q defines a

theory with three invariant directions, so we will refer to the twist as holomorphic. In addition

to Q, to perform the twist we must prescribe a compatible pair of a twisting homomorphism σ

and regrading homomorphism α.

Geometrically, the holomorphic supercharge Q defines a complex structure via L “ ImpQq Ă

V “ C6 equipped with the choice of a holomorphic half-density on L.

Under the subgroup MUp3q Ă Spinp6q, the spin representations decompose as

(64) S` “ detpLq
1
2 ‘ Lb detpLq´

1
2 , S´ “ detpLq´

1
2 ‘ L˚ b detpLq

1
2 .

In particular, the odd part Σ1 “ S` b R1 of the super Lie algebra pp1,0q decomposes under

MUp3q as

detpLq
1
2 bR1 ‘ Lb detpLq´

1
2 bR1.

The holomorphic supercharge Q lies in the first factor.

There exists a unique embedding Up1q Ă GR “ Spp1q under which Q has weight `1. The

twisting homomorphism is defined by the composition

σ : MUp3q
det

1
2

ÝÝÝÑ Up1q ãÑ Spp1q.

Under this twisting homomorphism, the defining representation R1 of Spp1q splits as

(65) R1 “ detpLq´
1
2 ‘ detpLq

1
2 .
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Additionally, we fix the regrading homomorphism to agree with the natural inclusion above:

α : Up1q ãÑ Spp1q.

As outlined in §4.1, the data of φ and α allow us to consider the G “ MUp3q-regraded theory.

We observe that the odd part Σ1 of pp1,0q decomposes under these twisting data as

(66)

´1 0 1

´2 Lb detpLq´1

0 C ¨Q

1 L

3 detpLq

Here, the horizontal grading is by the ghost Z-degree determined by α and the vertical grading

is by spin Up1q Ă MUp3q. Note that Q lives in a scalar summand of ghost degree `1.

The decomposition of the p1, 0q tensor multiplet with respect to the twisting data is described

in the following proposition.

Proposition 4.5. The MUp3q-regraded p1, 0q tensor multiplet σ˚Tα
p1,0q decomposes as

σ˚Tαp1,0q “ χ`p2q ‘Ψα
´pR1q ‘ Σp0,Cq.

The result is depicted in Figure 2.

Notice that the MUp3q-action descends to a Up3q-action, so without confusion we will refer

σ˚Tα
p1,0q as the Up3q-regraded theory.

Proof of Proposition 4.5. The components χ`p2q and Σp0,Cq of Tp1,0q are acted on trivially by

the R-symmetry group GR “ Spp1q, so we only need to focus on how Ψ´pR1q is regraded.

According to Equations (64) and (65), the physical fields decompose under the twisting homo-

morphism σ by:

(67) Π
`

Ω0 b S´ bR1

˘

“ ΠpΩ0,0 ‘ Ω2,0q ‘ΠpΩ0,3 ‘ Ω2,3q.

Similarly, the antifields decompose as

(68) Π
`

Ω0 b S` bR1

˘

r´1s “ ΠpΩ3,3 ‘ Ω1,3qr´1s ‘ΠpΩ3,0 ‘ Ω1,0qr´1s

The next step is to regrade the fields according to the homomorphism α : Up1q ãÑ Spp1q “ GR.

At the level of the decomposed fields in Equation (67), this Up1q acts by weight ´1 on the first

summand Ω0,0‘Ω2,0, and by weight `1 on the second summand Ω0,3‘Ω2,3. Thus, we see that

the regraded fields of Equation (67) become

pΩ0,0 ‘ Ω2,0qr1s ‘ pΩ0,3 ‘ Ω2,3qr´1s.

Similarly, the regraded antifields of (68) become

pΩ3,3 ‘ Ω1,3qr´2s ‘ pΩ3,0 ‘ Ω1,0q.
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σ˚Tα
p1,0q ´2 ´1 0 1 2

Ω0,2

Ω0,1 Ω1,2
K

χ`p2q : Ω0 Ω1,1

Ω1,0 Ω2,1
ω

Ω2,0

Ω3,0

Ψα
´pR1q : Ω0,0 Ω1,0 Ω0,3 Ω1,3

Ω2,0 Ω3,0 Ω2,3 Ω3,3

Σp0,Cq : Ω0,0 Ω3,3

Bω

Bω

Bω

B
ω

B‹ B‹

4

Figure 2. The regraded N “ p1, 0q tensor multiplet. The unlabeled arrows

denote the obvious B or B operators.

It remains to identify the linear BV operator QBV in the regraded theory. This follows from

the well-known decomposition of the Dirac operator, on a Kähler manifold:

(69)

ˆ

S´ bR1 S` bR1
{B

˙

–

¨

˚

˚

˚

˚

˝

Ω0,0 bK´ 1
2 bR1 Ω1,0 bK´ 1

2 bR1

Ω2,0 bK´ 1
2 bR1 Ω3,0 bK´ 1

2 bR1.

B

B

B‹

˛

‹

‹

‹

‹

‚

�

The components χ`p2q and Σp0,Cq remain unaffected by both the twisting homomorphism

σ and regrading homomorphism α. However, it is necessary in what follows to decompose these

cochain complexes as Up3q-representations, using information about the decomposition of the de

Rham forms on a Kähler manifold. We recall that multiplication by the Kähler form determines

a cochain map of degree p1, 1q, defining a space of “non-primitive” forms. In what follows, we

will fix a splitting into primitive and non-primitive forms in each degree, so that (for example)

(70) Ω2,1 “ Ω2,1
K
‘ Ω2,1

ω ,

with the latter summand being the image of Ω1,0 under the Kähler form. (Such a splitting

is of course determined on compactly supported forms by the choice of Kähler metric.) We

correspondingly decompose the B and B operators with respect to this splitting; we will sometimes
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Tp1,0q σ˚Tα
p1,0q

χ`p2q b P Ω2 b P Ω2 “ Ω2,0 ‘ Ω1,1 ‘ Ω0,2

Ψ´pR1q ψ´ P ΠpS´ bR1q ψ´ P pΩ
0,0 ‘ Ω2,0qr1s ‘ pΩ0,3 ‘ Ω2,3qr´1s

Σp0,Cq φ P Ω0,0 b C φ P Ω0,0 b C

Table 1. The physical fields in the regraded p1, 0q theory.

use the subscript Bω to indicate a projection onto nonprimitive forms, and the superscript Bω

for projection onto primitive forms. Verifying the isomorphism

(71) Ω3
` – Ω3,0 ‘ Ω2,1

ω ‘ Ω1,2
K

is then a straightforward representation-theoretic exercise. Explicitly, the operators Bω, Bω can

be written in terms of the Lefschetz operator L and the dual Lefschetz operator Λ as

Bω “ p1´ LΛqB, Bω “ LΛB.

Similar formulas hold for B
ω
, Bω.

In Table 1 we have summarized what happens to the physical fields (cohomological degree

zero in the original theory) of the p1, 0q tensor multiplet in the regraded theory.

4.3. Proof of (1,0) part of Theorem 4.2. The proof proceeds in two steps. In the first, we

use the holomorphic decomposition discussed above, and deform the theory by the holomorphic

supercharge to obtain a description of the twist TQ
p1,0q. In the second, we give an explicit projec-

tion map which defines a quasi-isomorphism onto χp2q, and check that it defines an equivalence

of presymplectic BV theories.

4.3.1. Calculation of T
Q
p1,0q. Throughout this section, we refer to Figure 3, which uses the de-

composition of the fields we found in the previous section and shows the additional differentials

generated by the holomorphic supercharge. The black text denotes the fields in the component

χ`p2q of the tensor multiplet. The red text denotes the fields in the Ψα
´pR1q component, as in

Proposition 4.5. Finally, the green text denotes the fields in the Σp0,Cq component. Each of

the solid lines denotes the linear BV differential in the original, untwisted theory, see Figure 2.

We will use superscripts to label the components of each field by their form degree.

We have labeled the differential generated by the supercharge Q by the dotted and dashed

arrows, which we now proceed to justify. The dotted arrows denote order zero

differential operators, and the dashed arrows are given by the labeled differential

operator. Throughout, we extensively refer to the notation in §3.3 where we constructed the

action of supersymmetry on the tensor multiplet.

We begin with the component of the supersymmetry action which transforms a fermion into

χ`p2q. In the notation of §3.3.1 this is the linear map ρΨ,2. In the holomorphic decomposition
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´2 ´1 0 1 2

´3 Ω0,3

´2 Ω0,2 Ω1,3

´1 Ω0,1 Ω1,2
K

Ω2,3

0 Ω0,0 Ω0,0

Ω1,1
K

Ω1,1
ω

Ω0,0

Ω3,3 Ω3,3

1 Ω1,0 Ω1,0 Ω2,1
ω

2 Ω2,0 Ω2,0

3 Ω3,0 Ω3,0

Bω

B

B

1

B
ω

3

ωB

4

ω2B

5

ωB

2

6

Figure 3. The holomorphic twist of the N “ p1, 0q tensor multiplet. The hori-

zontal grading is the cohomological grading. The vertical grading is the weight

with respect to Up1q Ă Up3q.

of the fields this map is the following projection

ρΨ,2pQb´q : Ω0 ‘ Ω2,0 ‘ Ω0,3 ‘ Ω2,3 � ωΩ0 ‘ Ω2,0 Ă Ω1,1 ‘ Ω2,0 Ă χ`p2q

which reads ρΨ,2pQbψ´q “ ωψ0,0
´ `ψ2,0

´ . This term accounts for the dotted arrows in Figure 3

labeled 1 and 2 . On the antifields, the map ρΨ,2pQb´q is given by the composition π` ˝ d

where π` is the projection

π` : pS` bR1q b Ω4 � S` bR1.
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When restricted to the holomorphic supercharge Q P S` b R1 this projection defines a linear

map π1pQb´q which reads, in holomorphic coordinates:

π1pQb´q : Ω1,3 ‘ Ω2,2 ‘ Ω3,1 � Ω1,3 ‘ Ω2,2 Ñ Ω1,3 ‘ Ω3,3

where the last map uses the Lefschetz operator L : Ω2,2 Ñ Ω3,3. Thus, acting on the antifields,

ρΨ,2pQb´q reads

Ω1,2{ωΩ0,1 Ω1,3 Ω1,3

ρΨ,2pQb´q : ωΩ1,0 ωΩ1,1 Ω3,3 Ă Ψα
´pR1qr2s.

Ω3,0 Ω3,1 0

B

B

“

B

B

ω

B

This accounts for the dashed arrows B : Ω1,2{ωΩ0,1 99K Ω1,3, ωB : ωΩ1,0 99K Ω3,3, and ωB : Ω1,2{ωΩ1,3 99K
Ω3,3.

We turn to the part of the supersymmetry which transforms fermions into the scalar Σp0,Cq.
In the notation of §3.3.1 this is the linear map ρΨ,0 which is defined using the projection of a

tensor product of spin representations onto a trivial summand. When applied to the holomorphic

supercharge Q P S` bR1, the resulting linear map is given by the projection

ρΨ,0pQb´q : Ω0,0 ‘ Ω2,0 ‘ Ω0,3 ‘ Ω2,3 � Ω0,0.

In the decomposition of the fields above, this reads ρΨ,0pQ b ψ´q “ ψ0,0
´ P Ω0,0 Ă Σp0,Cq.5

This term accounts for the dotted arrow in Figure 3 labeled 3 . Similarly, on the

antifields we have ρΨ,0pQ b φ`q “ φ` P Ω3,3 Ă Ψα
´pR1qr2s, which one could write in a more

standard physics notation as δQψ
`
´ “ φ`—this is read as “the variation of ψ`´ with respect to

Q is φ`”. This term accounts for the dotted arrow labeled 4 .

Next, consider the supersymmetry which transforms Σp0,Cq into the fermion. In the notation

of §3.3.1 this is the linear map ρΣ. Applied to the supercharge Q, this is the composition

ρΣpQb´q : Ω0,0 d
ÝÑ Ω1,0 ‘ Ω0,1 Q

ÝÑ ωΩ0,1 Ă Ψα
´pR1qr1s

which reads ρΣpQ b φq “ ωBφ and accounts for the dashed arrow Ω0,0 ωΩ0,1ωB . On

antifields this is the dashed arrow Ω1,0 Ω3,3ω2B .

Next, consider the supersymmetry which transforms χ`p2q into Ψα
´pR1q. In the notation of

§3.3.1 this is the linear map ρχ, which when acting on the physical fields is the composition

π ˝ d´ where π is the projection

π : pS` bR1q b Ω3
´ Ñ S´ bR1.

When restricted to the holomorphic supercharge Q P S` b R1 this projection defines a linear

map πpQb´q : Ω3
´ Ñ S´ bR1 which reads, in holomorphic coordinates:

πpQb´q : Ω0,3 ‘ ωΩ0,1 ‘ Ω2,1{ωΩ0,1 � Ω0,3 ‘ ωΩ0,1

5In standard physics notation, one would write this as δQφ “ ψ0,0
´ .
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Φpb0,jq “ b0,j P Ω0,j , j “ 0, 1, 2;

Φpψ0,3
´ q “ ψ0,3

´ P Ω0,3;

Φpb1,0q “ b1,0 P Ω1,0;

Φpb1,1 ` φ0q “ b1,1
K
` pb1,1ω ´ ωφ0q P Ω1,1;

Φprb1,2sK ` ωψ
0,1
´ q “ b1,2 ` ωψ0,1

´ P Ω1,2;

Φpψ`1,3
´ q “ ψ`1,3

´ P Ω1,3.

Table 2. A component description of the projection map Φ

and is given by the obvious projection. Thus, acting on the physical fields, the map ρχpQb´q

is the composition

Ω0,2 Ω0,3 Ω0,3

ρχpQb´q : Ω2 “ Ω1,1 ωΩ0,1 Ω0,1 Ă Ψα
´pR1qr1s.

Ω2,0 Ω2,1{ωΩ1,0 0

B

Bω

“

Bω

Bω

“

B
ω

This accounts for the dashed arrows B : Ω0,2 99K Ω0,3, Bω : Ω0,2 99K ωΩ0,1, and Bω : Ω1,1 99K ωΩ0,1.

The anti map for this component of supersymmetry acts on Ω1,0‘Ω3,0 Ă Ψα
´pR1q and is defined

by the projection:

ρχpQb´q : Ω1,0 ‘ Ω3,0 ‘ Ω1,3 ‘ Ω3,3 � ωΩ1,0 ‘ Ω3,0 Ă χ`p2qr1s.

This accounts for the dotted arrows labeled 5 and 6 . All arrows have been accounted for,

and we have thus verified that the twisted theory T
Q
p1,0q is described by Figure 3.

4.3.2. Verification of the equivalence between T
Q
p1,0q and χp2q. We now move to the second step

of the proof. To begin, we note that there is a projection Φ from the total complex T
Q
p1,0q in

Figure 3 to the cochain complex χp2q “ Ωď1,‚r2s:

(72) Φ: TQ
p1,0q Ñ χp2q.

On components, Φ is defined by the formulas in Table 2; it sends all other fields to zero. Here, b1,1
K

and b1,1ω denote the components of the p1, 1q-form under the decomposition Ω1,1 “ Ω1,1
K
‘ωΩ0,0.

Notice that

Φp rQBVψ
0
´q “ ΦpBψ0

´ ` ωψ
0
´ ` ψ

0
´q “ 0` pωψ0

´ ´ ωψ
0
´q “ 0

which is the only nontrivial check that Φ is a cochain map. Notice that Φ is a map of underlying

graded vector bundles, so its kernel is well-defined. Since all the dotted arrows are isomorphisms,

the kernel of this map is acyclic, and so Φ defines a quasi-isomorphism of sheaves of cochain

complexes.

Since the supercharge Q preserves the presymplectic structure ωT on Tp1,0q, we know that

T
Q
p1,0q has the induced structure of a presymplectic BV theory. As discussed above, there is

also a natural shifted presymplectic structure on χp2q, defined by the formula ωχ “
∫

C3 αBα
1.
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To check that Φ defines an equivalence of presymplectic BV theories, we will need to check its

compatibility with these pairings.

We note that the quasi-isomorphism Φ does not preserve the shifted presymplectic structures

in any strict sense. However, there does exist a two-form on the space of fields h : TQ
p1,0q,c ˆ

T
Q
p1,0q,c Ñ C of degree ´2 such that

(73) ωT ´ Φ˚ωχ “ pQBV `Qqh,

where QBV ` Q denotes the internal differential on the cochain complex of two-forms in field

space, with respect to the total differential on T
Q
p1,0q. In writing elements of the space of two-

forms, we will always suppress the integration symbol over C3, which should be understood

implicitly. We also suppress the subscripts indicating the chirality of the (untwisted) fermions.

Proposition 4.6. Consider the two-form on the space of fields

(74) h “ b3,0ψ0,3 ´ b2,0pψ`q1,3 ` b2,1ω ¨ ω´1ψ2,3 ` φ0,0pψ`q3,3.

Then h defines a homotopy between ωT and the pullback Φ˚ωχ. That is, (73) is satisfied.

Proof. The proof is a straightforward computation. The pairing on χp2q is given by

(75) ωχ “ χBχ “ χ1,3Bχ1,0 ` pχ1,2
K
` χ1,2

ω qBpχ
1,1
K
` χ1,1

ω q,

containing a total of five terms. Applying the pullback, we obtain

(76) Φ˚ωχ “ pψ
`q1,3Bb1,0 `

´

b1,2
K
` ω´1ψ2,3

¯

B

´

b1,1
K
` b1,1ω ` ωφ0,0

¯

.

The pairing on T
Q
p1,0q is given by

(77)

ωT “ φ0,0φ3,3 ` ψi,0ψ3´i,3 ` b3,0Bb0,2 ` b2,1ω

´

Bb0,2 ` Bb1,1
K
` Bb1,1ω

¯

` b1,2
K

´

Bb1,1
K
` Bb1,1ω ` Bb2,0

¯

.

In writing the term ψi,0ψ3´i,3, we have suppressed the antifield symbols; of course, this means the

nondegenerate pairing on the fermi fields, and would more properly be written ψev,0pψ`qodd,3`

pψ`qodd,0ψev,3. Note also that we make no claim that all of the terms we write are nonvanishing

(for example, many will identically vanish on a compact Kähler manifold); the point is that our

claim holds formally even without using these facts.

When taking the difference of the pairings, the sixth and seventh terms of ωT cancel with

corresponding terms, and the result is

(78) ωT ´ π
˚ωχ “ φ0,0φ3,3 ` ψi,0ψ3´i,3 ` b3,0Bb0,2 ` b2,1ω

´

Bb0,2 ` Bb1,1
K
` Bb1,1ω

¯

` b1,2
K
Bb2,0

´ pψ`q1,3Bb1,0 ´ b1,2
K
ωBφ0,0 ´ ω´1ψ2,3B

´

b1,1
K
` b1,1ω ` ωφ0,0

¯

.

This is obviously nonzero as a two-form on T
Q
p1,0q, but we will show that it is the BV variation of

the homotopy (74). Note that the last term of the homotopy crucially contains only the scalar

field, and not b1,1ω .

To compute the BV variation QBVh, we will need to consider all differentials in T
Q
p1,0q entering

terms that appear in the homotopy. As usual, it is helpful to refer to Figure 3.
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As a first step, note that the homotopy h pairs the fermions at the upper right of Figure 3

with an isomorphic subcomplex of TQ
p1,0q. All of the “internal” arrows in each of these Z-shaped

subdiagrams can thus be ignored; the terms they generate in the variation will occur twice, once

from each side of the pairing, and will cancel after an integration by parts.

It is also clear that the arrows that do not contain differential operators—the dotted arrows

2 through 6 in the figure—generate precisely the terms of the pairing which do not contain

differential operators, on the scalar and between ψ´ and ψ`. This accounts for the first two

terms in (78).

It thus remains to consider only terms involving differential operators in both ωT ´ π
˚ωχ and

Qh, where we may ignore the “internal” differentials in computing the latter. We proceed term

by term in the homotopy. The first term is

(79) Qpb3,0ψ0,3q “ b3,0Bb0,2,

which cancels with the third term of (78). The second term is

(80) ´Qpb2,0pψ`q1,3q “ Bb1,0pψ`q1,3 ` b2,0Bb1,2
K
.

These two terms cancel with the seventh and eighth terms of (78) after an integration by parts.

The third term in the homotopy generates the largest number of terms: we have

(81) Qpb2,1ω ¨ω´1ψ2,3q “ b2,1ω

´

Bb0,2 ` Bb1,1
K
` Bb1,1ω ` ωBφ0,0

¯

`

´

Bb1,1
K
` Bb1,1ω ` ωBφ0,0

¯

ω´1ψ2,3.

The last three terms in this variation cancel with the last three terms in (78), and the first three

terms cancel with the fourth, fifth, and sixth terms of (78). The fourth term in the variation is

left over.

It remains to calculate the variation of the fourth and last term of the homotopy, which is

(82) Qpφ0,0pψ`q3,3q “ ωφ0,0
´

Bb1,2
K
` Bb2,1ω

¯

.

The first of these terms cancels the ninth and final term of (78), and the last term cancels the

leftover piece from the variation of the third term of the homotopy (after another integration

by parts). The proposition, and thus this portion of the main theorem, is proved. �

4.4. Holomorphic decomposition for the (2,0) theory. In this section we finish the second

part of Theorem 4.2 concerning the holomorphic twist of the p2, 0q tensor multiplet. Again, we

fix the data of a rank one supercharge Q, this time viewed as an odd element of the super Lie

algebra pp2,0q.

Recall that the R-symmetry group of p2, 0q supersymmetry is GR “ Spp2q. As in the p1, 0q

case, the supercharge Q defines a complex structure L “ C3 Ă V “ C6 equipped with the

choice of a holomorphic half-density on L. The twist carries a symmetry by the subgroup

MUp3q Ă Spinp6q whose action is defined by the twisting homomorphism

σ : MUp3q
det

1
2

ÝÝÝÑ Up1q
iˆ1
ÝÝÑ Spp1q ˆ Spp1q1 Ă Spp2q “ GR.

Here, i : Up1q ãÑ Spp1q denotes the embedding for which Q has weight `1. Also we use primes

as in Spp1q ˆ Spp1q1 Ă Spp2q to differentiate between the two abstractly isomorphic groups.
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Under the twisting homomorphism σ the defining representation R2 of Spp2q decomposes as

(83) R2 “ detpLq´
1
2 ‘ detpLq

1
2 ‘R11

where MUp3q acts trivially on R11. The vector representation W of Spp2q “ Spinp5q decomposes

under σ as W “ C‘
´

detpLq´
1
2 ‘ detpLq

1
2

¯

bR11.

The regrading datum is specified by the homomorphism

α : Up1q ãÑ Spp1q
iˆ1
ÝÝÑ Spp1q ˆ Spp1q1 Ă Spp2q “ GR.

Note that this factors through the regrading homomorphism we used in the p1, 0q case along the

embedding Spp1q ãÑ Spp2q.

In addition to MUp3q, the twist enjoys a global symmetry by the group Spp1q1. Moreover,

these actions commute for the trivial reason that MUp3q acts trivially on Spp1q1. Using Equation

(64), we observe that, after applying the twisting homomorphism σ, the odd part Σ2 of the super

Lie algebra pp2,0q transforms under MUp3q ˆ Spp1q1 Ă Spinp6q ˆ Spp2q as:

(84)

´1 0 1

3 detpLq

5{2

2

3{2 detpLq
1
2 bΠR11

1 L

1{2

0 C ¨Q

´1{2 Lb detpLq´
1
2 bΠR11

´1

´3{2

´2 Lb detpLq´1

In this table, the vertical grading organizes spin number, and the horizontal grading is by

ghost Z-degree. The terms involving R11 are all odd with respect to the new Z{2-grading.

The holomorphic supercharge Q lies in the red summand. Its only nonzero bracket occurs

with the supercharges in L represented in green above, using the degree-zero pairing on the R-

symmetry space. The bracket witnesses the nullhomotopy of the translations in L with respect

to the holomorphic supercharge.
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σ˚pThypqαpR11q ´1 0 1 2

Ω0,3pK
1
2 bR11q Ω0,2pK

1
2 bR11q

Ω0,1pK
1
2 bR11q Ω0pK

1
2 bR11q

Ω0pK
1
2 bR11q Ω0pK

1
2 bR11q

Ω0,3pK
1
2 bR11q Ω0,3pK

1
2 bR11q

B
˚

B

B
‹

4

4

Figure 4. The subcomplex σ˚pThypqαpR11q of the MUp3q-regraded p2, 0q tensor

multiplet, see Proposition 4.7. The top complex is the result of regrading the

fermions in the p1, 0q hypermultiplet, and the bottom complex is the result of

regrading the bosons in the p1, 0q hypermultiplet.

In Proposition 3.7, we described the Spp1qˆSpp1q1 decomposition of the p2, 0q tensor multiplet

as a sum of the p1, 0q tensor multiplet plus the p1, 0q hypermultiplet valued in the symplectic

representation R11: Tp2,0q “ Tp1,0q‘T
hyp
p1,0qpR

1
1q. Analogously, accounting for the twisting data φ, α

just introduced we have the following description of the regraded p2, 0q tensor multiplet.

Proposition 4.7. The MUp3q-regraded p2, 0q tensor multiplet σ˚Tα
p2,0q decomposes as

σ˚Tαp2,0q “ σ˚Tαp1,0q ‘Πσ˚pThypqαpR11q

where σ˚Tα
p1,0q is the regraded p1, 0q tensor multiplet as in Proposition 4.5 and σ˚pThypqαpR11q is

the free BV theory of the regraded hypermultiplet whose complex of fields is displayed in Figure

4.

In Figure 4, the operator B
˚

denotes the adjoint of B corresponding to the standard Kähler

form on C3. Under the regrading ThyppR11q “ Σp0, R11q ‘ Ψ´pR
1
1q ù Πσ˚pThypqαpR11q, we will

denote the decomposition of the fields as:

(85) Σp0, R11q Q ν “ ν
3
2
,0 ` ν

3
2
,3 P Ω0pK

1
2 bR11qr1s ‘ Ω0,3pK

1
2 bR11qr´1s

for the scalars and

(86) Ψ´pR
1
1q Q λ “ λ

3
2
,3 ` λ

3
2
,1 P Ω0,3pK

1
2 bR11q ‘ Ω0,1pK

1
2 bR11q

for the fermions. A similar decomposition holds for the antifields which will be denoted ν`
3
2
,0,

etc..

Proof. The N “ p2, 0q multiplet splits as a sum of three complexes

Tp2,0q “ χ`p2q ‘Ψ´pR2q ‘ Σp0,W q.

As in the case of the N “ p1, 0q multiplet, the component χ`p2q is not charged under the

R-symmetry group GR “ Spp2q.
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The physical fields of Ψ´pR2q decompose under the twisting homomorphism σ as:

(87) Π
`

Ω0 b S´ bR2

˘

“

ˆ

ΠpΩ0,0 ‘ Ω2,0q ‘ΠpΩ0,3 ‘ Ω2,3q

˙

‘Π

ˆ

Ω0 b S´ bR
1
1

˙

.

The first component in parentheses contributes to the regraded N “ p1, 0q tensor as in Proposi-

tion 4.5. The second component

Ω0 b S´ bR
1
1 “ Ω0pK´ 1

2 bR11q ‘ Ω0,1pK
1
2 bR11q

contributes to the regraded hypermultiplet ΠrThyppR11q. There is a similar decomposition for the

antifields in Ψ´pR2q.

Next, the physical fields of the scalar theory Σp0,W q decompose as

(88) Ω0 bW “ Ω0 ‘ Ω0 b

´

K´ 1
2 ‘K

1
2

¯

bR11

The first summand, the single copy of smooth functions Ω0, contributes to the regraded p1, 0q

tensor multiplet. The second summand contributes to ΠrThyppR11q. There is a similar decompo-

sition for the antifields in Σp0,W q.

By Proposition 4.5, upon regrading, we see that the components χ`p2q, the first summand of

(87), and the first summand of (88), combine to give the regraded p1, 0q tensor multiplet.

Of the remaining terms, the only component which is acted upon nontrivially by Spp2q is the

second summand in (88) (and the corresponding antifields). Under α, we see that the factor

proportional to K
1
2 has weight ´1 and the factor K

1
2 has weight `1. It remains to check that

the BV differential decomposes as stated, but this is nearly identical to the proof of Proposition

4.5. �

4.5. Proof of (2,0) part of Theorem 4.2. We now complete the proof of Theorem 4.2,

which involves deforming the regraded theory described in Proposition 4.7 by the holomorphic

supercharge Q. Throughout this section we refer to the description of the twisted theory in

Figure 5.

According to Proposition 4.7, the Q-twisted theory splits as a sum of two complexes

(89) T
Q
p1,0q ‘ ThyppR11q

Q

where T
Q
p1,0q is the Q-twist of the p1, 0q tensor multiplet and ThyppR11q

Q is the theory obtained

by deforming the MUp3q-regraded hypermultiplet Πσ˚pThypqαpR11q by Q.

In Figure 5, the black solid arrows represent the twist of the N “ p1, 0q tensor multiplet, as we

computed in §4.3 which corresponds to the first summand T
Q
p1,0q in (89). The red text refers to the

MUp3q-regraded hypermultiplet Πσ˚pThypqαpR11q. The red solid arrows represent the underlying

classical BV differential of the regraded hypermultiplet. Note that we use the shorthand notation

Ω˘
3
2
,`pR11q to mean the Dolbeault forms of type p0, `q valued in the holomorphic vector bundle

K˘ 1
2 bR11. We have labeled the differentials generated by the holomorphic supercharge Q acting

on the hypermultiplet by the dotted and dashed arrows. As in the N “ p1, 0q case, the dotted

arrows denote isomorphisms, and the dashed arrows are given by the

labeled differential operator, which we now proceed to characterize. Again, we refer to the

notation in §3.3 where we constructed the action of supersymmetry on the tensor multiplet.
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´2 ´1 0 1 2

3 Ω0,3

5{2

2 Ω0,2 Ω1,3

3{2 Ω
3
2
,3pΠR11q Ω

3
2
,3pΠR11q Ω

3
2
,3pΠR11q

1 Ω0,1 Ω1,2

1
2 Ω

3
2
,2pΠR11q

0 Ω0 Ω1,1

´1
2 Ω

3
2
,1pΠR11q

´1 Ω1,0

´3{2 Ω
3
2
,0pΠR11q Ω

3
2
,0pΠR11q Ω

3
2
,0pΠR11q

1

B

B

2

Figure 5. The holomorphically twisted N “ p2, 0q theory T
Q
p2,0q. The horizontal

grading is the cohomological Z-grading. Note that the green and red text sits in

odd Z{2-degree. The vertical grading is the weight with respect to Up1q Ă MUp3q.

We begin with the component of the supersymmetry action which transforms a fermion into

a scalar. In the notation of §3.3.1 this is the linear map ρΨ,0. In the holomorphic decomposition,

see Equation (86), of the fields we read off

ρΨ,0pQb λq “ λ
3
2
,3 P Ω

3
2
,3 Ă Σp0, R11qr1s,

This term accounts for the dotted arrow in Figure 5 labeled 1 . Similarly, on the

antifields, we have

ρΨ,0

`

Qb ν`
˘

“ ν
3
2
,0 P Ω

3
2
,0 Ă Ψ´pR

1
1q,

see the notation of Equation (85). This term accounts for the dotted arrow labeled 2 .

Next, we look at the component of supersymmetry which transforms a scalar into a fermion.

In the notation of §3.3.1 this is the linear map ρΣ. In the holomorphic decomposition of fields

we have

ρΣpQb νq “ Bν
3
2
,0 P Ω

3
2
,1 Ă Ψ´pR

1
1q.
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Similarly, on the antifields, we have

ρΣpQb λ
`q “ Bλ

3
2
,2 P Ω

3
2
,3 Ă Σp0, R11q.

These maps account for each of the dashed arrows in Figure 5.

Next, we will describe an equivalence of presymplectic BV theories

Φ : TQ
p2,0q Ñ χp2q ‘ ΦpR11q

On the p1, 0q tensor multiplet summand of the p2, 0q theory, the map Φ is defined to be the

map (72) that we used in the twist of the p1, 0q multiplet.

On the p1, 0q hypermultiplet summand, the map is defined as follows.

(90)

Φpν
3
2
,0q “ ν

3
2
,0 P Ω

3
2
,0

Φpλ
3
2
,1q “ λ

3
2
,1 P Ω

3
2
,1

Φpλ
3
2
,2 ` ν

3
2
,3q “ λ

3
2
,2 ´ B

‹
ν`

3
2
,3 P Ω

3
2
,2

Φpν
3
2
,3q “ ν

3
2
,3 P Ω

3
2
,3.

The map Φ annihilates the remaining fields of the p1, 0q hypermultiplet.

On the hypermultiplet, we note that this map is not the obvious projection map of graded

vector spaces, but is “corrected” to account for the differentials mapping out of the acyclic

subcomplex at the upper left of the hypermultiplet in Figure 5. The correction in this case is

analogous to standard twist calculations, and follows the general rubric presented in Proposi-

tion 1.23 of [ESW]. By this result, and the theorem for the p1, 0q tensor multiplet, it follows

that Φ is a quasi-isomorphism.

We have already shown how the map on the p1, 0q tensor multiplet is compatible with the

degree p´1q presymplectic structures. It is immediate to check that the map Φ restricted to the

hypermultiplet strictly preserves the degree p´1q presymplectic structures.

4.5.1. An alternative description. There is an alternative to the twisting data pφ, αq in the

case of the p2, 0q tensor multiplet. The key difference is that this variation admits a smaller

global symmetry group. Note that the theory described in the previous section carries a global

symmetry by the group MUp3q ˆ Spp1q1, even after twisting. This alternative twist breaks this

global Spp1q1 symmetry completely, but further descends the MUp3q-action to an action by Up3q.

The reason this twist enjoys a smaller symmetry group is because it depends on the choice of

a polarization of the 2-dimensional symplectic vector space R11. Such a polarization determines

an embedding i1 : Up1q ãÑ Spp1q1 which we now fix.

Define the new twisting homomorphism by the composition

rσ : MUp3q
det

1
2

ÝÝÝÑ Up1q
diag
ÝÝÑ Up1q ˆUp1q

iˆi1
ÝÝÑ Spp1q ˆ Spp1q1 Ă Spp2q.

As in the previous section, i : Up1q Ñ Spp1q denotes the homomorphism for which Q has

weight `1.

Additionally, we have the regrading homomorphism

rα : Up1q
diag
ÝÝÑ Up1q ˆUp1q

iˆi1
ÝÝÑ Spp1q ˆ Spp1q1 Ă Spp2q.

48



´2 ´1 0 1 2 3

3 Ω0,3 Ω0,3 Ω0,3

2 Ω0,2

1 Ω0,1

0 Ω3,3 Ω0,0
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B

B

B

B

Figure 6. The description of the subcomplex A Ă rT
Q
p2,0q using the alternative

twisting data.

To simplify the notation in the next section, we will denote by rTp2,0q the MUp3q-regraded

p2, 0q theory using this twisting data. The Q-twisted theory will be denoted by rT
Q
p2,0q.

With this choice of a regrading homomorphism, the twisted theory rT
Q
p2,0q descends to a Up3q-

equivariant theory and is concentrated in even Z{2-degree and hence defines a Z-graded theory.

Aside from this, the only part of the calculation that changes is the subcomplex defined by the

green and red text of Figure 5, which we will henceforth denote by A Ă rT
Q
p2,0q.

For example, in the original description of the twist the scalar field lives in ΠΩ
3
2
,0pR11qr1s.

According to this new twisting data this becomes

ΠΩ
3
2
,0pR11qr1s ‘ΠΩ

3
2
,3pR11qr´1s ù

`

Ω0,0 ‘ Ω3,0r2s
˘

‘
`

Ω0,3r´2s ‘ Ω3,3
˘

.

Similarly, using the original twisting data, the fermion field lives in ΠΩ
3
2
,1 ‘ ΠΩ

3
2
,3. According

to this new twisting data this becomes

ΠΩ
3
2
,1 ‘ΠΩ

3
2
,3 ù

`

Ω0,1r´1s ‘ Ω3,1r1s
˘

‘
`

Ω0,3r´1s ‘ Ω3,3r1s
˘

.

In total, using this alternative twisting data, the green and red subcomplex of the diagram in

Figure 5, which we denote A, is displayed in Figure 4.5.1. As before the solid arrows denote the

differentials in the original untwisted theory. The dotted arrows denote isomorphisms

and the dashed arrows arrows are given by the labeled differential operators induced

by the action by Q. The green text labels the components arising from the scalar part of the

untwisted theory, the red text labels the components arising from the fermion.
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We recognize that the complex of Figure 4.5.1 admits a cochain map to the βγ system on

C3. Since the dotted arrows are isomorphisms, this cochain map is a quasi-isomorphism. The

following proposition follows from tracing through the presymplectic BV structures, which is

completely similar to the previous calculations.

Proposition 4.8. There is an equivalence of presymplectic BV theories

Φ : rTQ
p2,0q

»
ÝÑ χp2q ‘ βγpCq.

Moreover, this equivalence is Up3q-equivariant.

The map Φ is defined nearly identically to the quasi-isomorphism defined in the previous

section for the twisting data pφ, αq. The only difference is that one must decompose (and twist)

the formula for Φ acting on the hypermultiplet as in Equation (90).

4.6. The twisted factorization algebras. In §2.4.1 we have defined a notion of Hamiltonian

observables for certain classes of presymplectic BV theories. For a holomorphic supercharge Q,

each of the twisted presymplectic BV theories T
Q
p1,0q, T

Q
p2,0q and rT

Q
p2,0q satisfy Condition (2) in

§2.4.1. So, in each of these cases we obtain a P0-factorization algebra of Hamiltonian observables.

The twist of the p1, 0q theory T
Q
p1,0q is defined on any complex three-fold X. We denote the

corresponding factorization algebra of observables on X by Obsp1,0q, with the supercharge Q

understood. We can describe this P0-factorization algebra explicitly as follows. Recall TQ
p1,0q »

χp2q which, as a cochain complex, is Ωď1,‚r2s equipped with the differential B ` B. Keeping

track of shifts, one has χp2q! “ Ωě2,‚r2s, again equipped with the differential B ` B. Thus, the

factorization algebra is described by

Obsp1,0q “
`

OsmpΩě2,‚r1sq, B ` B
˘

where Osm denotes the “smooth” functionals as defined in §2.4.1. Explicitly, to an open set

U Ă X, the factorization algebra assigns the cochain complex

Obsp1,0qpUq “

ˆ

Sym
`

Ωď1,‚
c pUqr3s

˘

, B ` B

˙

.

With this description in hand, the P0-structure is also easy to interpret. Given two linear

observables O,O P Ωď1,‚
c pUqr3s, the P0-bracket is

(91) tO,O1u “

∫
U

OBO1.

The bracket extends to non-linear observables by the graded Leibniz rule. In [GRW20] this P0-

factorization algebra has appeared as the factorization algebra of boundary observables of abelian

7-dimensional Chern–Simons theory. For more discussion on the relationship to 7-dimensional

Chern–Simons theory and topological M-theory we refer to §6.

We will not explicitly need to mention the factorization algebra associated to the twist of the

p2, 0q theory T
Q
p2,0q. However, we will study the factorization algebra associated to its alternative

twist rTQ
p2,0q, which we will denote by Obsp2,0q. Again, this theory exists on any complex three-fold
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X. Similarly to the p1, 0q case, we obtain the following explicit description of this factorization

algebra. To an open set U Ă X, it assigns the cochain complex

Obsp2,0qpUq “

ˆ

Sym
`

Ωď1,‚
c pUqr3s ‘ Ω3,‚

c pUqr3s ‘ Ω0,‚
c pUqr1s

˘

, B ` B

˙

.

The P0-bracket on linear observables is again straightforward. The first linear factor is the same

as in the p1, 0q case. The second two linear factors are the linear observables of the βγ system

on C3. For linear observables in Ωď1,‚pUqr3s it is given by the same formula as in (91). The

only other nonzero bracket between linear observables occurs between elements O P Ω3,‚
c pUqr3s

and O1 P Ω0,‚
c pUqr1s where it is given by

tO,O1u “

∫
U

OO1.

5. The non-minimal twist

We have classified the possible twisting supercharges of the p2, 0q supersymmetry algebra in

§3.1. We found that they were characterized by the rank of the supercharge, which for a non-

trivial square-zero element could be either one or two. The minimal (rank-one) case was studied

in the last section. We now turn to the further, non-minimal, twist of the p2, 0q theory.

Upon applying a twisting homomorphism more natural to the non-minimal twisting super-

charge, the non-minimal twist exists on manifolds of the form M4 ˆ C where M4 is a smooth

four-manifold and C is a Riemann surface. Since the non-minimal supercharge leaves five direc-

tions invariant, this theory depends topologically on M4 and holomorphically on C.

Our main result is the following; see Theorem 5.9 for a more careful statement.

Theorem 5.1. The non-minimal twist of the abelian N “ p2, 0q tensor multiplet on R4 ˆ C is

equivalent, as a presymplectic BV theory, to the theory whose complex of fields is

Ω‚pR4q pb Ω0,‚pCqr2s.

The p´1q-shifted presymplectic structure is

(92) pα, α1q ÞÑ

∫
αBα1.

Here, B is the holomorphic de Rham operator on C.

Notice that this description of the nonminimal twist makes sense on a manifold of the form

M ˆ C where M is a smooth four-manifold and C is a Riemann surface.

The non-minimal twisting supercharge is a deformation of the holomorphic twist Q “ Q`Q1

where Q is the holomorphic supercharge which we describe in §5.1. In §5.3 we analyze the

resulting deformation of the abelian theory from the point of view of the holomorphic twist. In

§5.4 we finish the proof of this result by describing the twisting data that is natural from the

point of view of the non-minimal twist.
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(94)

sop6q ‘ sppR2q ΠS` bR2 V

^2L Lb detpLq´
1
2 b ρ_ L

slpLq Lb detpLq´
1
2 bR11 L_

^2L_ Lb detpLq´
1
2 b ρ

ZpglpLqq detpLq
1
2 b ρ

glpρq detpLq
1
2 b ρ_

pρ_2 q
2 detpLq

1
2 bR11

ρ_ bR11

sppR11q

ρbR11

ρ2

Figure 7. The action of rQ,´s on pp2,0q

5.1. The non-minimal supercharge. Before computing the twist, it is instructive to get

a handle on the explicit data involved in choosing a non-minimal twisting supercharge. We

will begin by considering the non-minimal theory as a deformation of the holomorphic twist,

and computing the space of possible deformations of the holomorphic theory that arise from

supersymmetries. On general grounds, we can do this by studying the square-zero elements in

As a Spinp6q ˆ Spp2q-module, the odd part of the supertranslation algebra pp2,0q is Σ2 –

ΠS` bR2. It is thus easy to compute the stabilizer of a chosen rank-one supercharge, which is

the product of the respective stabilizers of fixed vectors in S` and R2 separately. This is the

subgroup MUp3q ˆ Spp1q1 ˆ Up1q Ă Spinp6q ˆ Spp2q. As representations of the stabilizer, S`
and R2 decompose as

(93) S` “ detpLq
1
2 ‘ Lb detpLq´

1
2 , R2 “ C´1 ‘ pR11q

0 ‘ C`1.

Here, the superscripts C˘1 denote the charges under Up1q. In the complexified algebra, we can

consider the isotropic line ρ Ă R2 that defines the holomorphic supercharge, and observe that

R2 “ ρ ‘ ρ_ ‘ R11, where R11 – R2{{ρ. We will use the slightly unfortunate convention that

ρ “ C´1.

We will use this decomposition to compute the cohomology of rQ,´s, working first in the

complexified Lie algebra pp2,0q. We consider the diagram in Figure 7, depicting the decomposition

of pp2,0q and the action of the differential rQ,´s. The holomorphic supercharge is indicated in

red (note that we have not yet applied any twisting homomorphism), and the arrows represent

the action of rQ,´s. The only odd elements with which the holomorphic supercharge brackets

nontrivially are indicated in green. As remarked above, this bracket witnesses a nullhomotopy

52



of the translations in L with respect to the holomorphic supercharge. The other bracket map of

interest to us pairs the supercharges represented in blue with themselves, via the map

(95) pLb detpLq´
1
2 b pR11q

0qb2 Ñ ^2Lb detpLq´1 b^2R11 – L_.

This is the only nontrivial bracket between the odd elements of H‚ppp2,0q, rQ,´sq.

Remark 5.2. The structure of the Lie algebra H‚ppp2,0q, rQ,´sq encodes the structure of the tan-

gent space to the nilpotence variety at the holomorphic supercharge Q; since the decomposition

discussed above depends naturally on the choice of Q, it fits together into a family over the

space of holomorphic supercharges, which can be identified with the space of complex structures

on R6. The supercharges that bracket nontrivially with Q span the fiber of the normal bundle

to the nilpotence variety at Q; the dimension of this fiber is 3, represented by the component

colored green in Figure 7 above. All other supercharges anticommute with Q, and therefore

define algebraic tangent vectors to the nilpotence variety. These decompose into tangent vec-

tors to the space of holomorphic supercharges—which are Q-exact in pp2,0q—and to nontrivial

deformations, which lie in the summand colored blue in Figure 7. The space of holomorphic

supercharges is a copy of P3 ˆ P3, consisting of four-by-four matrices of rank one in S` bR2.

The deformations represented by the blue elements are of interest here; they generate the

non-minimal twist (and therefore represent deforming away from the holomorphic locus of the

nilpotence variety, into the locus of nonminimal supercharges). However, not all such infinites-

imal deformations give rise to finite deformations of Q; geometrically, this corresponds to the

fact that the nilpotence variety is singular along the locus of holomorphic supercharges, so that

not all vectors in the algebraic tangent space are tangent vectors to paths in the variety. Since

the defining equations are quadratic, though, this can be checked at order two: a deforming

supercharge Q1 P Lb detpLq´
1
2 b pR11q

0 defines a square-zero element Q`Q1 precisely when

rQ1, Q1s “ 0

inside pp2,0q. Examining the bracket map discussed above shows immediately that the deforming

supercharges with zero self-bracket are precisely the rank-one elements:

(96) Q1 “ αb w : α P Lb detpLq´
1
2 , w P pR11q

0.

The data of Q1 has an especially nice interpretation through the lens of the holomorphic twist.

We recall the alternative twisting homomorphism rσ of the p2, 0q theory from §4.5.1. Notice that

this twisting homomorphism breaks the Spp1q1 symmetry by fixing a polarization of R11. Further,

upon twisting by rφ the relevant component of the spinor representation decomposes under MUp3q

as

(97) Lb detpLq´
1
2 b pR11q

0 ù Lb detpLq´1 ‘ L.

We are assuming that Q1 lies in the first factor. Thus, from the perspective of the holomorphic

twist, the datum of a further nonminimal twist therefore consists precisely of a polarization of

the symplectic vector space R11, together with a nonzero translation invariant section of ^2TC3 ,

where TC3 is the holomorphic tangent bundle. We choose holomorphic coordinates pw1, w2, zq

on C3 and identify, without loss of generality, the supercharge Q1 with the translation invariant

bivector

Q1 “ Bw1 ^ Bw2 .
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The non-minimal twisting supercharge is

Q “ Q`Q1

where Q is the minimal supercharge lying in the red component of (94) and Q1 is a rank one

supercharge lying in the blue component of (94).

5.2. The non-minimal deformation of the holomorphic twist. Most of the remainder of

this section is devoted to the proof of the description of the non-minimal deformation of the

abelian theory given in Proposition 5.4. This description uses twisting data that are natural

from the perspective of the holomorphic twist, and deforms the holomorphic twist as described

above by the further square-zero supercharge Q1. In §5.4 we will introduce non-minimal twisting

data and deduce from this result the description of the non-minimal twist on general geometries

that are products of smooth four-manifolds with complex curves.

Remark 5.3. In principle, the Q1-deformation of the Q-twisted theory sits on the E2 page of

a spectral sequence that abuts to the Q-twisted theory. Our computations in the proof of

Proposition 5.4 directly verify only a description of the E2 page, and it is natural to ask whether

or not the spectral sequence collapses here. It is, however, not hard to argue that no further

differentials can occur: Generally, the fields of a perturbative BV theory are freely generated

as a dg module over an appropriate cdga on spacetime. This cdga is just smooth functions in

the case of an untwisted theory; in a holomorphic theory, the appropriate cdga is the Dolbeault

complex, which freely resolves the sheaf of holomorphic functions over smooth functions. In a

fully topological theory, de Rham forms appear.

For the non-minimal twist, the relevant sheaf of functions on the flat spacetime R4 ˆ C is

locally constant on R4 and holomorphic on C. This is freely resolved in smooth functions via

the cdga Ω0,‚pCq bΩ‚pR4q. Since the E2 page of the spectral sequence is already a free module

of rank one over this algebra, further differentials cannot appear.

As an aside, we note that another proof of this fact can be produced by applying the general

techniques of [SW21]. There, it is shown that the twist with respect to some supercharge Q

of a multiplet described via the pure spinor formalism by a sheaf on the nilpotence variety of

the supertranslation algebra can be computed by applying the pure spinor formalism to the

localization of that sheaf to a formal neighborhood of Q, which is identified with the nilpotence

variety of the Q-twisted supertranslation algebra. It follows immediately from this that the

twist of the multiplet associated to the structure sheaf of the nilpotence variety, with respect to

a supercharge that defines a smooth point of that variety, is of rank one over the cdga identified

above. The conditions apply to the N “ p2, 0q tensor multiplet and the supercharge Q, so that

Theorem 5.9 is a formal consequence of the results of [SW21]. We choose to give an alternative,

more explicit proof here.

Proposition 5.4. Using the twisting data prσ, rαq, the Q1-deformation of the p2, 0q tensor multi-

plet T
Q
p2,0q is equivalent to the free presymplectic BV theory whose complex of fields is

(98) Ωď1,‚pC3q{pdzqr2s Ω0,‚pC3q.π˝B

where π is the translation invariant bivector Bw1 ^ Bw2 determined by Q1. The p´1q-shifted

presymplectic structure is
∫
αBα1.
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Ω0,3

Ω0,2 Ω3,3 Ω1,3

Ω0,1 Ω3,2 Ω1,2 Ω0,3

Ω0,0 Ω3,1 Ω1,1 Ω0,2
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Ω0,0

xπ,¨y

π_B

xπ,¨y

π_B

xπ,¨y

π_B

xπ,¨y

π_B

Figure 8. The solid arrows represent the holomorphic twist of the N “ p2, 0q

theory. The dashed and dotted arrows represent the action by the supercharge

Q1 which determines a translation invariant bivector π P ^2L˚.

Remark 5.5. In the description of the non-minimal twist in (98), we have used the Calabi–Yau

form dw1dw2dz on C3 and the fact that xπ,dw1dw2dzy “ dz. On a general, not necessarily

Calabi–Yau, three-fold X equipped with a bivector π P PV2,hol, gpXq we can write this descrip-

tion more invariantly as

Ωď1,‚pXq{pImpπqq r2s Ω0,‚pXqπ˝B

Here, ImpΠq Ă T ˚X is the image of the bundle map π : ^3T ˚X Ñ T ˚X .

In (97), we could have alternatively chosen the deformation to a non-minimal supercharge Q1

to be the data of a holomorphic one-form. On C3, these lead to equivalent non-minimal twists.

Globally, however, the data of a non-vanishing holomorphic one-form η P Ω1,hol, gpXq leads to

the following description of the twist:

Ωď1,‚pXq{pηq r2s Ω3,‚pXq.
η^B

Here, Ωď1,‚pXq{pηq denotes the quotient of the algebra Ωď1,‚pXq by the ideal ηΩ0,‚pXq.
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5.3. Symmetries of the holomorphic twist. The first step in the proof of Proposition 5.4

is to exhibit the action of the non-minimal deformation Q1 on the description of the minimal,

holomorphic, twist of the p2, 0q theory given in the previous section. We will use the description

of Proposition 4.8 of the minimal twist in terms of the theory of the chiral two-form and the βγ

system.

At the level of the twisted theory we break the symmetry by the p2, 0q super Poincaré algebra

pp2,0q to its Q-cohomology. Upon regrading and applying the twisting data of §4.5.1 to the Q-

cohomology of pp2,0q, this gives us an action of a Z-graded Lie algebra pQ
p2,0q on the holomorphic

twist of the p2, 0q theory.

Let g Ă pp2,0q be the Z{2-graded sub Lie algebra of super translations. Upon regrading and

taking Q-cohomology, we obtain a subalgebra gQ Ă pQ
p2,0q.

Recall that L – C3 Ă C6 is defined to be the image of the holomorphic supercharge Q. We

take a basis for L˚ to be tBz, Bw1 , Bw2u. As a Z-graded vector space the Q-cohomology of g, after

twisting, is

gQ “ Lr1s ‘ L˚ ‘^2L˚r´1s.

We denote the elements of this cohomology by pη, v, πq. This space has a Z-graded Lie algebra

structure whose bracket is defined by the UpLq-invariant pairing of L with ^2L˚ as in rη, πs “

xη, πy P L.

In the notation of §4, the minimal twist of the N “ p2, 0q theory, using the twisting data

prφ, rαq, was denoted rT
Q
p2,0q. In Proposition 4.8 we have shown that rT

Q
p2,0q is equivalent to the

presymplectic BV theory χp2q ‘ βγpCq through an explicit quasi-isomorphism

Φ : rTQ
p2,0q Ñ χp2q ‘ βγpCq.

As an element of pp2,0q that commutes with Q, the deformation Q1 determines a degree one

element in gQ and in particular determines a degree one operator acting on rT
Q
p2,0q. If we think

about Q1 as a vector field we can naively push it forward along Φ to obtain a vector field on

χp2q‘βγpCq. However, since Φ does not strictly preserve the presymplectic form, what results is

an action of Q1 on χp2q‘βγpCq that does not preserve the shifted presymplectic pairing. We will

show that there is a way to modify this vector field to one that does preserve the presymplectic

structure.

By pulling back along Φ, the p´1q-shifted presymplectic form ωχ`ωβγ on χp2q‘βγpCq defines

a new p´1q-shifted presymplectic form on rT
Q
p2,0q. Since we know the two shifted presymplectic

structures are equivalent, we know abstractly that given any symmetry of the p2, 0q theory that

is compatible with the holomorphic supercharge and the original presymplectic structure ωT,

that we can find a homotopy equivalent symmetry that preserves Φ˚pωχ ` ωβγq.

For symmetries arising from the sub Lie algebra of super translations g Ă pp2,0q, we have the

following explicit result.

Lemma 5.6. Let X P g Ă pp2,0q be an element which commutes with the holomorphic supercharge

Q and denote by ρQpXq the associated operator acting on rT
Q
p2,0q. We assume that after twisting

the operator ρQpXq is of Z-degree |X|. There exists a degree-p|X| ´ 1q endomorphism HX of
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rT
Q
p2,0q such that

(99) Φ pρQpXq ` rQBV `Q,HXsq

strictly preserves the p´1q-presymplectic form ωχ ` ωβγ.

We denote by rρQpXq the endomorphism ΦpρQpXq ` rQBV `Q,HXsq of χp2q ‘ βγpCq.

Proof. If X is a holomorphic translation we can simply take rρQpXq “ ρQpXq and HX “ 0.

Suppose that X P pp2,0q becomes an element π P ^2L˚ Ă gQ under the twisting homo-

morphism rσ. Let us denote the holomorphic decomposition of the bosons and fermions in the

p1, 0q hypermultiplet by σ
1‚,‚ and ψ

1‚,‚
´ respectively. We denote by b‚,‚, σ‚,‚, ψ‚,‚´ elements of the

holomorphically decomposed p1, 0q tensor multiplet. The homotopy is defined by

Hπpb
2,0q “ xπ, b2,0y P Ω0,0

σ10,0
.

The linear component of the resulting vector field rρQpπq is given by the dotted and dashed

arrows of Figure 8. This is readily seen to preserve the shifted presymplectic structure.

The final case is when an element X P g which commutes with Q becomes an element

η P L Ă gQ under the twisting homomorphism rσ. The definition of the homotopy Hη is

completely similar as in the case above. �

To comment briefly on this calculation, we refer again to the dotted and dashed arrows in

Figure 8. While most of these originate in standard supersymmetry transformations of the

untwisted theory, three are subtle: the leftmost dotted arrow, which carries a physical scalar

field to a one-form ghost of the two-form field; the leftmost dashed arrow, which carries a one-

form ghost to a physical scalar field via a differential operator; and the dashed arrow third from

left, a component of which carries a physical fermi field to a fermi antifield, but is not part of

the original BV differential.

These three mysterious arrows have three different origins. The first is generated by the

L8 closure term ρ
p2q
Σ . The others, though, are of (untwisted) BV degree `1, and so cannot

originate from any subtleties of the module structure. The third term is, in fact, generated

by the projection map Φ in (90), used in computing the twist of the p1, 0q hypermultiplet; the

second term is generated by the homotopy Hπ discussed above, which replaces the fermi field

ψ1,0—whose antifield is not eliminated after the holomorphic twist—by its “new” antifield Bβ1,0.

The endomorphisms ρQpXq and ρQpXq ` rQBV ` Q,HXs are homotopy equivalent. Thus,

as a consequence of this proposition, we obtain an equivalent action of gQ on rT
Q
p2,0q which is

presymplectic upon applying the quasi-isomorphism Φ. This action is described explicitly in

Proposition 5.7 below, which we take a brief moment to foreground.

As a graded vector space, χp2q ‘ βγpCq decomposes as

pχ0, χ1, β, γq P Ω0,‚r2s ‘ Ω1,‚r1s ‘ Ω3,‚r2s ‘ Ω0,‚.

The first two components comprise the theory χp2q and the second two comprise the βγ system.

Recall, there is the internal B differential and also the differential χ0 ÞÑ Bχ0 “ χ1, where B is

the holomorphic de Rham operator on C3. As in the case of the full supersymmetry algebra, the
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action of gQ on rT
Q
p2,0q through rρQ is an action only up to homotopy. We decompose rρQ “ rρ

p1q
Q `rρ

p2q
Q

where rρ
p1q
Q is linear and rρ

p2q
Q is quadratic in gQ. Unpacking the action of supersymmetry given in

§3 we obtain the following description of the action of gQ at the level of the holomorphic twist.

Proposition 5.7. The action rρQ “ rρ
p1q
Q ` rρ

p2q
Q of gQ on χp2q ‘ βγpCq is given by:

(1) the linear term rρ
p1q
Q is defined on holomorphic translations v P L by rρ

p1q
Q pvqα “ Lvα,

where α is any field. On the remaining part of the algebra, rρ
p1q
Q is

rρ
p1q
Q pηqχ

1 “ η ^ Bχ1 P Ω3,‚
β , rρ

p1q
Q pπqχ

1 “ xπ, Bχ1y P Ω0,‚
γ

rρ
p1q
Q pηqγ “ η ^ γ P Ω1,‚

χ1 , rρ
p1q
Q pπqβ “ xπ, βy P Ω1,‚

χ1 .

Whenever it appears, the symbol x¨, ¨y refers to the obvious UpLq-invariant pairing.

(2) The quadratic term rρp2q is given by

rρ
p2q
Q pη b πqχ

1 “ ιxη,πyχ
1 P Ω0,‚

χ0 .

Conceptually, as remarked above, the key step in proving this proposition is to observe that

the homotopy Hπ described in Lemma 5.6 generates the transformation rρp1qpπqχ1 “ xπ, Bχ1y

via (99).

Remark 5.8. It is instructive to verify directly that the action described in the above proposition

is an L8-action. To see this, the key relation to observe is

η ¨ pπ ¨ χ1q ´ π ¨ pη ¨ χ1q “ ιxη,πyBχ
1.

for any η, π, χ1, where the ¨ denotes the linear action rρ
p1q
Q .

We can now give a proof of the main result of this section.

Proof of Proposition 5.4. The shifted presymplectic action of X P gQ at the level of the holo-

morphic twist χp2q ‘ βγpCq is given by rρQpXq.

The non-minimal deformation Q1 determines a nontrivial element in ^2L˚r´1s Ă gQ that we

identify with Bw1 ^ Bw2 . Schematically, the action rρQpQ
1q is given by the dotted and dashed

arrows in Figure 8. Let rQBV denote the solid arrows in this figure, which describes the linear

BV differential of the holomorphic twist.

We observe that each of the dotted arrows is of the form

xπ,´y : Ω3,‚pC3q Ñ Ω1,‚pC3q.

If we decompose Ω1,‚pC3q as Ω1,‚pC2
wq pbΩ0,‚pCzq ‘Ω0,‚pC2

wq pbΩ1,‚pCzq we see that this map is

an isomorphism onto the second component.

So, we see that there is a projection from the total complex
´

rT
Q
p2,0q,

rQBV `Q
1
¯

to T whose

kernel is acyclic. �
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5.4. Non-minimal twisting homomorphisms. In this section we complete the computation

of the non-minimal twist by describing the twisting data for the non-minimal twisting super-

charge.

Consider the twisting homomorphism defined by the composition

σtop : MUp2qˆUp1q Ñ MUp3qˆMUp3q
det

1
2 ˆdet

1
2

ÝÝÝÝÝÝÝÑ Up1qˆUp1q
pi,pi1q´1q
ÝÝÝÝÝÑ Spp1qˆSpp1q1 ãÑ Spp2q.

The first map is the block diagonal embedding of pA, xq P Up2qˆUp1q into Up3q via

ˆ

A 0

0 x

˙

in

the first factor and via

ˆ

A 0

0 x´1

˙

into the second factor. Also, i : Up1q Ñ Spp1q is the unique

homomorphism for which Q has weight `1 and i1 : Up1q Ñ Spp1q is defined by the polarization

determined by Q1. Additionally, we have the regrading homomorphism

αtop : Up1q
diag
ÝÝÑ Up1q ˆUp1q

iˆi1
ÝÝÑ Spp1q ˆ Spp1q1 Ă Spp2q.

Note that this is identical to the regrading homomorphism rα of §4.5.1).

The pair σtop, αtop constitute twisting data for the the nonminimal twisting supercharge

Q “ Q`Q1. Applying this twisting data the analog of Figure 8, which was expressed in terms

of the holomorphic twisting homomorphism rσ, is displayed in Figure 9.

The steps in the proof of Proposition 5.4 carry over verbatim after replacing the twisting

homomorphism rσ with σtop. The effect is to twist the cochain complex of fields in Proposition

5.4 so that it becomes

Ωď1,‚pC3q{pdzqr2s Ω2,‚pC2q b Ω0,‚pCzq.
BC2

which we can further identify with

(100)

ˆ

Ω0,‚pC2qr2s
BC2
ÝÝÑ Ω1,‚pC2qr1s

BC2
ÝÝÑ Ω2,‚pC2q

˙

b Ω0,‚pCzq.

The differential is BC2`BC2`BCz (where we recall that we always leave the B operators implicit).

This is just the shift of the (complexified) full de Rham complex of C2 with the p0, ‚q Dolbeault

complex of Cz. In conclusion, via the twisting homomorphism σtop the complex of fields of the

non-minimal twist is equivalent to the complex above as a Up2q ˆUp1q equivariant theory.

We can introduce slightly different twisting data to further lift this symmetry. Notice that

σtop satisfies the following property: it can be factored as

MUp2q ˆUp1q Spp2q

Spinp4q ˆUp1q

jˆ1

σtop

σspin

where σspin is the following composition of maps:

Spinp4q ˆUp1q
–
ÝÑ SUp2q ˆ SUp2q ˆUp1q

pr1,3
ÝÝÝÑ Spinp3q ˆ Spinp2q Ñ Spinp5q

–
ÝÑ Spp2q

and where j : MUp2q ãÑ Spinp4q is the standard embedding lifting the embedding Up2q ãÑ SOp4q.
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´2 ´1 0 1 2 3

Ω0,3

Ω0,2 Ω0,2 b Ω1,1

Ω1,3 b Ω0,0

Ω1,2 b Ω0,1

Ω0,2 b Ω1,1

Ω0,1 Ω0,2 b Ω1,0

Ω0,1 b Ω1,1

Ω1,2 b Ω0,0

Ω0,2 b Ω1,0

Ω1,1 b Ω0,1

Ω0,1 b Ω1,1

Ω2,2 b Ω0,1

Ω0 Ω0,1 b Ω1,0

Ω0 b Ω1,1

Ω1,1 b Ω0,0

Ω0,1 b Ω1,0

Ω0,0 b Ω1,1

Ω2,2 b Ω0,0

Ω2,1 b Ω0,1

Ω0 b Ω1,0 Ω1,0 b Ω0,0

Ω0,0 b Ω1,0

Ω2,1 b Ω0,0

Ω2,0 b Ω0,1

Ω2,0 b Ω0,0

BC2

BC2

BC2

BC2

Figure 9. The solid arrows represent the holomorphic twist of the N “ p2, 0q

theory using the twisting data σtop. The dashed and dotted arrows represent the

action by the supercharge Q1. The dotted arrows are all the natural Up2qˆUp1q

equivariant inclusions.

The pair pσspin, αtopq constitutes yet another set of twisting data for the non-minimal su-

percharge Q “ Q ` Q1. The twisting homomorphism σspin allows one to identify (100) with

Ω‚pR4q b Ω0,‚pCzqr2s. As a consequence, we arrive at the main result of this section.

Theorem 5.9. Using the twisting data pσspin, αtopq, the Q-twist of the p2, 0q tensor multiplet

T
Q
p2,0q is equivalent to the free presymplectic BV theory whose BV complex of fields is

Ω‚pR4q pb Ω0,‚pCqr2s

and whose p´1q-shifted presymplectic structure is given in (92). The equivalence is Spinp4q ˆ

Up1q-equivariant.
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6. Comparison to Kodaira–Spencer gravity

In this section we document a relationship between the twist of the tensor multiplet and a

holomorphic theory defined on Calabi–Yau manifolds that has roots in string theory and theories

of supergravity. This theory, which we will refer to as Kodaira–Spencer theory, is gravitational

in the sense that it describes variations of the Calabi–Yau structure; it was first introduced

in [Ber+94] as the closed string field theory describing the B-twisted topological string on

three-folds. Work of Costello–Li [CL15; CL16b; CL19] has began to systematically exhibit the

relationship of Kodaira–Spencer theory on more general manifolds to twists of other classes of

string theories and theories of supergravity.

The main result of this section (Proposition 6.1) can be stated heuristically as follows: up

to topological degrees of freedom, the theory of the field strengths of the holomorphic twist of

the abelian p2, 0q tensor multiplet on a Calabi–Yau three-fold is equivalent to the free limit of

(minimal) Kodaira–Spencer theory. There is a similar statement for the p1, 0q tensor multiplet

and a Type I Kodaira–Spencer theory. This resolves a simple form of a conjecture in Costello–Li

in [CL15]. This can also be seen as an enhancement of a result of Mariño, Minasian, Moore, and

Strominger [Mn+00], where it is shown that the equations of motion of the M5 brane theory on

a Calabi–Yau three-fold include the Kodaira–Spencer equations of motion.

We consider Kodaira–Spencer theory on a Calabi–Yau three-fold X, and we denote by Ω the

nowhere vanishing holomorphic volume form. Denote by PVi,jpXq “ ΓpX,^iTX b ^
jT
˚

Xq the

jth term in the Dolbeault resolution of polyvector fields of type i. Here TX is the holomorphic

tangent bundle and T
˚

is the anti-holomorphic cotangent bundle. The fields of Kodaira–Spencer

theory are

TKS
def
“ PV‚,‚pXqrrtssr2s.

Here t denotes a formal parameter of degree `2. The gradings are such that the degree of the

component tkPVi,j is i` j ` 2k ´ 2. The complex of fields carries the differential

QKS “ B ` tBΩ

where BΩ fits into the diagram

PVi,jpXq PVi´1,jpXq

Ω3´i,jpXq Ω4´i,‚pXq.

BΩ

Ω – Ω–

B

for i ě 1. Note that BΩ is an operator of degree ´1 on TKS, so that B ` tBΩ is an operator of

homogenous degree `1. The fields of Kodaira–Spencer theory are not the sections of a finite

rank vector bundle, but we will pick out certain subspaces of fields which are the sections of a

finite rank bundle.

Kodaira–Spencer theory fits into the BV formalism as a (degenerate) Poisson BV theory

[CL15]. For a precise definition of a Poisson BV theory see [BY16]. The degree `1 Poisson

bivector ΠKS on TKS which endows TKS with a Poisson BV structure is defined by

ΠKS “ pB b 1qδ∆ P TKSpXq pb TKSpXq.

Here, δ∆ is the Dirac delta-function on the diagonal in X ˆX.
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Any Poisson BV theory defines a P0-factorization algebra of observables [BY16]. For the free

limit of Kodaira–Spencer theory this P0-factorization algebra is completely explicit. To an open

set U Ă X one assigns the cochain complex:

ObsKSpUq “

ˆ

Osm pTKSpUqq , QKS

˙

“

ˆ

Sym
´

T!
KS,cpUq

¯

, QKS

˙

.

The BV bracket is defined via contraction with ΠKS. We denote the resulting P0-factorization

algebra for Kodaira–Spencer theory by ObsKS.

There are variations of the theory obtained by looking at certain subcomplexes of TKS and by

restricting the P0-bivector. They are called: minimal Kodaira–Spencer theory, denoted by rTKS;

Type I Kodaira–Spencer theory, denoted TType I; and minimal Type I Kodaira–Spencer theory,

denoted rTType I. They fit into the following diagram of embeddings of complexes of fields:

rTKS

rTType I TKS

TType I

The corresponding P0 factorization algebras of classical observables will be denoted ĄObsKS,

ObsType I, and ĄObsType I (whose definitions we recall below).

The goal of this section is relate Kodaira–Spencer theory to the twists of the p1, 0q and

p2, 0q superconformal theories using factorization algebras. Recall that in §2.4 we showed that

presymplectic BV theories, such as the chiral 2k-form χp2kq, admit a P0-factorization algebra

consisting of the “Hamiltonian” observables. We have provided a detailed description of the

factorization algebras associated to the holomorphic twists of the p1, 0q and p2, 0q theories in

§4.6. The main result is the following.

Proposition 6.1. Let X be a Calabi–Yau three-fold and Q be a holomorphic supercharge. The

following statements are true regarding the holomorphic twists T
Q
p2,0q and T

Q
p1,0q of the N “ p2, 0q

and N “ p1, 0q tensor multiplets, respectively:

(1) There is a sequence of morphisms of complexes of fields:

(101)

βγpCq ‘ Ωě2,‚r1s

T
Q
p2,0q

rTKS.

fF

which induces a morphism of P0-factorization algebras on X:

ĄObsKS Ñ Obsp2,0q

whose fiber is a locally constant factorization algebra.
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(2) There is a sequence of morphisms of complexes of fields:

(102)

Ωě2,‚r1s

T
Q
p1,0q

rTType I.

f

–
F

which induces a quasi-isomorphism of P0-factorization algebras on X:

ĄObsType I
»
ÝÑ Obsp1,0q

These result may be summarized as follows. For the p1, 0q theory, one finds that the factor-

ization algebra of Hamiltonian observables of the presymplectic BV theory T
Q
p1,0q is equivalent

to the free limit of the observables of Type I Kodaira–Spencer theory. For the p2, 0q theory, the

observables of the presymplectic BV theory T
Q
p2,0q differ from the free limit of the observables

of minimal Kodaira–Spencer theory by a locally constant factorization algebra. This locally

constant part has been appeared in [RY19] in what they refer to as Kodaira–Spencer theory

with potentials.

The connection between Kodaira–Spencer theory and the tensor multiplet is through the field

strength. Indeed, the map labeled F in the above statement is a holomorphic version of the field

strength of the chiral two-form. In the sections below, it is defined as the obvious extension of

the following map of Dolbeault complexes

B : Ωď1,‚r2s Ñ Ωě2,‚r1s

given by the holomorphic de Rham operator. By our results in the previous sections, given a

two-form element χ P Ωď1,‚pXq, the component of the three-form field strength Bχ P Ωě2,‚ is

the only piece that survives the holomorphic twist.

Finally, we remark that the P0-factorization algebra ĄObsType I » Obsp1,0q has appeared as the

factorization algebra of boundary observables of 7-dimensional abelian Chern–Simons theory.

Likewise, minimal Kodaira–Spencer theory rTKS also appears as a boundary condition of 7-

dimensional abelian Chern–Simons theory.

6.1. Minimal theory. Many of the fields in the complex TKS are invisible to the shifted Poisson

structure we have just introduced. There is a piece of TKS that “sees” the Poisson bracket,

called the minimal theory. The fields of the minimal theory form the subcomplex of fields of full

Kodaira–Spencer theory rTBCOV Ă PV‚,‚pXqrrtssr2s defined by

rTKS
def
“

à

i`kď2

tkPVi,‚r´i´ 2k ` 2s.

The shifted Poisson tensor ΠKS restricts to one on this subcomplex, thus defining another Poisson

BV theory whose fields are rTKS.

6.1.1. Proof of part (1) of Proposition 6.1. This is a direct calculation. Observe that the minimal

fields decompose into six graded summands:

rTKS “ PV0,‚r2s ‘ PV1,‚r1s ‘ tPV0,‚ ‘ PV2,‚ ‘ tPV1,‚r´1s ‘ t2PV0,‚r´2s.
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and the differential takes the form:

(103)

´2 ´1 0 1 2

PV0,‚

PV1,‚ tPV0,‚

PV2,‚ tPV1,‚ t2PV0,‚

tBΩ

tBΩ tBΩ

Using the Calabi–Yau form Ω we can identify each line above with some complex of differential

forms. For the first line, we have PV0,‚ Ω
– Ω3,‚. The second line is isomorphic to the cochain

complex Ωě2,‚r1s, where BΩ is identified with the holomorphic de Rham operator. This is the

standard resolution of closed two-forms up to a shift. Similarly, the third line is isomorphic to

Ωě1,‚. This is the standard resolution for closed one-forms.

In total, the cochain complex of minimal Kodaira–Spencer theory TKS is isomorphic to

Ω3,‚r2s ‘ Ωě2,‚r1s ‘ Ωě1,‚.

We define the morphism f in the first diagram (101) of Proposition 6.1. Recall, the cochain

complex of fields of the βγ system with values in C is

Ω0,‚ ‘ Ω3,‚r2s.

On the components Ω3,‚r2s and Ωě2,‚r1s, we take f to be the identity morphism. On the

component Ω0,‚ we take f to be the holomorphic de Rham operator

B : Ω0,‚ Ñ Ωě1,‚.

Using the description of the holomorphic twist in §4.5.1, we have identified the minimal twist

of the N “ p2, 0q theory with T
Q
p2,0q – χp2q ‘ βγpCq. The morphism F is defined to be the

identity on the βγpCq component. On χp2q “ Ωď1,‚r2s, F is defined by the holomorphic de

Rham operator

B : Ωď1,‚r2s Ñ Ωě2,‚r1s.

To finish the proof, we introduce an intermediate factorization algebra that we think of as the

observables associated to the Poisson BV theory βγpCq ‘ Ωě2,‚r1s. Let F be the factorization

algebra which assigns to U Ă X the cochain complex

FpUq “

ˆ

Sym
´

βγ!
cpUq ‘ Ωď1,‚

c pUqr3s
¯

, Bβγ ` B ` B

˙

.

The maps f, g induce maps of factorization algebras

ĄObsKS
f˚
ÝÑ F

F˚
ÝÝÑ Obsp2,0q

Following the description of Obsp2,0q given in §4.6, we observe that the map F ˚ is a quasi–

isomorphism. The result follows from the fact that the kernel of f is the sheaf of constant

functions C.
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6.2. Type I theory. Type I Kodaira–Spencer theory has underlying complex of fields

TType I “
à

i`k“ odd

tkPVi,‚r´i´ 2k ´ 2s.

This describes the conjectural spacetime string field theory of the Type I topological string, see

[CL19].

The complex of fields of minimal Type I Kodaira–Spencer theory rTType I is the intersection of

the fields of the minimal theory with the Type I theory. The only polyvector fields that appear

are of arity zero and one, so that:

rTType I “ PV1,‚r1s ‘ tPV0,‚

As before, the differential is the internal B operator plus the operator tBΩ which maps the first

component to the second. Notice that rTType I Ă
rTKS as the middle line in diagram (103).

The proof of part (2) of Proposition 6.1 is more direct than the last section. We have already

explained how to identify rTType I with the resolution of closed two-forms Ωě2,‚r1s. This is the

isomorphism f in diagram (102).

The morphism F in diagram (102) is the holomorphic de Rham operator B. The same argu-

ment as in the last section shows that f ˝ F defines the desired quasi-isomorphism

pf ˝ F q˚ : ĄObsType I
»
ÝÑ Obsp1,0q .

7. Dimensional reduction

In this final section, we place the N “ p2, 0q theory on various geometries, including both

naive dimensional reduction and compactification on product manifolds. We begin with the

twisted theories, showing that the holomorphic twist reduces to the twist of five-dimensional

supersymmetric Yang–Mills theory up to a copy of the constant sheaf. We then go on to give a

description of the holomorphic twist after compactification along a complex surface, as well as the

two-dimensional theory obtained by placing the nonminimal twist on a smooth four-manifold.

Finally, we consider dimensional reduction to five dimensions at the level of the untwisted

theory, and show that this produces untwisted five-dimensional Yang–Mills as expected, up to

the same copy of the constant sheaf. The calculation leads us into some considerations related

to electric–magnetic duality, through which we argue that the presence of the constant sheaf

is reasonable and in fact expected from a physics perspective. In the final portion, we offer

some more speculative thoughts on how the zero modes can be correctly handled by passing to

a nonperturbative description of the theory.

7.1. Compactifications of the twisted theories.

7.1.1. Reduction to twisted four-dimensional Yang–Mills. In this section, let E be an elliptic

curve and Y a complex surface. We consider the holomorphic twists of the p1, 0q and p2, 0q

theories on the complex three-fold Y ˆ E. Recall, in §4.6 we have defined the factorization

algebra of classical observables of the holomorphic p1, 0q theory Obsp1,0q and of the holomorphic

twist (using the alternative twisting homomorphism of §4.5.1) of the p2, 0q theory Obsp2,0q. We

look at the dimensional reduction of these factorization algebras along the elliptic curve E,

meaning we consider the pushforward along the projection map Y ˆ E Ñ Y .
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Upon reduction along E, we find a relationship of the factorization algebras Obsp1,0q and

Obsp2,0q to the factorization algebras associated to the holomorphic twists of pure 4d N “ 2 and

N “ 4 Yang–Mills theory for the abelian one-dimensional Lie algebra.

Following [Cos13; ESW], we recall the description of the holomorphic twist of supersymmetric

Yang–Mills in four-dimensions. Each of these holomorphic twists exists on any complex surface

Y .

For the case of 4d N “ 2, the holomorphic twist is described by the underlying complex of

fields

(104) Ω0,‚pY qrεsr1s ‘ Ω2,‚pY qrεsr1s

where ε is a formal parameter of degree `1. This theory is free and is equipped with the linear

BRST operator given by the B-operator. The degree p´1q pairing on the space of fields is given

by the integration pairing along Y together with the Berezin integral in the odd ε direction.

That is, given fields A` εA1 and B ` εB1 where A,A1 P Ω0,‚pY q, B,B1 P Ω2,‚pY q, the pairing is

pA` εA1, B ` εB1q ÞÑ

∫
Y

pAB1 `A1Bq.

Since the pure supersymmetric Yang–Mills theory for an abelian Lie algebra is a free theory,

we consider the “smooth” version Osm of the classical observables, just as in §2.4. We denote

the associated factorization algebra of classical observables by Obs4d N“2. Via the degree p´1q

pairing this factorization algebra is equipped with a P0-structure.

The description of the holomorphic twist of 4d N “ 4 supersymmetric Yang–Mills theory for

abelian Lie algebra is similar. The underlying complex of fields is

(105) Ω0,‚pY qrε, δsr1s ‘ Ω2,‚pY qrε, δsr2s

where the degree of δ is declared to be `1. The degree p´1q pairing on fields is given by

integration along Y together with the Berezin integral in the odd ε, δ directions.

Proposition 7.1. Let π : Y ˆ E Ñ Y be the projection.

‚ There is a morphism of P0-factorization algebras on Y

π˚Obsp1,0q Ñ Obs4d N“2

whose cofiber is a locally constant factorization algebra with trivial P0-structure.

‚ There is a morphism of P0-factorization algebras on Y

π˚Obsp2,0q Ñ Obs4d N“4

whose cofiber is a locally constant factorization algebra with trivial P0-structure.

Proof. We consider the p1, 0q case first. Following the description in §4.6, the factorization

algebra Obsp1,0q is given by the “smooth” functionals on the sheaf of cochain complexes Ωě2,‚r1s

on Y ˆE. Since E is formal, there is a quasi-isomorphism Crεs »ÝÑ Ω0,‚pEq. Here, ε is a chosen

generator for the sheaf of sections of the anti-holomorphic canonical bundle on E. Thus, there

is a quasi-isomorphism of sheaves on Y :

Ω2,‚pY qrεs ‘ dzΩě1,‚pY qrεs
»
ÝÑ π˚Ω

ě2,‚.
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Here, dz denotes the holomorphic volume form on the elliptic curve.

The sheaf of cochain complexes Ωě1,‚pY q is a resolution for the sheaf of closed one-forms on

the complex surface Y . The B-operator determines a map of cochain complexes B : Ω0,‚pY q Ñ

Ωě1,‚pY q whose kernel is the sheaf of constant functions.

Putting this together, we find that there is a map of sheaves of cochain complexes on Y :

Ω0,‚pY qrεsr1s ‘ Ω2,‚pY qrεsr1s
B
ÝÑ π˚Ω

ě2,‚r1s.

We recognize the left-hand side as the complex of fields underlying the holomorphic twist of

4d N “ 2. Applying the functor of taking the “smooth” functionals Osmp´q we obtain the

first statement of the proposition. It is immediate to verify that this map intertwines the P0-

structures.

The second statement is not much more difficult. Recall, the complex of fields of the holomor-

phic twist of the p2, 0q theory is obtained by adjoining the βγ system on the three-fold Y ˆ E

to the holomorphic twist of the p1, 0q theory. As a sheaf on Y ˆ E, the complex of fields of the

βγ system is

Ω0,‚pY ˆ Eq ‘ Ω3,‚pY ˆ Eqr2s.

Pushing forward along π the complex becomes

Ω0,‚pY qrεs ‘ dzΩ2,‚pY qrεsr2s.

Notice that this is a symplectic BV theory with the wedge and integrate pairing. The statement

then follows from the observation that there is an isomorphism of symplectic BV theories
ˆ

Ω0,‚pY qrεsr1s ‘ Ω2,‚pY qrεsr1s

˙

‘

ˆ

Ω0,‚pY qrεs ‘ dzΩ2,‚pY qrεsr2s

˙

with the holomorphic twist of 4d N “ 4 as in (105). �

7.1.2. Reduction to 2d CFT. Consider the higher dimensional βγ system βγpX,Cq on a three-

fold X with values in the trivial bundle. The space of fields is Ω0,‚pXq ‘ Ω3,‚pXqr2s. If Y is a

compact Kähler surface, C a Riemann surface, and π : Y ˆC Ñ C the projection, then there is

an equivalence of free BV theories on C:

(106) π˚βγpX; Cq “ βγ pC;H‚pY,OY qq .

This is the βγ system on C with values in the (graded) vector space H‚pY,OY q.

Let χp2q be the theory of the chiral two-form on Y ˆC with values in C. The following result

follows from a direct calculation of the sheaf-theoretic pushforward of the complex χp2q along

the map π : Y ˆ C Ñ C. In the result, we use the fact that on a compact surface Y there is a

symmetric bilinear form on the graded vector space H‚pY,Ω1
Y qr1s provided by Serre duality.

Lemma 7.2. Let Y be a compact Kähler surface and C a Riemann surface. There is an

equivalence of presymplectic BV theories on C

(107) π˚χp2qpY ˆ Cq » pΩ‚pCq bH‚pY,OY qq r2s ‘ χ
`

0, H‚pY,Ω1
Y qr1s

˘

pCq.

On the right-hand side, the p´1q-shifted presymplectic form is trivial on the first summand and

the second summand is the chiral boson on C with values in the graded vector space H‚pY,Ω1
Y qr1s.
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Combining this lemma with (106) we obtain the following description of the reduction of the

holomorphic twist of the p2, 0q theory along π : Y ˆ C Ñ C.

Proposition 7.3. Suppose Y is a compact Kähler surface. The compactification of the holo-

morphic twist of the abelian p2, 0q theory along Y is equivalent to the direct sum of the following

three presymplectic BV theories on C:

(108) βγpH‚pY,OY qq ‘ χ
`

0, H‚pY,Ω1
Y qr1s

˘

‘ pΩ‚pCq bH‚pY,OY qq r2s.

The first summand in (108) is the βγ chiral CFT with values in H‚pY,OY q and the second

summand is the chiral boson with values in H‚pY,Ω1
Y q. The last summand is quasi-isomorphic

to the constant sheaf in degree ´2, and so has only topological degrees of freedom. Moreover,

the last summand is equipped with the trivial shifted presymplectic structure.

Next, consider the non-minimal twist of the p2, 0q theory which we will place on MˆC, where

M is a closed four-manifold. The presymplectic BV complex is of the form Ω‚pMqbΩ0,‚pCqr2s.

Similarly as in the holomorphic twist, the compactification along M produces the theory of the

chiral boson. This time, however, it is valued in the graded vector space H‚pM,Cqr2s, the de

Rham cohomology of M shifted by two. Note that the integration pairing endows this graded

space with a graded symmetric bilinear form.

Proposition 7.4. Let M be a closed four-manifold. The compactification of the non-minimal

twist of the abelian p2, 0q theory along M is equivalent, as a presymplectic BV theory, to the

chiral boson χp0, H‚pM,Cqr2sq on C.

7.2. Untwisted dimensional reduction. We close this paper by giving some results on dimen-

sional reduction at the level of the untwisted theory. It is expected that dimensional reduction

along a circle should produce five-dimensional N “ 2 super Yang–Mills theory, but with an

inverse dependence of the 5d coupling constant on the compactification radius, compared to the

dependence expected from a typical Kaluza–Klein reduction. As in the results for the twisted

theory above, we will be able to show that our formulation reduces correctly, up to a copy of

the constant sheaf. We check that the presymplectic structure agrees with the standard BV

pairing after dimensional reduction. Accounting correctly for this copy of the constant sheaf

should require passing to a nonperturbative description of the theory; we offer some speculative

comments on this, and plan to return to a more rigorous analysis in future work.

In five-dimensional N “ 2 supersymmetry, the R-symmetry group is Spp2q – Spinp5q, just

as in six dimensions. The chiral spinor reduces to the (unique) five-dimensional spinor repre-

sentation; dimensional reduction of the fermions and the scalars in Tp2,0q is thus trivial. The

only difficulty is thus to check that our description of χ`p2q reduces to the (nondegenerate) BV

theory of a one-form gauge field in five dimensions. We check this in the theorem below; the full

statement for supersymmetric theories follows immediately (Corollary 7.6).

Proposition 7.5. Let χ`p2q
red denote the dimensional reduction of χ`p2q to five dimensions

along S1. There is a map of presymplectic BV theories

(109) Ξ: χ`p2q
red Ñ Σp1q,

where Σp1q is the standard nondegenerate theory of perturbative abelian one-form fields on R5.

The kernel of this map is a copy of the constant sheaf in cohomological degree ´2.
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Proof. We begin by placing the theory on R5 ˆ S1. For all of the fields other than the self-dual

antifield, the decomposition is straightforward, using the fact that

(110) ΩipR5 ˆ S1q –
`

ΩipR5q b Ω0pS1q
˘

‘
`

Ωi´1pR5q b Ω1pS1q
˘

.

The self-dual forms Ω3
`pR

5 ˆ S1q sit diagonally with respect to this decomposition. Let

q : Ω3pR5 ˆ S1q Ñ Ω3pR5q b Ω0pS1q

be the projection. We will fix the isomorphism

(111) q|Ω3
`

: Ω3
`pR

5 ˆ S1q
–
ÝÑ Ω3pR5q b Ω0pS1q.

In light of this decomposition, we can rewrite χ`p2q on R5 ˆ S1 in the following fashion:

(112)

Ω0pR5q b Ω0pS1qr2s Ω1pR5q b Ω0pS1qr1s Ω2pR5q b Ω0pS1q Ω3pR5q b Ω0pS1qr´1s

Ω0pR5q b Ω1pS1qr1s Ω1pR5q b Ω1pS1q.

dS1

dR5 dR5

dS1

dR5`‹6dS1

dR5

‹6dR5

Here, ‹6 denotes the six-dimensional Hodge star operator.

To dimensionally reduce along the circle, we pass to the cohomology of dS1 . This results in

the following cochain complex χ`p2q
red of vector bundles on R5:

(113)

Ω0pR5qr2s Ω1pR5qr1s Ω2pR5q Ω3pR5qr´1s

Ω0pR5qr1s Ω1pR5q.

d d d

d

‹d

For now let us denote elements in the top line of this complex by Ared and in the bottom line by

Bred. The shifted presymplectic structure on χ`p2q
red is inherited from the structure on χ`p2q

which is read off to be
∫

R5 Ared ^ dBred.

It remains to define the map of theories from the theorem statement. Recall that five-

dimensional abelian (perturbative) Yang–Mills theory is described by the complex Σp1q “

Σp1,Cq from §2, which takes the form

(114) Σp1q “ Ωď1pR5qr1s
d‹d
ÝÝÑ Ωě4pR5qr´1s.

We denote by A elements in the first summand and by B elements in the second summand.

There is then a map of cochain complexes defined by the vertical arrows in the following

diagram:

(115) Ξ: χ`p2q
red Ñ Σp1q,

Ωď1pR5qr1s Ωď3pR5qr2s

Ωď1pR5qr1s Ωě4pR5qr´1s.

‹d

1 d

d‹d

Explicitly this map is Ared ÞÑ Ared “ A and Bred ÞÑ dBred “ B. It is entirely straightforward

to check that Ξ intertwines the shifted presymplectic structures.
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Finally, we consider the cone on this map. Using [ESW, Proposition 1.23], we can eliminate

the acyclic piece, obtaining the description

(116) ConepΞq –
´

Ωď3pR5qr3s Ωě4pR5qr´1sd
¯

.

This complex has cohomology only in the left-hand term; after totalizing, we obtain Ω‚pR5qr3s,

thus finding that the kernel is a copy of the constant sheaf in degree ´2. �

As remarked above, the full statement, pertaining to dimensional reduction of the full N “

p2, 0q abelian tensor multiplet, follows immediately from Proposition 7.5:

Corollary 7.6. Let Tred
p2,0q denote the dimensional reduction of Tp2,0q to five dimensions along S1,

and let YMN“2 denote the N “ 2 supersymmetric (perturbative) abelian Yang–Mills multiplet

on R5. There is a map of presymplectic theories

(117) Ξ̂ : Tred
p2,0q Ñ YMN“2,

defined by extending Ξ by identity morphisms. The kernel of this map is a copy of the constant

sheaf in cohomological degree ´2.

7.2.1. Electric–magnetic duality and the physical interpretation of the proof of Proposition 7.5.

For the physicist reader, the language of the proof of Proposition 7.5 may be unfamiliar, but

the manipulations should at least have a familiar flavor. We briefly recall the typical description

of electric–magnetic duality that is folk wisdom among physicists: A theory of p-form gauge

fields in dimension d has a gauge potential A P ΩppRdq, whose field strength is a gauge-invariant

pp ` 1q-form given (in the abelian case) just by F “ dA. F satisfies an equation of motion

d‹F “ 0, but also a “Bianchi identity” dF “ 0, which is (at least in contractible open sets)

equivalent to the existence of the potential A. These equations could be just as well phrased in

terms of the “dual” field strength, the pd´ p´ 1q-form G “ ‹F , with the roles of the equations

of motion and the Bianchi identity reversed. In light of the Bianchi identity, G can be written

as the field strength of a potential B P Ωd´p´2pRdq. One can sum this up by saying that an

equivalence is expected between the theories of p-forms and pd´ p´ 2q-forms; the two different

descriptions are sometimes referred to as the “electric” and “magnetic” sides of the duality, since

the Hodge star operation in standard Maxwell theory reverses the components of F that are the

physical electric and magnetic fields. (In Maxwell theory in four dimensions, both the electric

and magnetic gauge fields are one-forms.)

One might therefore expect an equivalence between the theories we have called Σppq and Σpd´

p ´ 2q. However, it is not possible to write down a quasi-isomorphism relating the two; an

attempt to follow the logic of the above argument always produces results which disagree by

certain shifted copies of the constant sheaf. Moreover, this is not surprising from the physical

perspective: From the point of view of the electric theory, the magnetic degrees of freedom—

which are the ’t Hooft operators—are nonperturbative, and are most naturally thought of as

disorder operators. In the absence of any consideration of the global structure of the gauge

group, or the related issue of Dirac quantization, one cannot expect to capture these degrees of

freedom correctly.
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One formulation of the physics argument above, in the BV formalism and at a perturbative

level, goes as follows; see [Ell19] for a rigorous treatment of nonperturbative issues in electric–

magnetic duality from a BV perspective. We begin with the BV theory

(118) Σppq “ ΩďppRdqrps Ωěpd´pqpRdqr´1s,d‹d

thinking of it as the electric description. There is another cochain complex Fppq of vector bundles

on Rd, defined by

(119) Fppq “ Ωěpp`1qpRdq Ωěpd´pqpRdqr´1s,d‹

which can be thought of as a BV or on-shell version of the field strength, subjected to its equation

of motion. (Fppq freely resolves the sheaf of solutions to the equations dF “ d‹F “ 0.) There

is a curvature map curv : Σppq Ñ Fppq, defined by the vertical arrows in the diagram

(120)

ΩďppRdqrps Ωěpd´pqpRdqr´1s

Ωěpp`1qpRdq Ωěpd´pqpRdqr´1s.

d

d‹d

1

d‹

It extends the usual curvature map on fields by the identity on antifields. The cone of curv is a

shift of the de Rham complex, as in the proof above, and so there is a kernel, consisting of the

constant sheaf representing zero modes of the zero-form ghost in BV degree ´p.

Now, applying the Hodge star in degree zero defines an isomorphism of Fppq with Fpd´p´2q.

There is thus a sequence of maps of the form

(121) Σppq Fppq Fpd´ p´ 2q Σpd´ p´ 2q,curv – curv

encapsulating a BV description of the argument above. If electric–magnetic duality were to

hold at a perturbative level, all of these maps would be quasi–isomorphisms; the curvature map,

however, is not, and the duality fails at the level of the constant sheaves described above. It is

interesting to note that, in the description we are giving, the antifields to the electric degrees

of freedom in some sense play the role of the magnetic degrees of freedom. Furthermore, we

remark that Fppq does not admit a natural shifted presymplectic structure; it does, however,

admit a shifted Poisson tensor.

In the proof of Proposition 7.5, a very analogous set of arguments play a role. However, the

object U that appears there is not the curvature; in fact, it maps into both Σp1q and Σp2q on R5

in symmetric fashion, defining a roof of maps between them, rather than receiving maps from

each. To phrase the situation in general language, we would define

(122) Uppq “ ΩďppRdqrps Ωďpd´p´1qpRdqrd´ p´ 2s.‹d

It is immediate to see that Uppq and Upd´p´2q are isomorphic via the Hodge star in BV degree

`1, and that the map Ξ can be generalized to a map Ξppq : Uppq Ñ Σppq. Uppq, moreover, does

admit a natural shifted presymplectic structure: if A,B denote sections in the two summands

of Uppq, then the formula is
∫

Rd A^ dB.

The proof of Proposition 7.5 relies on electric–magnetic duality, in the sense that χ`p2q
red “

Up2qpR5q is, at first glance, most naturally interpreted as a theory of a two-form. The additional

copy of a constant sheaf in the theorem is also, in some sense, dual to the issue that appeared
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in our attempt to perturbatively formalize the standard argument. We can sum up all of these

considerations, in somewhat greater generality, with the following diagram:

(123)

Uppq Upd´ p´ 2q

Σppq Σpd´ p´ 2q

Fppq Fpd´ p´ 2q.

–

Ξ Ξ

curv

EM dual

curv

–

The kernel of each vertical map in (123) is an appropriately shifted copy of the constant sheaf.

The failure of these vertical maps to define quasi-isomorphisms reflects the nonperturbative

nature of the duality; we offer some speculation on the correct fix for this in the next section.

7.2.2. Speculative remarks on global structure. There is no doubt that the reader will have been

disappointed by all of the “errors” in the above results, having to do with zero modes (or, for

mathematicians, undesirable copies of constant sheaves). Part of the reason for the discursive-

ness of the above remarks on electric–magnetic duality is to emphasize that we see these as

representing familiar phenomena from the physics perspective: Any on-the-nose equivalence of

perturbative theories cannot possibly be a correct representation of electric–magnetic duality.

The fact that electric–magnetic duality plays a role in passing from the N “ p2, 0q multiplet

to supersymmetric Yang–Mills theory in five dimensions is also not unreasonable; in fact, this

is the key reason that the dependence on the coupling constant is inverted from the standard

Kaluza–Klein expectation, as remarked above. For interacting theories, electric–magnetic dual-

ity requires an inversion of the coupling constant. (The coupling constant that scales “correctly”

with the compactification radius is not the Yang–Mills coupling constant, but the coupling con-

stant of its magnetically dual theory of two-forms.)

In fact, it is tempting to speculate that insisting on the correct dimensional reduction at

the nonperturbative level will shine a light on the nonperturbative BV formulation of electric–

magnetic duality. Recall that the correct nonperturbative generalization of the BRST complex

of an abelian gauge field—which is perturbatively just ΩďppRdqrps—is the smooth Deligne co-

homology group

(124) Zαppq
8
D “ Zrp` 1s Ωďprps.

p2πiqpα

(Here α denotes a choice of real number, which plays the role of the coupling constant or radius

of the gauge group; our notation here differs from the standard notation for Deligne cohomology

by indicating α explicitly.) We should thus expect that it is possible to formulate a BV, or

possibly presymplectic BV, description of abelian Yang–Mills theory, using Deligne cohomology

groups to represent both the electric and magnetic gauge fields. In light of the considerations

above, and by directly generalizing (122), one would attempt to write down a complex of the

form

(125) ZαUppq “ Zαppq8D Z1{αpd´ p´ 1q8Dr´1s.‹d

The inverse choices of coupling constants are necessitated by the requirement that the complex

have nontrivial cohomology in degree zero. In particular, Deligne cohomology represents the
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curvature of a connection in a Up1q (or GLp1q) bundle, and so admits a curvature map whose

image is an integral class (for α “ 1). We can rewrite the complex above in the form

(126)

Zαppq8D

Ωd´p´1r´1s.

Z1{αppq
8
D

‹d

d

By passing to the cohomology of the internal differentials of the Deligne complexes, we see

that the curvatures of the electric and magnetic degrees of freedom must be related by the

Hodge star. Choosing a volume form so that the Hodge star preserves integral classes makes the

requirement on the coupling constants immediate, at least up to discrete choices corresponding

to finite coverings of Up1q by Up1q.

Describing things in this way makes our considerations seem almost trivial; of course abelian

Yang–Mills theory consists of an electric gauge field A with curvature F , and a magnetic gauge

field B with curvature G, subject to the constraint that F “ ‹G. We emphasize that the

novelty in this way of thinking consists of the fact that this pair is interpreted as a complete

(presymplectic) BV theory, where the pairing is defined by differential operators as done for ωU

above. In this formulation, the equations of motion (and therefore the antifields) for F have

been replaced by the Bianchi identities (and therefore the gauge invariances) for G. This is

the sense in which the magnetic gauge fields and the electric antifields are one and the same.

Electric–magnetic duality then just amounts to the trivial or manifest statement that

(127) ZαUppq – Z1{αUpd´ p´ 2q.

It would be interesting to make contact with other BV approaches to electric–magnetic duality,

such as [Ell19].

Identical considerations suggest a nonperturbative definition of the theory of self-dual p2kq-

forms;6 the reader will probably have guessed that the complex we have in mind is

(128) Zαχ`p2kq “ Zαp2kq8D Ω2k`1
` r´1s

d`
“ Zr2k ` 1s χ`p2kq.

p2πiq2kα

We note that, for k “ 0, this theory describes periodic (circle-valued) chiral bosons; in general, it

describes a connection on an abelian gerbe, subject to the constraint that the curvature (which

now defines an integral class) must be self-dual.

Now, placing Zαχ`p2q on R5 ˆ S1 and pushing forward along the projection map produces

precisely the complex ZαUp2q, under the assumption that the radius of the compactification circle

is one. To see this, note that we must use the derived pushforward, so that π˚Z “ H˚pS1,Zq.
Making sense of the maps reduces to understanding the map induced on the sheaf cohomology

of the circle from the map of sheaves

(129) Z
p2πiqpα
ÝÝÝÝÝÑ C.

6We thank K. Costello for suggesting this definition to us, independently of dimensional reduction.
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Using Poincaré duality for S1, one can argue that the induced map on H0 is given by multipli-

cation by p2πiqpα, while the induced map on H1 is given by multiplication by p2πiqp volpS1q

α .

We expect the considerations of [Wit97; HS05] to play a role in our analysis at this stage;

a careful formulation of the arguments we have sketched here should make clear how the data

of a quadratic refinement of the intersection form plays a role in our analysis. Such a datum

is required to make sense of the partition function of the chiral field; describing the classical

theory, however, does not seem to explicitly require such a choice, at least a perturbative level.

We feel that it would be interesting to further develop the formalism presented here, to make a

more rigorous analysis of nonperturbative issues, and to address issues related to quantization.

It will be exciting to move farther down this path in future work.
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