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Let Vect(M) be the Lie algebra of smooth vector fields on a manifold M. The Lie
algebra cohomology of vector fields is the cohomology of the Chevalley–Eilenberg
cochain complex

C•Vect(M) = ⊕k≥0CkVect(M)

where in degree k is the space of continuous k-linear totally alternating functional
on Vect(M) and the differential is the Chevalley–Eilenberg differential encoding the
Jacobi bracket of vector fields. The Lie algebra cohomology of vector fields has been
studied extensively in the context of characteristic classes of foliations [Fuk73; Bot72;
BS77; Gui73; Los72b; GK71; BR72].

An important step in the computation of this cohomology is a computation of the
cohomology of the diagonal subcomplex

C•4Vect(M) ⊂ C•Vect(M)

which consists of cochains ϕ ∈ CkVect(M) satisfying ϕ(X1, . . . , Xk) = 0 if and only if

k⋂
i=1

Supp(Xi) = ∅.

This paper concerns the cohomology of a smaller subcomplex: the complex of local
cochains of Vect(M), and the resulting local cohomology. A cochain ϕ ∈ CkVect(M) is
said to be local if it can be written as

ϕ(X1, . . . , Xn) =

∫
M

L(X1, . . . , Xn).

where L is a density-valued (Lagrangian) function of the vector fields X1, . . . , Xn that
only depends on the jets of these vector fields. The local cochain complex of Vect(M)
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will be denoted C•locVect(M). Every local cochain is diagonal, which leads to a se-
quence of inclusions of cochain complexes

C•locVect(M) ↪→ C•4 Vect(M) ↪→ C•Vect(M).

A result of Gelfand–Fuks [GF69] implies that the first arrow induces an isomorphism
in cohomology, see also [Gui73; Los72b].

Our main result is a characterization of the local cohomology of smooth vector
fields on an arbitrary smooth manifold. Our approach utilizes a relationship between
smooth and formal geometry that can be attributed to Gelfand, Kazhdan, Fuks, and
many others, for example see [GKF72; BK04]. By similar methods, we compute the
local cohomology of the cohomology of holomorphic vector fields on an arbitrary
complex manifold. A note is in order in the complex setting; the Lie algebra of holo-
morphic vector fields. In a naive sense, the Lie algebra of holomorphic vector fields
is not a local Lie algebra (the underlying sheaf is not the C∞-sections of a vector bun-
dle). Thus, in order to define the notion of locality (and also the notion of diagonal
cohomology) we use a resolution of holomorphic vector fields by vector bundles.

The result about the local cohomology of smooth vector fields follows from the
known characterization of the diagonal cohomology of vector fields on a smooth man-
ifold [Gui73; Los72b; Los72a], see also [Fuk86, §2.4]. Indeed, a result of [GF69] implies
that for smooth vector fields the inclusion C•locVect(M) ↪→ C•4Vect(M) is a quasi-
isomorphism. The formulation of the local cohomology of holomorphic vector fields
is presented in this paper. For an algebro-geometric definition of the diagonal coho-
mology of vector fields we refer to [HK23] where it is used to characterize the entire
cohomology of vector fields on a smooth algebraic variety; we expect that their defi-
nition to agree with our notion of local cohomology.

We remark on the relationship between local Lie algebra cohomology and Lie alge-
bra cohomology. For any sufficiently nice sheaf (say, one presented as the sections of
a smooth vector bundle) of Lie algebra L on a manifold M there is a notion of local
cohomology. The cochain complex C•loc(L), introduced in section 1, that computes this
is naturally a sheaf on M. At the level of global sections, if M is compact, this complex
admits a map C•loc(L(M)) → C•(L(M)) where C•(L(M)) is the Lie algebra cohomol-
ogy of the Lie algebra of global sections. For L = Vect(M), the sheaf of smooth vector
fields, the local cohomology is a shift of the de Rham cohomology of the total space
Y(M) of a fibration over M whose fiber over x ∈ M is isomorphic to the restriction of
the universal U(n)-bundle over BU(n) to its 2n-skeleton. See theorem 1.6 for a precise
statement. The cohomology of Vect(M), on the other hand, is the cohomology of the
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space of sections of Y(M), see [Hae75; Hae76; BS77]. The induced map

(0.1) H•loc(Vect(M))→ H•Lie(Vect(M))

is the composition

(0.2) H•dR(Y(M))
ev∗−→ H•dR(Sect(Y(M))×M)

∫
M−→ H•dR(Sect(Y(M))[−n]

where the first arrow is pullback along the natural evaluation map and the second
map is integration along M.

Let X be a complex manifold. In this paper we give a characterization of the local
Lie algebra of holomorphic vector fields T(X) ' Vecthol(X). There is again a natural
map

(0.3) H•loc(T(X))→ H•Lie(T(X)).

As mentioned earlier, we expect that H•loc(T(X)) agrees with the cohomology of the
diagonal complex of vector fields considered in [HK23]. One defines the space Y(X)

just as in the smooth case; it is a holomorphic fiber bundle over X whose fiber over
x ∈ X is as in the smooth case. In [HK23], it is shown that the cohomology of the space
of holomorphic sections Sect(Y(X)) is only isomorphic to H•(T(X)) in the case that X
is affine; in general they produce a map

(0.4) H•dR(Sect(Y(X)))→ H•Lie(T(X))

which we expect our map (0.3) to factor through.

Interest in the local cohomology of vector fields is motivated, in part, by classical
and quantum field theory. A classical field theory is prescribed by a Lagrangian den-
sity depending on the fields, whose associated Euler–Lagrange equations dictate the
dynamics of the classical system. Additionally, local cohomology of local Lie alge-
bras is a home for (local) anomalies, which are an important feature of a quantum field
theory. In short, an anomaly describes the failure of a symmetry in a classical field
theory to persist to a symmetry at the quantum level. Similarly to action functionals,
certain anomalies can be realized as local cohomology classes. A diffeomorphism in-
variant field theory on a manifold M receives an infinitesimal action by the Lie algebra
of smooth vector fields Vect(M). Similarly, a holomorphic field theory on a complex
manifold X [Wil20] receives an infinitesimal action by the Lie algebra of holomorphic
vector fields. Anomalies for this infinitesimal action to exist at the quantum level are
given by local cohomology classes in C•locVect(M), or C•locVecthol(X); thus motivating
the need to understand the resulting cohomology. The corresponding problem for Rie-
mannian (or Lorentzian) quantum field theories is a classic topic, see [Duf94; DS93],
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for example. For applications of results of this paper to anomalies in supersymmetric
quantum field theory we refer to [Wil24].

Acknowledgements. I thank Boston University for their support during the prepara-
tion of this paper.
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1. DEFINITIONS AND MAIN RESULTS

In this paper, M denotes a smooth manifold and X denotes a complex manifold. We
work in the C∞-category, so unless otherwise specified a “section“ means a smooth
section, a “differential form” means a smooth differential form, and so on. All func-
tions and cochains are complex-valued.

1.1. Local functionals. Let E → M denote a Z-graded vector bundle on M and de-
note by E its sheaf of sections. We consider the pro vector bundle of ∞-jets which we
will denote by jet(E), see [And92] or [Cos11, §5.6] for instance. The sheaf of smooth
sections of this pro vector bundle carries the natural structure of a DM-module.

Definition 1.1. Let E be a graded vector bundle on M. The sheaf of Lagrangians on E
is the C∞

M-module

(1.1) Lag(E) def
= ∏

n>0
HomC∞

M
(jet(E), C∞

M) .

Remark 1.2. The notation HomC∞
M
(jet(E), C∞

M) refers to the sheaf of continuous linear
maps of C∞

M-modules. This can be viewed as an ind vector bundle formally dual to
the pro vector bundle jet(E). The flat connection defining the DM-module structure
on jet(E) endows this sheaf with the structure of a DM-module. Notice that the con-
stant functionals on jet(E) do not appear in the definition of Lag(E), this is mostly for
conventional reasons and will not play a huge role in what follows.

For any graded vector bundle E, the C∞
M-module Lag(E) has the natural structure

of a DM-algebra, induced from the DM-module structure on jet(E).

Let DensX be the right DX-module of densities on X. Given any left DM-module V
one can consider the following C∞

M-module

(1.2) DensX ⊗DX V.

If X is an oriented smooth manifold and V is flat, then this agrees with (a shift of) the
de Rham complex of V, see below. For the case at hand, V is the left DM-module of
Lagrangians Lag(E) and we have the following definition.

Definition 1.3. Let E be a vector bundle on X. The C∞
M-module of local functionals on

X is

(1.3) Oloc(E) def
= DensX ⊗DM Lag(E).
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Concretely, a section of Lag(E) is a sum of functionals of the form

(1.4) φ ∈ E 7→ D1φ1 · · ·Dnφn

where Di are differential operators acting on the bundle E. Likewise, a section of
Oloc(E) is given as a sum of functionals which send a section φ to a class

(1.5)
[

D1φ1 · · ·Dnφnω

]
where ω is a density on X. The brackets denotes an equivalence class where two
sections are equivalent if they differ up to a total derivative. For this reason, we will
often write such an element using the integration symbol

(1.6)
∫

D1φ1 · · ·Dnφnω

where we provide the warning that no actual integration is occurring. 1

If X is an oriented smooth manifold, the sheaf of local functionals of E can be ex-
pressed using the de Rham complex of the DM-module of Lagrangians. In this case,
DensX can be replaced by the bundle of top forms Ωd

X where d = dimR(M). This right
DM-module Ωd

M has a free resolution of the form

(1.7) Ω0 ⊗C∞
M

DM[d]→ · · · → Ωd−1
X ⊗C∞

M
DM[1]→ Ωd

M ⊗C∞
M

DM.

Since Lag(E) is flat as a DM-module one can use this resolution to obtain a quasi-
isomorphism

(1.8) Oloc(E) ' Ω•
(

X , Lag(E)
)
[d].

We will use this description extensively throughout this paper. For more details see
[CG21, lemma 3.5.4.1]. In the unoriented case one would need to use a twisted version
of the de Rham complex.

1.2. Local Lie algebras and cohomology. The next definition we will need is that of
a local dg Lie algebra and its local cohomology. We refer to [CG21] for more details on
the definitions below.

Definition 1.4. A local dg Lie algebra on a smooth manifold X is a triple (L, d, [·, ·])
where:

(i) L is a Z-graded vector bundle on X of finite total rank;

1Of course, unless the section φ is compactly supported integration over an open subset is ill-defined.
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(ii) d is a degree +1 differential operator d : L → L on the sheaf L = Γ(L) of
smooth sections of L, and

(iii) [·, ·] is a bilinear polydifferential operator

(1.9) [·, ·] : L×L→ L

such that the triple (L, d, [·, ·]) carries the structure of a sheaf of dg Lie algebras.

Just as in the case of an ordinary graded vector bundle, we can discuss the La-
grangians on a local Lie algebra L. In this case, Lag(L[1]) is equipped with the Chevalley–
Eilenberg differential dCE induced from the Lie algebra structure on L. In fact, the
∞-jet bundle jet(L) is a dg Lie algebra object in DM-modules and we have the dg DM-
module of reduced Chevalley-Eilenberg cochains

(1.10) C•red(jet(L)) = (Lag(L[1]), dCE).

(Notice we look at reduced cochains since we have thrown out the constant functions
in the definition of Lag(L[1]).) Since dCE is compatible with the DM-module structure,
this induces a differential on the space of local functionals Oloc(L[1]).

We arrive at the central object of study of this paper.

Definition 1.5. The local Chevalley–Eilenberg cochain complex of a local Lie algebra L

is the sheaf of cochain complexes

C•loc(L)
def
= (Oloc(L[1]), dCE)(1.11)

= DensX ⊗DM C•red(jet(L)).(1.12)

We denote the cohomology of the global sections of this complex of sheaves by H•loc(L(X))

and refer to it as the local cohomology of L over X.

1.3. Results on the local cohomology of vector fields. We now turn to the local Lie
algebras of vector fields and the first main results of the paper. A basic example of a
local Lie algebra is the sheaf of smooth vector fields VectM = Γ(M, TM) on a smooth
manifold M. Our first result is a characterization of the local cohomology of VectM

over an d-manifold M. To state the result we introduce a formal object.

Denote the Lie algebra of vector fields on the formal d-disk, as studied by Gelfand
and Fuks [GF70b; Fuk86], by vect(d). The notation H•(red)(vect(n)) refers to the (re-
duced) continuous Lie algebra cohomology of the Lie algebra of formal vector fields.
Let X(d) denote the restriction of the universal U(d) bundle to the 2d-skeleton of
BU(d) = Gr(d, ∞). The following result was first proved for the diagonal cohomol-
ogy.
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Theorem 1.6 (see also [Gui73; Los72b; Los72a]). Let M be a smooth oriented manifold of
dimension d. Then

(1.13) Hk
loc(Vect(M)) ∼= Hd+k

red (FrC
M ×U(d) Xd)

for all k. In particular, if M is parallelizable then

(1.14) Hk
loc(Vect(M)) ∼=

d⊕
i=0

Hi
dR(M)⊗ Hd+k−i

red (vect(d)).

Next we turn to the case of complex manifolds and the Lie algebra of holomorphic
vector fields.

Let X be a complex manifold and denote by T1,0
X the holomorphic tangent bundle.

Consider its Dolbeault complex

(1.15) TX
def
= Ω0,•(X, T1,0

X )

This is a sheaf of cochain complexes (in fact, it is an elliptic complex) where the differ-
ential is the ∂-operator. Moreover, this sheaf of cochain complexes is equipped with a
bracket [·, ·] which extends the Lie bracket of vector fields. This endows TX with the
structure of a local Lie algebra. The assignment X 7→ TX defines a sheaf on the site of
complex manifolds which we will denote simply by T.

The Dolbeault complex of a holomorphic vector bundle is a resolution for its sheaf
of holomorphic sections. Note that the sheaf of holomorphic vector fields is not a lo-
cal Lie algebra since it is not the space of C∞-sections of a vector bundle. Therefore,
to capture the notion of holomorphic vector fields using local Lie algebras it is nec-
essary to consider this resolution T. Indeed, if Thol = Γhol(T1,0) denotes the sheaf of
holomorphic vector fields, the embedding Thol ↪→ T is a quasi-isomorphism.

Our next result pertains to the local cohomology of holomorphic vector fields and
is the content of section 3. It closely parallels the result in the smooth case above.

Theorem 1.7. Let X be a complex manifold of complex dimension n and let FrX be the prin-
cipal U(n)-bundle of frames of the holomorphic tangent bundle. Then

(1.16) Hk
loc(T(X)) ∼= Hk+n

dR (FrX ×U(n) X(n)).

In particular, if X has trivializable tangent bundle then

(1.17) Hk
loc(T(X)) ∼=

2n⊕
i=0

Hi
dR(X)⊗ H2n+k−i

red (vect(n)).
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In §5 we specialize to the flat case X = Cn. We extract explicit representatives
for cohomology classes. In this case, the local cohomology reduces to a shift of the
Gelfand–Fuks cohomology

(1.18) H•loc(T(C
n)) ∼= H•red(vect(n))[2n]

by theorem 1.7. We will describe an explicit quasi–isomorphism

(1.19) δ : C•red(vect(n))[2n] '−→ C•loc(T(C
n)).

The map δ is constructed using the method of topological descent. It utilizes the exis-
tence of two types of degree (−1) endomorphisms on the complex of local functionals
that we denote ηi and ηi.

These operators can be described heuristically as follows. On Cn, the local cochain
complex C•loc(T(C

n)) receives an action by the Lie algebra of translations spanned
by the constant holomorphic vector fields ∂zi and constant anti-holomorphic vector
fields ∂zi . The action of this Lie algebra is homotopically trivial. The operator ηi pro-
vides a homotopy for the holomorphic vector field ∂zi and ηi provides a homotopy
for ∂zi .

Using these homotopies, we can give a description of the map δ in (1.19). Notice
that there is a map of Lie algebras j : Thol(Dn) → vect(n) which records the Taylor
expansion of a vector field at 0 ∈ Dn. Here, Thol(Dn) denotes the Lie algebra of holo-
morphic vector fields on an n-disk centered at the origin.

Proposition 1.8. When X = Cn, the quasi-isomorphism δ is defined by δ(φ) =
∫

φn,n where
φn,n is the dnzdnz-component of the expression

(1.20) exp

(
n

∑
i=1

(dziηi + dziηi)

)
j∗φ.

2. LOCAL COHOMOLOGY OF SMOOTH VECTOR FIELDS

In this section we prove theorem 1.6. Throughout this section M is a smooth ori-
ented manifold of dimension d. In this section, we prove the following.

2.1. Gelfand–Kazhdan formal geometry. Before proving this theorem we recollect
some facts about the formal geometry in the style of Gelfand and Kazhdan [GKF72;
BK04; Kap99; Kap99]. For more details on the specific notations used here we refer to
[GGW20, part I].
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Given a smooth manifold M of dimension d, its coordinate space Mcoor is the ∞-
dimensional (pro) manifold parametrizing jets of smooth coordinates on M. A point in
Mcoor consists of a point p ∈ M together with an ∞-jet class of a local diffeomorphism
φ : U ⊂ Rd → X sending a neighborhood U of the origin to a neighborhood of p with
the property that φ(0) = p.

The canonical map Mcoor → M endows Mcoor with the structure of a principal bun-
dle for the pro-Lie group of automorphisms of the formal d-disk Autd. Additionally,
there is a transitive action of the Lie algebra of vector fields vect(d) on the formal d-disk
on Mcoor. This action defines the so-called Grothendieck connection one-form

(2.1) ωcoor ∈ Ω1(Mcoor)⊗ vect(d)

which satisfies the flatness equation

(2.2) dωcoor +
1
2
[ωcoor, ωcoor] = 0.

Notice that the Lie algebra of Autd is strictly smaller than the Lie algebra of vector
fields on the formal disk, so this is not simply a flat principal Autd-bundle. From
objects, like sheaves, on the coordinate bundle Mcoor one can use this flat connection
in order to obtain localized objects on the original manifold M.

The Jacobian of an automorphism of the d-disk determines a map of Lie groups
Autd → GL(d) whose kernel is contractible. This means that instead of working
with the coordinate bundle Mcoor it suffices to work with the principal U(d)-bundle
of frames FrC

M of the complexified tangent bundle. The choice of a formal exponential
allows one to pull back the Grothendieck connection from the full coordinate bundle
to obtain a one-form ω̃coor ∈ Ω1(FrC

M) ⊗ vect(d). Any two such choices of a formal
exponential result in gauge equivalent connection one-forms.

The one-form ω̃coor endows the frame bundle with the structure of a principal bun-
dle for the pair (vect(d), U(d)), see [GGW20].

Now, any complex U(d)-representation V determines a vector bundle VX on M by
the associated bundle construction

(2.3) VM
def
= FrC

M ×U(d) V.

The space Ωk(M, VM) of k-forms valued in VM is isomorphic to the space of basic k-
forms on FrM:

(2.4) Ωk(FrM, V)basic
def
=

{
α ∈

(
Ωk(FrC

M)⊗V
)U(d)

| ιξA α = 0 , for all A ∈ gl(d)
}

.

We have denoted by ξA the vertical vector field on FrC
M corresponding to A ∈ gl(d).
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We consider U(d)-representations which have the compatible structure of a module
for the Lie algebra vect(d) of vector fields on the formal d-disk. Compatible means the
following. After choosing a formal coordinate, we have an embedding of Lie algebras
i : gl(d)→ vect(d), where the d× d matrix (aij) is realized by the vector field ∑ij aijti∂tj .
We require that the composition

gl(d) i−→ vect(d)
ρw−→ End(V)

is equal to Lie(ρU). Here ρw denotes the action of vect(d) and ρGL is the original action
of U(d). Such a structure on V is referred to as a Harish-Chandra module for the pair
(vect(d), U(d)) in [GGW20]. In what follows we will utilize a derived version of a
Harish–Chandra module. That is, we will take V to be a cochain complex for which
both representations ρw and ρU commute with the differential.

From such data, the one-form ωcoor induces a connection on VX defined by

(2.5) ∇V
def
= d + ρw(ωGroth).

The Maurer–Cartan equation (2.2) immediately implies that this connection is flat. In
other words, ∇V endows sections of VX with the structure of a smooth DM-module.
The resulting DM-module is denoted descM(V). We recall that associated to any DM-
module V is the dg Ω•M-module

(2.6) Ω•(M,V)

called the de Rham complex of V.

As an example, consider the algebra Od of functions on the formal d-disk; that is,
the algebra C[[t1, . . . , td]] of power series in d variables. In this case, descM(Od) is the
DM-module of ∞-jets JM = jet(M) of functions on M. The algebra of flat sections of
this DM-module is simply the algebra of smooth functions C∞(M); in other words,
there is a quasi-isomorphism

(2.7) C∞(M)
'−→ Ω• (M, descM(Od)) .

Another example is the Harish–Chandra module

(2.8) vect(d) = C[[t1, . . . , td]]{∂ti}.

itself, where the action of vect(d) is the adjoint action. In this case descM(vect(d)) is the
∞-jet bundle jet(TM) associated to the tangent bundle of M. The space of flat sections
of this DM-module is simply the space of smooth vector fields on M.

We will use the following basic lemma.
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Lemma 2.1. Suppose that (V, d) is a dg (vect(d), U(d))-module structure wherethe vect(d)-
action is homotopically trivial. Then there is a quasi-isomorphism of Ω•M-modules

(2.9) Ω•(M, descM(V)) ' (Ω•(M)⊗C V)basic .

2.2. Proof of the theorem. As recounted in equation (1.8), there is a quasi-isomorphism
of the local cohomology of a local Lie algebra L with the shift of the de Rham complex
of the DX-module C•red(jet(L)). Applied to the sheaf of smooth vector fields this reads

(2.10) C•loc(Vect) ' Ω•
(

M , C•red (jet(TM))

)
[d].

For V a module for the Harish–Chandra pair (vect(d), U(d)), Gelfand–Kazhdan de-
scent along M yields the DM-module descM(V). In the case that V = vect(d), the
adjoint vect(d)-module, we have seen that the DM-module descM(vect(d)) is the DM-
module jet(TM) of ∞-jets of the tangent bundle.

We now consider the (vect(d), U(d))-module C•red(vect(d)) where vect(d) acts in de-
gree one through the co-adjoint action and is extended to the full dg algebra by the
condition that it acts through graded derivations. We make use of the fact that taking
∞-jets is a symmetric monoidal functor. Indeed, by [GG20, proposition A.2], there is a
string of isomorphisms of DM-modules

(2.11) jet C•red(TM) = descM(C•red(vect(d))) ∼= C•red(descM(vect(d))) = C•red(jet(TM)).

To summarize, we see that the Gelfand-Kazhdan descent of the (vect(d), U(d))-
module C•red(vect(d)) is the DM-module C•red(jet(TM)). This is precisely the DM-module
present in the equivalence with the complex computing the local cohomology of Vect,
see (2.10).

Combining these facts, we obtain a quasi-isomorphism of sheaves on X:

(2.12) C•loc(Vect) ' Ω•
(

M, descM (C•red(vect(d)))
)
[d].

The interpretation via descent will allow us to simplify this Rham complex. Sup-
pose that g is any Lie algebra. Then g acts on itself (and its dual) via the (co)adjoint
action. This extends to an action of g on its Chevalley–Eilenberg complex C•(g; M),
where M is any g-module via the formula

(2.13) (Lx ϕ)(x1, . . . , xk) = ∑
i

ϕ(x1, . . . , adx(xi), . . . , xk)− x · ϕ(x1, . . . , xk).
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Here, x, xi ∈ g and ϕ is a k-cochain with values in M. The symbol ad denotes ad-
joint action, and the · is the g-action on M. The same formula holds for the reduced
cochains. The case of g = vect(d) is the case we are considering here (together with
the compatible GL(d) action).

For any g-module N, the Chevalley–Eilenberg complex C•(g; N) is an explicit model
for the derived functor of taking invariants; therefore the g-action on this complex is
homotopically trivial. Explicitly, the action by any fixed element x ∈ g on C•(g; N)

can be trivialized in the following way. Define the endomorphism ix of cohomological
degree −1 acting on a Chevalley–Eilenberg cochain ϕ via the formula

(2.14) (ιx ϕ)(x1, . . . , xk−1) = ∑
i
±ϕ(x1, . . . , xi, x, xi+1, . . . , xk−1).

Then, from Cartan’s formula

(2.15) [dCE, ιx] = Lx

it follows that ix is the desired trivialization.

Applied to the case at hand, we see that vect(d) acts homotopically trivially on
C•red(vect(d)) which implies that descX(C•red(vect(d))) ∼= C•red(jet(TM)) is quasi-isomorphic
to the trivial DM-module with fiber C•red(vect(d)). Equivalently, this means that the flat
connection on C•red(jet(TM)) is gauge equivalent to the trivial connection. From lemma
2.1 there is a quasi-isomorphism of de Rham complexes

(2.16) (Ω•
(

M, C•red (jet(TM))

)
' (Ω•M ⊗C C•red(vect(d)))basic .

Suppose that Y is a smooth manifold equipped with a U(n)-action. Then, basic
forms provide a model for the de Rham cohomology of FrC

M ×U(n) Y:

(2.17) Ω•(FrC
M ×U(n) Y) ∼= (Ω•(FrC

M)⊗Ω•(Y))basic.

Now, we recall a characterization of the Lie algebra cohomology of vect(d). Let X(d) be
the restriction of the universal U(n) bundle EU(n) → BU(n) over the 2d-skeleton of
BU(d). A famous theorem of Gelfand and Fuks [GF70b] states a quasi-isomorphism
C•Lie(vect(d)) ' Ω•(X(d)). Applying this to the case Y = X(d) in equation (2.17)
recovers the desired result.

3. LOCAL COHOMOLOGY OF HOLOMORPHIC VECTOR FIELDS

Next we turn to the cohomology of the local Lie algebra of holomorphic vector fields
on a complex manifold. In this section, we will prove theorem 1.7.
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3.1. Holomorphic descent. The method of proof is completely parallel to the smooth
case above. We remark on some important features present in the holomorphic case,
we refer to [GGW20] for more details.

For X a complex manifold, Xcoor will now denote the holomorphic coordinate bundle
which consists of pairs (x, φ) where x ∈ X and φ is the ∞-jet of a local holomor-
phic diffeomorphism φ : U ⊂ Cn → X with the property that φ(0) = x. The bun-
dle Xcoor → X is a principal Autn-bundle which is equipped with a transitive action
of vect(n) as before. The Grothendieck connection is now a holomorphic one-form
ωcoor ∈ Ω1,hol(Xcoor)⊗ vect(n) which satisfies

(3.1) ∂ωcoor +
1
2
[ωcoor, ωcoor] = 0.

Given a C∞ section of Xcoor → Xcoor/U(n) (a formal exponential) we obtain a
vect(n)-valued one-form ω̃coor ∈ Ω1(FrX) ⊗ vect(n) on the U(n)-frame bundle of X.
This endows the frame bundle with the structure of a principal bundle for the pair
(vect(n), U(n)). In coordinates one simply has ωcoor = dzi ⊗ ∂

∂xi
where z is a coordi-

nate on X and x is a formal coordinate.

Fix a (vect(n), U(n))-module (V, ρw) and let VX be the associated bundle VX =

FrX ×U(n)V. We have the flat connection

(3.2) ∇ f lat
V = d + ρw(ω

coor)

on VX. Moreover, since VX is a holomorphic bundle over X, there is a quasi-isomorphism
of sheaves

(3.3)
(

Ω•,hol(X, VX) , ∇V

)
'−→
(

Ω•,•(X, VX) , ∇ f lat
V

)
where ∇V = ∂ − ∇ f lat

V . Here ∂ is the ∂-operator for VX. The operator ∇V endows
Vhol

X = Γhol(X, VX) with the structure of a Dhol
X -module, where Dhol

X is the algebra of
holomorphic differential operators. We refer to this Dhol

X -module as deschol
X (V).

3.2. Proof of the theorem. As recounted in equation (1.8), there is a quasi-isomorphism
of the local cohomology of a local Lie algebra L with the de Rham complex of the DX-
module C•red(jet(L)). Applied to the local Lie algebra T on the complex n-fold X, this
reads:

(3.4) C•loc(T) ' Ω•
(

X , C•red (jet(T))
)
[2n].

14



As sheaves, we know T is a resolution for the sheaf of holomorphic vector fields
on the complex manifold X. Similarly, there is a quasi-isomorphism of (smooth) DX-
modules jet(T) ' jethol(T1,0), where jethol(T1,0) denotes the holomorphic bundle of
holomorphic ∞-jets of the holomorphic tangent bundle. It follows that there is a quasi-
isomorphism of de Rham complexes

(3.5) Ω•
(

X , C•red (jet(T))
)
' Ω•

(
X , C•red

(
jethol(T1,0)

))
.

On the right-hand side we emphasize that we take holomorphic jets.

If V is a module for the pair (vect(n), U(n)), then holomorphic Gelfand-Kazhdan
descent along the complex manifold X yields a Dhol

X -module deschol
X (V). In the case

that V is the adjoint module vect(n), the Dhol
X -module descX(V) is equivalent to the

Dhol
X -module jethol(T1,0).

We now consider the (vect(n), U(n))-module C•red(vect(n)). By [GG20, proposition
A.2], there is a string of isomorphisms of Dhol

X -modules

(3.6) jethol C•red(T
1,0
X ) = desc(C•red(vect(n))) ∼= C•red(desc(vect(n))) = C•red(J

holT1,0
X ),

where JholT1,0
X is the bundle of holomorphic ∞-jets of T1,0

X .

To summarize, we see that the Gelfand-Kazhdan descent of the (vect(n), U(n))-
module C•red(vect(n)) is equal to the DX-module C•red(jethol T1,0). From (3.5), this is
precisely the DX-module present in the definition of the local cohomology of T.

Combining these facts, we obtain a quasi-isomorphism of sheaves on X:

(3.7) C•loc(T) ' Ω•
(

X, descX (C•red(vect(n)))
)
[2n].

Following the exact same logic as in the smooth case yields the desired result.

4. COHOMOLOGY OF FORMAL VECTOR FIELDS

We have seen that the local cohomology of smooth or holomorphic vector fields
is largely determined by the cohomology of formal vector fields. In this section we
collect some facts about the cohomology of formal vector fields which will allow us to
construct explicit models for representatives of local cohomology classes.

As before, vect(n) is the Lie algebra of formal vector fields on the n-disk, and let Ωp

be the vect(n)-module of formal differential p-forms on the n-disk. Thus O = Ω0 =

C[[x1, . . . , xn]] and Ωp is freely generated over O by formal symbols dxi1 ∧ · · · ∧ dxip .
The formal de Rham differential ddR : Ωp → Ωp+1 is defined in the obvious way as is
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the interior product ιX : Ωp → Ωp−1, where X ∈ vect(n). The vect(n)-module structure
on Ωp is through the Lie derivative LX : Ωp → Ωp where LX = ddRιX + ιXddR.

We recall Gelfand–Fuks cohomology with coefficients in formal differential forms.
For each p we define the cochain complex

(4.1) C•(vect(n); Ωp)

which in degree q consists of continuous linear maps ϕ : ∧q vect(n)→ Ωp. The differ-
ential is dp

CE : Cq → Cq+1 is defined by

(4.2) (dp
CE ϕ)(X0, . . . , Xq) = ∑

i<j
(−1)i+j ϕ([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xq)

+ ∑
i
(−1)i+1LXi ϕ(X0, . . . , X̂i, . . . , Xq).

We write

(4.3) dp
CE = dw ⊗ 1Ωp − L

where the first summand is described in the first line above and the second summand
is described by the (negative of) the second line.

To obtain expressions for representatives of cohomology classes in H•(vect(n); C)

we will use the double complex

(4.4) C• (vect(n); Ω•)

where the horizontal differential is dCE and the vertical differential is ddR. The total-
ized differential on the right hand side is a sum of two terms

(4.5) d = dCE + ddR.

The inclusion of constant functions C ↪→ Ω• is vect(n)-equivariant, hence induces a
map

(4.6) C•(vect(n); C)→ Tot C• (vect(n); Ω•) .

By the formal Poincaré lemma, this map is a quasi-isomorphism. The main goal of the
remainder of this section is to construct a quasi-inverse to this map.

4.1. Cohomology with coefficients in differential forms. We summarize a descrip-
tion of the bigraded cohomology ring

(4.7) H•(vect(n); Ω•) = ⊕q ⊕p Hq(vect(n); Ωp).

in terms of formal characteristic classes first given in [GF70a].
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For each k ≥ 0 there is a decreasing sequence of subalgebras

(4.8) vect(n) ⊃ vect(n)0 ⊃ vect(n)1 ⊃ · · ·

where

(4.9) vect(n)k = {∑
i

fi∂i | fi ∈ mk+1C[[z1, . . . , zn]]} ⊂ vect(n),

is the subalgebra of vector fields which vanish up to order k.

The formal Jacobian is the linear map

(4.10) J : vect(n)→ gl(n)[[z1, . . . , zn]]

defined by sending a vector field X = ∑i fi∂i to the matrix of power series JX whose
ij component is ∂i f j. There is map of Lie algebras

(4.11) J(0) : vect(n)0 → gl(n)

defined by evaluating the formal Jacobian at zero X 7→ JX(0). This defines an iso-
morphism vect(n)0/vect(n)1 ' gl(n) with inverse that sends a matrix A to the vector
field ∑ Aijzi∂j. The map J(0) allows us to restrict any gl(n)-representation to one for
vect(n)0.

Given any vect(n)0-module M we induce along vect(n)0 ⊂ vect(n) to obtain the
vect(n)-module

(4.12) M̃ = HomUwn,0(Uvect(n), M).

In the case that M = ∧p(Cn)∗ the corresponding induced module is M̃ = Ωp. In
particular we see that there is an isomorphism of cochain complexes

(4.13) C•(vect(n); Ωn) ' C•(vect(n)0;∧p(Cn)∗).

In fact, this induces an isomorphism of bigraded rings C•(vect(n); Ω•) ' C•(vect(n)0;∧•(Cn)∗).

The embedding gl(n) ↪→ vect(n)0 induces an isomorphism

(4.14) C•(vect(n);O) ' C•(vect(n)0; C) ' C•(gl(n); C).

And so the cohomology with coefficients in O is an exterior algebra

(4.15) H•(vect(n);O) ' C[a1, . . . , an]

where ai is of degree 2i− 1. Explicitly, a representative for ai is

(4.16) ai : X0, . . . , X2n 7→ Tr(JX0 · · · JX2n).
17



Theorem 4.1 ([GF70a]). The bigraded ring

(4.17) H•(vect(n); Ω•)

is a graded polynomial algebra on generators a1, . . . , an where ai is bidegree (0, 2i − 1) and
generators τ1, . . . , τn where τj is bidegee (j, j) modulo the relation

(4.18) τ`1
1 τ`2

2 · · · τ
`n
n = 0, for `1 + 2`2 + · · · n`n > n.

Explicit cochain representatives are as follows.

• A representative for ai is

(4.19) ai : X0, . . . , X2n 7→ Tr(JX0 · · · JX2n),

where JXi ∈ gl(n)[[z1, . . . , zn]] is the formal Jacobian.
• A representative for τi is

(4.20) τi : X1, . . . , Xn 7→ Tr(dJX1 ∧ · · · ∧ dJXn),

where dJXi ∈ gl(n)⊗Ω1 denotes the matrix of formal one-forms.

Recall the space X(n) defined as the restriction of the universal U(n)-bundle to the
2n-skeleton of Gr(n, ∞). It’s cohomology is isomorphic to the cohomology of vect(n).
There is a minimal model for the de Rham cohomology of X(n) which takes the form

(4.21)
(

C[ξ1, . . . , ξn, c1, . . . , cn]/(c
`1
1 c`2

2 · · · c
`n
n ) , d = ci

∂

∂ξi

)
,

where the relation is imposed for `1 + 2`2 + · · · + n`n > n. Here ξi sits in degree
2i − 1 and ci sits in degree 2i. We recognize the ci’s as the universal Chern classes in
n-dimensions and H•(U(n)) ' C[ξ1, . . . , ξn]. The evident relationship to the formal
Hodge-to-de Rham spectral sequence on generators is ξi ↔ ai and ci ↔ τi.

4.2. Formal descent. Define an operator

(4.22) ι : Cq(vect(n); Ωp)→ Cq+1(vect(n); Ωp−1),

which takes a cochain ϕ : ∧q vect(n)→ Ωp to the cochain

(4.23) (ιϕ)(X1, . . . , Xq) = ∑
k
(−1)k+1ιXk ϕ(X1, . . . , X̂k, . . . , Xq),

where, on the right hand side, ιX : Ωp → Ωp−1 is the contraction with respect to X ∈
vect(n).

18



Next we define what is meant by evaluation at zero. For α ∈ Cq(vect(n); Ωp), define
α|0 ∈ Cq(vect(n); C) as follows. If p > 0 then α|0 = 0 and if p = 0 then

(4.24) α|0(X1, . . . , Xq) = α(X1, . . . , Xq)(0) ∈ C.

Proposition 4.2. The map

(4.25) Φ : Tot C•(vect(n); Ω•)→ C•(vect(n); C)

defined by

(4.26) Φ(α) = eι(α)|0

is a quasi-isomorphism of commutative dg algebras.

Proof. In this proof we will use the notations

(4.27) Cq(Ωp)
def
= Cq(vect(n); Ωp), Cq def

= Cq(vect(n); C),

and Dp = dp
CE + ddR the total differential acting on Cq(Ωp). For α ∈ Cq(Ω•) we

denote α|O ∈ Cq(O) the projection onto the function component of α. Notice that
α|0 = (α|O)|0.

First, we show that Φ is a map of graded algebras. Indeed, suppose that α ∈
Cq(Ωp), α′ ∈ Cq′(Ωp′). Then

(4.28) eια|O =
1
p!

ιpα

and similarly for α′. Explicitly, this is the cochain

(4.29) eια|O(X1, . . . , Xp+q) = ∑
I,J

ιXi1
· · · ιXip

α(Xj1 , · · · , Xjq)

where the sum is over increasing multi-indices I = (i1 < · · · < ip), J = (j1 < · · · < jq)
with the property that I ∪ J = {1, . . . , p + q}. Now,

(4.30) eι(αα′)|O =
1

(p + p′)!
ιp+p′(αα′).

Explicitly, this is the cochain

(4.31) eι(αα′)|O(X1, . . . , Xp+p′+q+q′) = ∑
A,B

ιXa1
· · · ιXap+p′

(αα′)(Xb1 , · · · , Xbq+q′
)

= ∑
I,J,I′,J′

ιXi1
· · · ιXip

α(Xj1 , · · · , Xjq)ιXi′1
· · · ιXi′

p′
α′(Xj′1

, . . . , Xj′q′
)

where the first sum is over increasing multi-indices A, B of length p + p′, q + q′ respec-
tively. The second sum is over multi-indices I, J of length p, q respectively and I′, J′ of
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length p′, q′ respectively. The second line is precisely (eια|Oeια′|O)(X1, . . . , Xp+q+p′+q′)

as desired.

As a graded algebra C•(Ω•) is generated by elements in C•(O) and C0(Ω•). Thus,
to show that Φ is a cochain map it suffices to show that Φ(Dψ) = dwΦ(ψ) for ψ in
each of these pieces.

Suppose first that ϕ ∈ Cq(vect(n);O). On one hand Φ(ϕ) = ϕ|0 and so

(4.32) dwΦ(ϕ) = (dw ⊗ 1O)ϕ|0

where dw ⊗ 1O is the operator described in the first line in equation (4.36). On the
other hand

Φ(D0ϕ) = (dO
CE ϕ + ιddR ϕ)|0

= (dO
CE ϕ− Lϕ)|0,

where L is the operator described in the second line of (4.36). Since (by definition)
dO

CE = dw ⊗ 1O − L, we have shown that Φ(D0ϕ) = dwΦ(ϕ).

Now, suppose that α ∈ C0(Ωp) = Ωp. Then Φ(α) = 1
p! ι

pα|0 ∈ Cp is the p-cochain

(4.33) Φ(α)(X0, . . . , Xp−1) = ιX0 · · · ιXp−1 α|0.

Thus dwΦ(α) ∈ Cp+1 is the (p + 1)-cochain

(4.34) dwΦ(α)(X0, . . . , Xp) = ∑
i<j

(−1)i+jι[Xi ,Xj]ιX0 · · · ι̂Xi · · · ι̂Xj · · · ιXp α|0.

On the other hand, we have

Φ(Dpα) = Φ(dp
CEα) + Φ(ddRα)

=
1
p!

ιpdp
CEα|0 +

1
(p + 1)!

ιp+1ddRα|0.

Now, dp
CEα ∈ C1(Ωp) is the Ωp-valued 1-cochain

(4.35) (dp
CEα)(X) = −LXα.

Thus, 1
p! ι

p(dp
CEα) is the (p + 1)-cochain

(4.36)
1
p!

ιp(dp
CEα)(X0, . . . , Xp) = ∑

i
(−1)iιX0 · · · ι̂Xi · · · ιXp−1 LXi α.

Next, we read off the (p + 1)-cochain 1
(p+1)! ι

p+1ddRα as

(4.37)
1

(p + 1)!
ιp+1ddRα(X0, . . . , Xp) = ιX0 · · · ιXp ddRα.
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Via Cartan’s formula LX = ddRιX + ιXddR we can write this as

(4.38) ιX0 · · · ιXp−1(LXp − ddRιXp)α = ιX0 · · · ιXp−1 LXp α− ιX0 · · · ιXp−1ddRιXp α.

Iterating, we can use Cartan’s formula to remove all explicit appearances of the de
Rham differential

(4.39)
1

(p + 1)!
ιp+1ddRα(X0, . . . , Xp) = ∑

i
±ιX0 · · · ιXi−1 LXi ιXi+1 · · · ιXp α

Here, we have use the fact that since α is a p-form that ddRιX0 · · · ιXp α = 0. We now
use the identity [ιX, LY] = ι[X,Y] = [LX, ιY] to place all Lie derivatives on the right. This
becomes

(4.40)
1

(p + 1)!
ιp+1ddRα(X0, . . . , Xp) = ∑

i
(−1)i+1ιX0 · · · ι̂Xi · · · ιXp−1 LXi α

+ ∑
i<j

(−1)i+jι[Xi ,Xj]ιX0 · · · ι̂Xi · · · ι̂Xj · · · ιXp α.

The first line cancels with (4.36) and the second line, when evaluated at zero, matches
(4.34). We conclude that Φ is a cochain map.

By the formal Poincaré lemma, we know that the inclusion

(4.41) i : (C•, dw) ↪→ (C•(Ω•), D)

induced by the inclusion C ↪→ O of constant functions is a quasi-isomorphism. It is
clear that Φ ◦ i = 1C• . To conclude the proof, we will construct a homotopy i ◦ Φ '
1C•(Ω•). Consider the commutative dg algebra

(4.42) Ω•([0, 1])⊗̂C•(Ω•),

which is equipped with the differential dt + D = dt + dΩ•
CE + ddR where dt denotes the

de Rham differential on the interval [0, 1]. Fiberwise integration is a linear map

(4.43)
∫

[0,1]

: Ω•([0, 1])⊗̂C•(Ω•)→ C•(Ω•)[−1].

Explicitly,
∫
[0,1] f (t, x)α(x) = 0 and

∫
[0,1] f (t, x)dtα =

(∫ 1
0 f (t, x)dt

)
α(x), for f ∈

C∞([0, 1]), α ∈ C•(Ω•). Now, consider α ∈ Cq(Ωp), which we will write as

(4.44) α(X1, . . . , Xq) = ∑
I

α(Xq, . . . , Xq)(x)IdxI

where I is a multi-index. Define

(4.45) h∗α ∈ Ω1([0, 1])⊗̂Cq(Ωp−1)
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as

(4.46) (h∗α)(X1, . . . , Xn)(t, x) = ∑
I

α(Xq, . . . , Xq)(tx)Id(txI).

Define Ψ(α) =
∫
[0,1] ◦h∗(α).

Observe that
∫
[0,1] anticommutes with the Chevalley–Eilenberg differential. Thus by

the same argument as in the proof of the Poincaré lemma we see that

(4.47) i ◦Φ− 1 = D ◦Ψ + Ψ ◦ D.

This shows that Φ is a homotopy equivalence, as desired.

�

4.3. Examples. Using the above results, we will work out representatives of Gelfand–
Fuks cohomology classes in some low-dimensional examples.

4.3.1. Let’s consider the one-dimensional case. It is well-known that H•(w1; C) is
concentrated in degree zero and three, and H3(w1; C) is one-dimensional. The spectral
sequence

(4.48) C•(w1; Ω•) =⇒ C•(w1; C)

collapses at the E2-page and the only remaining generator is a1τ1 which is of bidegree
(1, 2) which we view as an element

(4.49) a1τ1 ∈ C2(w1; Ω1).

The image of this element under Φ will thus give a generator for the cohomology
H3(w1; C). Note that Φ(a1τ1) = −a1(ιτ1)|0 and that

(4.50) (ιτ1)( f ∂x, g∂x) = f ∂2
xg− g∂2

x f ∈ O,

where f , g ∈ O. Thus

(4.51) Φ(a1τ1)( f ∂x, g∂x, h∂x) = det

 f g h
∂x f ∂xg ∂xh
∂2

x f ∂2
xg ∂2

xh

 (0),

recovering the well-known formula for this cocycle, for example see [Fuk86].
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4.3.2. Let’s consider the two-dimensional case. As before, we use the results above
together with the spectral sequence

(4.52) E1 = H•(w2; Ω•) =⇒ H•(w2)

to construct representatives for the cohomology classes in H5(w2), which we know
is a two-dimensional vector space. The E1 page is the free commutative bigraded
algebra on generators (a1, a3, τ1, τ2) of bidegrees ((0, 1), (0, 3), (1, 1), (2, 2)) subject to
the relations

(4.53) τ3
1 = τ1τ2 = τ2

2 = 0.

The differential on the E1 page is dτ1 = a1. On the E2 page the differential is deter-
mined by dτ2 = a2. From this, we see that the spectral sequence collapses at the E3

page. The cohomology we are interested lives purely in bidegree (2, 3) on this page
and is represented by the elements a1τ2

1 , a2τ2
2 .

From this description it is immediate to see that the elements a1τ2
1 , a1τ2 ∈ H3(w2; Ω2)

survive to the E∞-page. Now Φ(a1τ2) = − 1
2 a1ι2τ2 and

(4.54)
1
2

ι2τ2(X1, X2, X3, X4) = ιX1 ιX2 Tr(dJX3dJX4)− ιX1 ιX3 Tr(dJX2dJX4)+ ιX1 ιX4 Tr(dJX2dJX3)

+ ιX2 ιX3 Tr(dJX1dJX4)− ιX2 ιX4 Tr(dJX1dJX3) + ιX3 ιX4 Tr(dJX1dJX2).

Thus

(4.55) Φ(a1τ2)(X0, . . . , X4) = Tr(JX0)(0)ιX1 ιX2 Tr(dJX3dJX4)(0) + · · ·

where the · · · denote terms which make the cocycle manifestly antisymmetric. Simi-
larly

(4.56) Φ(a1τ2
1 )(X0, . . . , X4) = Tr(JX0)(0)ιX1 ιX2 Tr(dJX3)(0)Tr(dJX4)(0) + · · ·

5. DESCENT EQUATIONS AND LOCAL REPRESENTATIVES

The goal in this section is to describe an explicit representatives for local cohomol-
ogy classes following theorem 1.7 in the affine case X = Cn. We will focus on holo-
morphic vector fields, but in the last part of this section we comment on results for
smooth vector fields.
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5.1. Descent, two ways. Recall that the global sections on Cn of the local dg Lie alge-
bra T is the dg Lie algebra T(Cn) = Ω0,•(Cn, T1,0). Dolbeault’s theorem implies that
there is a quasi-isomorphism of dg Lie algebras

(5.1) T(Cn)
'−→ H0(T(Cn)) = Vecthol(Cn),

where Vecthol(Cn) is the Lie algebra of holomorphic vector fields on Cn. Taylor expan-
sion at 0 ∈ Cn defines a map of Lie algebras from holomorphic vector fields to formal
vector fields:

(5.2) j∞
0 : Vecthol(Cn)→ vect(n)

which takes the Taylor expansion of a holomorphic vector field at 0 ∈ Cn. We denote

the composition j def
= j∞

0 ◦ p : T(Cn) → vect(n). The map j defines a map on the
continuous Chevalley–Eilenberg cochain complexes

(5.3) j∗ : C•(vect(n))→ C• (T(Cn))) .

Associated to the local Lie algebra T we have the ∞-jet bundle J(T). We denote the
dg Lie algebra of global sections of this jet bundle by jet(T)(Cn). By construction, we
note that the map j∗ factors through the embedding of cochain complexes

(5.4) C•
(

jet(T)(Cn)

)
↪→ C• (T(Cn)) .

So, we obtain for each φ ∈ C•(vect(n)) a section j∗φ of the vector bundle C• (jet(T)).

Example 5.1. Suppose n = 1 and consider the 1-cochain φ : f (x) ∂
∂x 7→ f ′(0) of w1. The

value of the section j∗φ at the point z0 ∈ C is the cochain for T = Ω0,•(C, TC) defined
by

(5.5) a(z, z)
∂

∂z
+ b(z, z)dz

∂

∂z
7→ ∂

∂z
a(z, z)|z=z0 .

On any manifold, we have seen that C• (jet(T)) is commutative dg algebra in the
category of D-modules. On Cn we consider the associated de Rham complex

(5.6) Ω•
(

Cn , C• (jet(T))
)

Recall that up to a shift (and upon taking reduced cochains) this complex is quasi-
isomorphic to the complex which computes the local cohomology of T.

Via the map j, a cochain φ ∈ C•(vect(n)) determines a zero form in this de Rham
complex

(5.7) φ0 def
= j∗φ ∈ Ω0 (Cn, C•(jet(T))) .
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The section φ0 is not flat, but we have the following.

Proposition 5.2. Suppose φ ∈ C•(vect(n)) and let φ0 = j∗φ. Then, there exists φi,j ∈
Ωi,j(Cn, C• (jet(T))), 1 ≤ i, j ≤ n such that the element

(5.8) Φ def
= ∑

i,j
φi,j

satisfies the equation (∂ + ∂ + dT)Φ = 0.

Using the Hodge decomposition of the Rham differential ddR = ∂ + ∂, we we will
show that the elements φi,j satisfy a pair of descent equations:

• Holomorphic descent equations:

(5.9) ∂φi,j + ∂Tφi,j+1 = 0

for 0 ≤ i, j ≤ n. Here ∂T denotes the differential internal to the dg Lie algebra T.
• Cartan descent equations:

(5.10) ∂φi,j + dCEφi+1,j = 0

for 0 ≤ i, j ≤ n. Here dCE denotes the Chevalley–Eilenberg differential associ-
ated to the Lie bracket of holomorphic vector fields.

In fact, the elements φi,j admit the following explicit expressions. Define the degree
(−1) derivation ηi of the dg Lie algebra T(Cn) by

(5.11) ηi

(
α(z, z)

∂

∂zj

)
=

(
ι ∂

∂zi
α

)
(z, z)

∂

∂zj
.

On the right-hand side, iXα denotes the contraction of the differential form α by the
vector field X. This derivation extends to a derivation of the algebra (5.6) that we
denote by the same symbol.

Next, define the derivation ηi of the algebra C•(T(Cn)) by the formula

(5.12) ηi(ψ) = ι ∂
∂zi

ψ.

The right-hand side is the contraction of the cochain ψ ∈ C•(T(Cn)) by the vector
field ∂

∂zi
. Explicitly, if ψ is k-linear, then

(5.13) (ι ∂
∂zi

ψ)(ξ1, . . . , ξk−1) =
k−1

∑
j=1

(−1)j+1ψ

(
ξ1, . . . , ξ j,

∂

∂zi
, ξ j+1, . . . , ξk−1

)
.

This derivation also extends to a derivation of the algebra (5.6) that we denote by the
same symbol.
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Given this notation, we return to the starting data which is a cochain φ ∈ C•(vect(n)).
Recall, we set φ0 = j∗φ which is a zero form in the de Rham complex of jets. A repre-
sentative for Φ as in the theorem is

(5.14) Φ = exp

(
n

∑
i=1

(dziηi + dziηi)

)
φ0.

Note that the derivations ηi and η j commute for all i, j, so the right-hand side of the
equation is unambiguously defined.

Proof of proposition 5.2. The differential on the de Rham complex Ω•(Cn, C•(jet(T)))
has the form ddR + dT where ddR is the de Rham differential encoded by the flat con-
nection on C•(jet(T)) and dT is the differential internal to the complex C•(T). Note
that dT splits as dT = ∂T + dCE where ∂T is the ∂-operator arising in the definition of
T (we use this notation to not confuse it with the de Rham differential), and dCE is the
differential arising from the Lie bracket on T.

It suffices to show that the elements φi,j satisfy the pair of descent equations (5.11)
and (5.12). Since the operators ηi and ηi commute, it suffices to prove (5.11) for i = 0
and (5.12) for j = 0.

Note that φ0,j is the (0, j)th component in the expansion of exp (∑` dz`η`) φ0. For
i = 0, descent equation (5.11) follows from

(5.15) ∂Tdz`η`φ
0,j = −dz`[∂T , η`]φ

0,j = −dz`
∂

∂z`
φ0,j.

For the second descent equation, note that φi,0 is the (i, 0)th component in the ex-
pansion exp (∑` dz`) φ0. For j = 0, descent equation (5.12) follows from

(5.16) dCEdz`η`φi,0 = −dz`[dCE, η`]φ
i,0 = −dz`

∂

∂z`
φi,0.

�

Combining this result with Theorem 1.7 we obtain the following.

Corollary 5.3. The composite map

(5.17) δ : C•red(vect(n))→ Ω• (Cn, C•red(jetT)) '−→ C•loc(T(C
n))[−2n].

which sends φ 7→ δ(φ) =
∫

φn,n is a quasi-isomorphism. In particular, if φ ∈ C•(vect(n))
is a Gelfand–Fuks cocycle of degree k, then δ(φ) ∈ C•loc(T) is a local cocycle of degree k− 2n
and up to equivalence all such local cocycles are obtained in this way.

5.2. Examples. We spell out some low-dimensional examples.
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5.2.1. The reduced cohomology of one-dimensional formal vector fields is one-dimensional
concentrated in degree +3. Thus, by theorem 1.7 we see

(5.18) H1
loc(T(C)) = H3(w1)

is one-dimensional.

A representative for this class can be deduced from the explicit Gelfand–Fuks co-
cycle in equation (4.51), that we will denote by φ. The section φ0 = j∗φ of C•(jet(T))
is

(5.19) φ0
(

α(z, z)
∂

∂z
, β(z, z)

∂

∂z
, γ(z, z)

∂

∂z

)
= det

 α0 β0 γ0

∂zα0 ∂zβ0 ∂zγ0

∂2
zα0 ∂2

z β0 ∂2
zγ0

 (z, z).

Here α0 denotes the zero form component of the differential form α. We first solve for
the descent element φ0,1 which satisfies the holomorphic descent equation

(5.20) ∂φ0 = ∂Tφ0,1.

This element has the form φ0,1 = dzψ0,1 where ψ0,1 is the section of C•(jet(T)) defined
by

(5.21) ψ0,1
(

α
∂

∂z
, β

∂

∂z
, γ

∂

∂z

)
= φ0

(
α0,1 ∂

∂z
, β0 ∂

∂z
, γ0 ∂

∂z

)
+ · · ·

where · · · denotes the two terms obtained by swapping the role of α with β, γ respec-
tively. Next, we solve for φ1,1 which satisfies the Cartan descent equation

(5.22) ∂φ0,1 = dCEφ1,1.

Explicitly φ1,1 = dzdzψ1,1 with ψ1,1 the section of C•(jet(T)) defined by

(5.23) ψ1,1
(

α
∂

∂z
, β

∂

∂z

)
= ∂zα0,1∂2

z β0 − ∂2
zα0,1∂zβ0 + (α↔ β) .

The local cocycle δ(φ) =
∫

φ1,1 ∈ C•loc(T(C)) can be put in the following more uniform
form

(5.24) δ(φ)(µ) =

∫
J(µ) ∧ ∂J(µ),

where Jµ = J(α(z, z)∂z) = ∂zα(z, z) is the Jacobian of holomorphic vector fields ex-
tended to the Dolbeault resolution in the natural way.

More generally, we will use the following construction. If

(5.25) αi(z, z)
∂

∂zi
∈ Ω0,•(Cn, T1,0)
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is an element of the Dolbeault complex of the holomorphic tangent bundle, then we
define

(5.26) Jµ
def
=

(
∂αi

∂zj
(z, z)

)
∈ gl(n)⊗Ω0,•(Cn).

5.2.2. We have seen that H1
loc(T(C

2)) is two-dimensional corresponding to the two
linearly independent classes in H5(vect(2)). In turn, from the formal de Rham spectral
sequence, these two classes arise from the classes a1τ2, a1τ1τ2 ∈ C3(vect(2), Ω2). Using
the explicit expressions for these classes given in section 4 we arrive at the following.

Proposition 5.4. Explicit representatives for the two linearly independent classes in H1
loc(T(C

2))

are

(5.27)
∫

C2

Tr(Jµ)Tr(∂Jµ∂Jµ),

and

(5.28)
∫

C2

Tr(Jµ)Tr(∂Jµ)Tr(∂Jµ).

5.2.3. In complex dimension one and two there are obvious parallels between the
representatives of the local cocycle and the representative for the cocycle of formal
vector fields. Indeed, in complex dimension one we know that the generating class
in H3(vect(1)) arises, via formal descent, from the class a1c1 ∈ H2(vect(1); Ω1). Sim-
ilarly, the local classes in proposition 5.4 bare the same form as the representatives
a1τ2, a1τ2

1 ∈ H3(vect(n); Ω2) which, in turn, generate the cohomology H5(vect(2)) by
applying formal descent. The key feature that these examples have in common is that
the generators of cohomology of vect(n) arise by applying formal descent to classes
valued in the top formal de Rham forms Ωn(D̂n).

In complex dimension three, however, there are classes in H7(vect(3)) which do not
arise from applying formal descent to a Gelfand–Fuks class with values in Ω3(D̂3).
Indeed, H7(vect(3)) is four-dimensional. The classes which generate the cohomol-
ogy, via formal descent, are a1τ3

1 , a1τ1τ2, a1τ3 and a2τ2. The first three elements live
in H4(vect(3); Ω3) while the latter element is the generator of H5(vect(3); Ω2) which
takes the explicit form

(5.29) a2τ2 : (X0, . . . , X4) 7→ Tr(JX0 JX1 JX2)Tr(dJX3dX4) + · · · .
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Up to a factor, the corresponding local cocycle is

(5.30)
∫

C3

Tr(Jµ∂Jµ)Tr(∂Jµ∂Jµ).
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