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a b s t r a c t

We define the β-function of a perturbative quantum field theory in the mathematical
framework introduced by Costello – combining perturbative renormalization and the BV
formalism – as the cohomology class of a certain functional measuring scale dependence of
the effective interaction. We show that the one-loop β-function is a well-defined element
of the obstruction–deformation complex for translation-invariant and classically scale-
invariant theories, and furthermore that it is locally constant as a function on the space
of classical interactions and computable as a rescaling anomaly, or as the logarithmic one-
loop counterterm. We compute the one-loop β-function in first-order Yang–Mills theory,
recovering the famous asymptotic freedom for Yang–Mills in a mathematical context.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Costello [1] has given a systematic framework for perturbative quantum field theory, accessible to mathematicians,
based on effective field theory and BV quantization. One of the high points of his book is a cohomological proof of the
renormalizability of pure Yang–Mills theory. In this paper we deepen this formalism so as to understand and demonstrate
asymptotic freedom, providing techniques for interpreting the one-loop β-function as a class in (a close cousin of) the
cohomology group Costello used. Furthermore, we identify it as the anomaly class with respect to the rescaling symmetry,
allowing us to accordingly introduce the notion of quantum scale-invariance into this mathematical framework.

The program of obtaining exciting mathematical structures out of perturbative quantum field theory using Costello and
Gwilliam’s interpretation has been successful, see, for instance, [2–7]. On the other hand, the program of mathematically
understanding more physical aspects of quantum field theories in this framework has not been much pursued since the
original work of Costello (see, however, [8]). In this paper, we demonstrate how one can calculate the one-loop β-function
of Yang–Mills theory under this framework, which in particular leads to the celebrated asymptotic freedom result of Gross
and Wilczek [9] and Politzer [10]. This computation is well-known in the physics community, but the relevant Feynman
diagrams in our formulation are different from the usual ones considered in the subject since we work with the first-order
formulation in the BV formalism; we of course end up producing the exact same numbers as physicists do. In the physics
community the one-loopβ-function has been computed in first-order Yang–Mills (but not in the BV formalism) byMartellini
and Zeni [11].

Renormalization has been studied mathematically in various guises (see for instance [12–15]), especially in the context
of statistical physics. Renormalizability for Yang–Mills and related theories in the BV-BRST formalism has been extensively
studied from a cohomological point of view in the work of Barnich, Brandt, and Henneaux (see the surveys [16,17]
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and citations therein). Asymptotic freedom has also been investigated for the 2d Gross–Neveu theory by Gawędzki and
Kupiainen [18], and by Feldman, Magnen, Rivasseau, and Sénéor [19]. In Costello’s approach to effective BV quantization,
Nguyen [20] has previously studied the notion of the β-function for the two-dimensional nonlinear sigma model. In this
work, we carefully discuss the behavior of the one-loop β-function on the space of field theories. In this regard, our work
could be thought of as a verification that it is feasible to do explicit calculations of well-studied objects in QFT in Costello’s
framework.

Let us briefly review the notion of the β-function of a perturbative quantum field theory, and recall what it means
for a theory to be asymptotically free. The β-function is usually thought of as measuring how the coupling constants in
a renormalizable quantum field theory change as one changes the energy scale at which one performs measurements. If the
β-function is strictly negative then the coupling vanishes in the high energy limit, and one says the theory is asymptotically
free. This is exactly what Gross, Wilczek, and Politzer verified in the case of SU(3)-Yang–Mills theory with matter in three
copies of the fundamental representation: the quark model describing strong interactions.

From the point of view of this paper, we describe the β-function as derived from a more fundamental object: the β-
functional describing the rate of change of the effective interaction with respect to the action of the local RG flow. This
idea is natural from the point of view of effective field theory as established by of Wilson [21] and Polchinski [22]; in the
physics literature, the article of Hughes and Liu [23], for example, explains how this approach applies to the β-function with
a detailed account of the example of φ4 theory. From our point of view, the β-functional is a collection of functionals on the
space of fields, describing a first-order deformation of an effective theory, and one obtains the usual β-function by taking its
cohomology class. One connects this to the usual physical description of theβ-function by identifying the cohomology classes
in the complex of local functionals with coupling constants in the field theory. For instance we can see this very explicitly
in the example of Yang–Mills theory. We establish a number of interesting fundamental properties of the β-function from
this point of view. In particular we show that the β-function is locally constant over the space of quantum field theories
(with fixed classical BV complex), and at the one-loop level the β-function is independent of the choice of renormalizable
quantization of a classical field theory, so locally constant over the space of classical field theories admitting a renormalizable
quantization. Finally we demonstrate that the β-function admits a natural interpretation as the anomaly for the rescaling
symmetry, using the language developed by Costello and Gwilliam in [24].

In [1], Costello introduced a conceptual way to perform renormalization, keeping track of choices one needs tomake, and
proved that pure Yang–Mills theory on R4 has a unique renormalizable quantization, reproducing the fundamental result
of Veltman and ’t Hooft [25] by a cohomological argument (using different but related language to the argument of Barnich,
Brandt, and Henneaux [17]). In this paper, we prove that his proof also works for the theory with matter and analyze the
one-loop β-function of Yang–Mills theory with arbitrary gauge group and matter representation, which in particular shows
the asymptotic freedom in the framework. The local constancy of the one-loop β-function over the space of classical theories
shows that one can compute it using first-order Yang–Mills theory, which is a theory equivalent to ordinary Yang–Mills as
a classical BV theory. We prove that we can do this calculation using some of the techniques used by physicists, by proving
that the one-loop β-function is computable using logarithmic counterterms.

1.1. Outline of the paper

We begin in Section 2 by reviewing Costello’s work on perturbative field theory. We will recall the definition of a
perturbative field theory from this point of view, using the heat kernel approach to regularization. Then we will recall how
one can describe gauge theory in this language using the BV formalism; we require a field theory to satisfy the quantum
master equation.

In Section 3 we will explain how to talk about the β-function from this point of view. The usual β-function arises from
a functional that describes the behavior of a perturbative field theory under the renormalization group flow by taking its
cohomology class. We prove that this functional is compatible with the renormalization group flow, and that it is closed
with respect to the quantum BV differential. We also verify that the functional is a homotopy invariant in the simplicial set
of quantum field theories, and that at the one-loop level it is independent of the choice of quantization of a classical field
theory. We explain another perspective on the β-functional at the one-loop level, as the anomaly obstructing a classical
scale-invariant theory from being scale-invariant at the quantum one-loop level. Finally we explain how to compute the
β-function: at one-loop it can be computed in terms of appropriate counterterms.

In Section 4 we apply the quantum BV formalism to Yang–Mills theory. We explain, following Chapter 6 of [1], the
classical equivalence of first- and second-order Yang–Mills theory, and explain why this means the one-loop β-function can
be equivalently computed starting from either classical theory. Then we extend a Gel’fand–Fuchs cohomology calculation
of Costello’s to describe the cohomology of the obstruction–deformation complex in first-order Yang–Mills theory with
matter. This means, in particular, that we can identify the β-function as a function of a single coupling constant for each
simple summand of the gauge group.

We conclude with Section 5, in which we calculate the one-loop β-function in Yang–Mills theory in this framework, and
recover the classical result obtained by Gross and Wilczek [9] and Politzer [10]. In particular we verify in Costello’s mathe-
matical framework for perturbative quantum field theory the famous asymptotic freedom of quantum chromodynamics.
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1.2. Notation and terminology

Let us set up some notation for the rest of the paper, following the conventions for functional analysis used in [26].

• Our infinite-dimensional vector spaces will always be nuclear Fréchet spaces, and the tensor product ⊗ will always
refer to the completed projective tensor product.

• If E is a graded vector bundle E on a manifold M , we will write E for its sheaf of sections. We will write E∨ for the
dual vector bundle, and E ! for E∨

⊗ DensM , where DensM is the sheaf of densities. Finally, we will write E∗ for the
continuous linear dual of the sheaf E , we can identify it with Ē !

c , the compactly supported distributional sections of
the bundle E !.

• The space of local action functionals Oloc(E) on E is defined by

Oloc(E) = DensM⊗DM Ŝym
•

C∞
M
(Jet(E)∨),

whereDM is the sheaf of differential operators, Jet(E) is the sheaf of sections of the jet bundle J(E) of E, and (−)∨ stands
for the dual in the category of sheaves of C∞

M modules.

2. Perturbative quantum field theory

In this sectionwe recall the formalism and terminology of perturbative quantum field theory developed by Costello in [1]
and Costello–Gwilliam in [24,26]. The main ingredient necessary for our analysis is the BV formalism, which is for simplicity
first discussed in a finite-dimensional case. In cases of interest where we need to deal with infinite-dimensional spaces, we
have to do regularization and renormalization. Here we briefly review amathematical framework developed by Costello [1].
For more detail with full discussion, we urge the readers to refer to the book.

2.1. Toy example

Let us start with a toy example, where we take as our input an n-dimensional vector space V of fields, along with an
action functional S : V → R. The principle of least action says that all of the classical physics of the system appears over the
critical locus Crit(S) = {dS = 0}. Understood in modern language, the classical BV formalism amounts to requiring that one
should understand the classical equations of motion in a derived way: we regard dS as a section dS : V → T ∗V and then
define the derived critical locus to be the derived intersection

dCrit(S) := dS(V )
h
×T∗VV

inside T ∗V , where V is embedded in T ∗V by the zero section. This derived intersection is readily computed by taking
the Koszul resolution of O(dS(V )), yielding dCrit(S) = (T ∗

[−1]V , ιdS); this is a space with functions O(T ∗
[−1]V ) =

SymO(V )(TV [1]) equipped with a vector field ιdS understood as a differential on it, given by contraction with dS.
In some situations, the free part of an action functional is not non-degenerate unless we take the quotient of the full space

of fields by some additional symmetries. As we will see shortly, non-degeneracy will be an essential condition for the heat
kernel regularizationwewill describe, so in such a situationwe should consider the space of fields to be of the form E = V/G
so that the free part becomes non-degenerate.

Now let us extend our representative toy example to this situation, where V is an n-dimensional representation of a Lie
group G. In perturbative field theory, we only consider a formal neighborhood of 0 ∈ V , and then we do not lose anything
by replacing the group G by its Lie algebra g. Applying the BV philosophy to this situation, we should replace the space of
functions on V/G by the space of derived g-invariants of functions on V , that is RHomUg(R,O(V )), where R is understood
as the trivial representation. A nice model for the derived invariants is given by the Chevalley–Eilenberg cochain complex
C•(g,O(V )); as a graded vector space C•(g,O(V )) = Sym•(g∗

[−1]) ⊗ O(V ) and the differential d comes from the action of g
on V and the Lie bracket on g. In other words, we model functions on the formal neighborhood of 0 ∈ V/G as functions on
a graded manifold g[1] ⊕ V together with a differential, which is a vector field of degree 1. Elements of g[1] are called ghost
fields, which account for the gauge symmetry. That is, the gauge symmetry is thought of as part of the space of fields, rather
than a separate piece of data.

Combining these two steps, the derived critical locus in the toy example of V/G takes the form

E = T ∗
[−1](g[1] ⊕ V ) = g[1] ⊕ V ⊕ V ∗

[−1] ⊕ g∗
[−2]

with a nontrivial differential QBV such that the quadratic part of the action is given by S2(F ) = ω(F ,QBVF ), where ω is the
natural symplectic pairing of degree −1 given by the dual pairing between V , V ∗ and g, g∗. Elements of V ∗

[−1] are called
‘‘antifields’’ and elements of g∗

[−2] are called ‘‘antighosts’’; we think of E as the space of fields in the BV sense. Thus, we
in particular obtain a (−1)-shifted symplectic dg vector space (E,Q ). This induce a bracket {−,−} on functions O(E) of
cohomological degree one. The part of the interaction of degree higher than two survives as a function I on the space of
fields satisfying the classical master equation

QBV(I) +
1
2
{I, I} = 0.
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The complex of classical observables is defined to be the complex

(O(E),Q + {I,−})

which is a model for functions on the derived critical locus. Note that the classical master equation ensures that the
differential of this complex is square zero. The commutative product of functions and the (−1)-shifted bracket {−,−}

provides the structure of a P0-algebra on the complex of classical observables. This is the structure we wish to quantize.
Although we came to consider the space E = T ∗

[−1](g[1]⊕V ) from a natural story starting from a vector space V with a
G-action, for the following discussion it makes no difference if we replace E by an arbitrary finite-dimensional (−1)-shifted
symplectic dg vector space equipped with a function I ∈ O(E) of degree zero satisfying the classical master equation. Here
the (−1)-shifted symplectic pairing defines an element in ∧

2E∗ which is closed under the differential. Let K ∈ E ⊗ E denote
the integral kernel for the identity map E → E where we use the symplectic form to identify E with E∗

[−1]. In other words,
K is the image of ω under the isomorphism ∧

2E∗ ∼= Sym2(E)[2]. Note that since the symplectic form has degree −1, the
element K has degree +1 in Sym2(E).

The key concept needed to define a quantization of a classical field theory in this language, or to make sense of the path
integral, involves the structure.

Definition 2.1. A Beilinson–Drinfeld algebra (or BD algebra for short) (A,∆, { , }) is a graded commutative algebra A flat over
R[[h̄]] with a differential∆ and a degree 1 Poisson bracket { , } such that for any a, b ∈ A, one has

∆(a · b) = (∆a) · b + (−1)|a|a · (∆b) + h̄{a, b}.

In the toy model we care about we can define an operator∆, called the BV Laplacian onO(E)[[h̄]] by contraction with the
element K . The formula for∆ is

∆(f1 · · · fp) =

∑
i,j

(±)K (fi ⊗ fj)f1 · · · f̂i · · · f̂j · · · fp

where fi ∈ E∗. The terminology for the BV Laplacian is partially due to the fact that for E ∼= T ∗
[−1](RN ) with the coordinates

{xi} for RN and {ξj} for the odd cotangent fiber, the BV Laplacian∆ has the form of the usual Laplacian
∑N

i=1∂xi∂ξi .
The operator∆ equips the cochain complex

(O(E)[[h̄]],Q + h̄∆)

with the structure of a BV algebra over R[[h̄]]. In the free case, i.e. when the interaction term I = 0 this complex provides a
quantization of the space of classical observables. This means that the complex reduces, modulo h̄, to the classical complex
and the bracket {−,−} satisfies {a, b} = limh̄→0[ã, b̃] for any lifts ã, b̃ of classical observables. In the interacting case, we
must make a further choice, which may not always exist. By definition, a quantization of the classical I interaction is an
element Iq ∈ O(E)[[h̄]] that reduces to I modulo h̄ and satisfies the quantum master equation

QIq + h̄∆Iq +
1
2
{Iq, Iq} = 0.

The functional Iq equips the complex

(O(E)[[h̄]],Q + h̄∆+ {Iq,−})

with the structure of a quantization of the classical observables. Note that the quantummaster equation is equivalent to the
differential of the above complex to be square zero.

For an explanation of how this structure allows one to make sense of a version of the path integral in a rigorous way, we
refer to the reader to Chapter 7 of [24].

All of the above discussion involved the toy model of a finite dimensional space of fields. We immediately run in to
complications when we consider field theories of more interesting nature, such as when the space of fields is the sections
of a graded vector bundle on some smooth manifold. Even classically, the bracket {−,−} will not be fully defined in this
generality. There are further problems when discussing quantizations. We outline the approach of [1] and [24,26] of an
effective formulation of perturbative quantum field theories.

2.2. Free BV theories

We start with the idea of a free BV theory which is the correct notion of a (−1)-shifted symplectic dg vector space in the
case that the space of fields are functions (or sections of a vector bundle) on a smooth manifold.

Definition 2.2. A free BV theory on an oriented manifoldM is a complex of vector bundles onM

· · ·
Q
−→ E−1 Q

−→ E0 Q
−→ E1 Q

−→ · · ·

together with a pairing

(−,−) : E ⊗ E → DensM
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that is non-degenerate and graded skew-symmetric of degree −1. Moreover, we require that (E,Q ) is an elliptic complex as
a complex of vector bundles.

In particular, the differential Q is a differential operator. The space of smooth sections E = Γ (M, E) is the space of fields
of the free BV theory, which we sometimes call the classical BV complex. Let ω =

∫
M ◦(−,−) be the induced bilinear pairing

on Ec . While (−,−) is non-degenerate, the pairing ω does not induce an identification of E[1] and E∗. This is because the
integral kernel K0 = ω−1 defined by ω is a distributional section of E ⊠ E supported on the diagonalM ↪→ M × M .

The classical observables of the free theory are defined by

Obscl(M) =
(
Sym(E∗),Q

)
where E∗ denotes the continuous linear dual of E and Q is the induced differential extended to the symmetric algebra by the
rule that it is a derivation. The central idea of BV quantization suggests a naive two-step process:

(1) tensor the underlying graded vector space of Obscl(M) by R[[h̄]] and
(2) modify the differential Q to Q + h̄∆

where∆ is defined by contractionwith the integral kernel K0. The obstacle is that the operator∆ is actually ill-definedwhen
acting on (E∗)⊗k as it would involve pairing distributional sections.

We solve the above via a homotopical version of renormalization, following [1]. Note that the kernel K0 is Q -closed since
the symplectic form defining K0 is. By elliptic regularity there exists a smooth (not distributional) section KL of E ⊠ E such
that the difference KL − K0 is Q -exact. That is

K0 = KL + Q (PL)

for some distributional section PL of E ⊠ E. The operator PL is called a ‘‘parametrix’’. Although it is not smooth, the difference
of two parametrices P(L, L′) := PL − PL′ is smooth since Q (P(L, L′)) = KL − KL′ (again by elliptic regularity). We will now
explain a procedure for computing these regularized kernels KL explicitly.

2.3. Regularization via gauge fixing

The concept of a parametrix was introduced to interpolate between the smooth kernels KL and the distributional limit
K0. Often we can define a parametrix using the following regularization technique. It relies on the existence of a gauge fixing
operator. A gauge fixing operator is a differential operator Q GF

: E → E of cohomological degree −1 and of square zero that
satisfies:

(1) Q GF is self-adjoint for the pairing ⟨−,−⟩ defining the classical BV theory, and
(2) the commutator [Q ,Q GF

] is a generalized Laplacian, in the sense of [27].

Given such a gauge fixing operator we can regularize as follows. For L > 0we can regard the heat kernel KL as the integral
kernel for the operator e−L[Q ,QGF

]. In this circumstance, the parametrix, or propagator, is given by

P(ε, L) =

∫ L

t=ε
(Q GF

⊗ 1)Ktdt

and has the following properties.

Lemma 2.3. The integral kernel KL for e−L[Q ,QGF
] is smooth for each L > 0. Moreover, for each ε, L one has

Q (P(ε, L)) = KL − Kε.

2.4. Interacting theories

Definition 2.4. A classical interaction for a free BV theory (E,Q ) is a local functional Icl ∈ Oloc(E) satisfying the classical
master equation (CME)

QIcl +
1
2
{Icl, Icl} = 0.

A classical field theory is a free BV theory (E,Q ) together with a choice of a classical interaction. The full classical action then
has the form

Scl(ϕ) =

∫
M
(ϕ,Qϕ) + Icl(ϕ).

The first term is quadratic and is called the free part of the action. Clearly, it only depends on the underlying free BV theory.
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Remark 2.5. Such data defining a classical field theory can be encoded in terms of an L∞-algebra structure on a shift of
the classical BV complex E[−1], where the differential corresponds to the free part of the action, and (higher) brackets
correspond to the classical interaction. Rather than providing a detailed treatment of this claim, we explain an example
below; for a more detailed discussion, one should refer to [24, Chapter 5].

Example 2.6 (3-Dimensional Abelian Chern–Simons Theory). Let M3 be a 3-manifold and G be a semisimple Lie group. In
perturbation theory near the trivial flat connection on the trivial G-bundle on M , the space of fields (in the physicists’
terminology) isΩ1(M; g) and the Chern–Simons action functional SCS onΩ1(M; g) is given by

SCS(A) =
1
2

∫
M
⟨A, dA⟩g +

1
6

∫
M
⟨A, [A, A]⟩g,

where ⟨ , ⟩g stands for a fixed invariant pairing on g. This admitsΩ0(M; g) as the algebra of infinitesimal gauge symmetries,
because the action functional is invariant under the action of X ∈ Ω0(M; g) given by A ↦→ [X, A]+dX . This yields the classical
BV complex

E =

(
Ω0(M; g)[1] d →→ Ω1(M; g)[0] d →→ Ω2(M; g)[−1] d →→ Ω3(M; g)[−2]

)
,

whose differential encodes the free part of the action functional. On its shift(
Ω0(M; g)[0] d →→ Ω1(M; g)[−1] d →→ Ω2(M; g)[−2] d →→ Ω3(M; g)[−3]

)
,

the only additional nontrivial L∞-structure is the bracket

ℓ2 = [ , ] : Ω i(M; g) ⊗Ω j(M; g) → Ω i+j(M; g),

which comes from the cubic interaction term.

Wewish to study quantizations of classical theories defined by a free BV theory togetherwith a local functional I . Roughly,
these are elements Iq of Oloc(E)[[h̄]] that reduce modulo h̄ to Icl that are compatible with the BV operator∆ and our choice
of regularizing parametrix.

The key insight of effective field theory is that we should view an interaction Iq quantizing Icl as a family of interactions
Iq[L] defined for each parametrix PL. This is compatible with the idea of effective field theory in physics which is that
interactions at the length scale L (and larger) is encoded by an effective Lagrangian for each L ∈ R>0. This leads to the
notion of a prequantum field theory, which is defined to be a collection {I[L] ∈ O+(E)[[h̄]]} of functionals that are at least
cubic modulo h̄ satisfying the renormalization group equations I[L2] = W (P(L1, L2), I[L1]) for L1 < L2 and a certain locality
condition.

Remark 2.7. Here the notation W (P, I) refers to the sum of the weights of Feynman diagrams with propagators P attached
to the internal edges and interaction terms I to the vertices. We refer to [1, Chapter 2] for a precise definition.

If we use the heat kernel regularization scheme defined above in terms of a gauge fixing operator and generalized
Laplacians, one should think of I[L] as an interaction term for those processes occurring at a scale larger than L. The
renormalization group equation encodes the natural compatibility condition that I[L2] can be deduced from I[L1] for every
L1 < L2.

Theorem 2.8 ([1, Chapter 2]). There is a bijection between the space of prequantum field theories and the space Oloc(E)[[h̄]] of
local action functionals which are at least cubic modulo h̄.

In order to prove this theorem, one has to check that for such a local action functional I , there exist local counterterms
ICT(ε) such that the collection {I[L]} with I[L] := limε→0W (P(ε, L), I − ICT(ε)) defines a prequantum field theory. Indeed,
such a construction of counterterms, and therefore the bijection in the statement of the theorem, depends on the choice of
a way to extract the singular part of certain functions of one variable, which is called a renormalization scheme. In particular,
two different choices would provide an automorphism of the space of local action functionals.

To be a full quantum field theory there is a required extra compatibility of the effective family with the BV operator ∆,
or rather with the family of BV operators∆L.

Definition 2.9. A quantum field theory is a prequantum field theory {I[L]} satisfying the quantummaster equation (QME) at
scale L:

QI[L] +
1
2
{I[L], I[L]}L + h̄∆LI[L] = 0

for each L > 0.
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One says that a quantum field theory is a quantization of the classical theory described by the local functional if

Icl = lim
L→0

(I[L] mod h̄) .

In practice, we begin with a given classical field theory and ask when we can find a quantization. If the answer is positive,
we are also interested in how unique quantizations are. This problem is standard in the context of deformation theory. The
deformation complex of a classical field theory (E,Q , I) is the complex (Oloc(E),Q + {I,−}). The first cohomology H1(Oloc)
describes the space of anomalies (up to homotopy equivalence); this is where obstructions to quantizations live. Similarly,
if the obstruction to quantization vanishes, H0(Oloc) is the space of quantizations (up to homotopy equivalence).

3. The β-function

3.1. Classical local RG flow

First, let us fix a free BV theory (E,Q ) on Rn. The group of translations of Rn acts on such a theory, and we impose the
condition that the theory is invariant with respect to this action. The group R>0 also acts on E from the rescaling action on
Rn. Let us describe this action explicitly.

The space of fields E is the sections of the (trivial) graded vector bundle E on Rn, so we have an identification

E = C∞(Rn) ⊗ E0
where E0 is the fiber of the trivial vector bundle over 0 ∈ Rn. Furthermore, it is equipped with a symplectic pairing of
degree −1, which we think of as a pairing on E0 taking values in the bundle of densities, denoted by ω0 =

⋀nRn. That is
⟨−,−⟩0 : E0 ⊗ E0 → ω0[−1].

We choose an action ρ0 ofR>0 on E0, therefore an element ρ0
λ ∈ End(E0) for every λ ∈ R>0, in such a way that the pairing

⟨−,−⟩0 is R>0-equivariant. Here, the action of R>0 on Rn has weight −1; in particular, the action on the line ω0 has weight
−n. Furthermore, we assume that the action ofR>0 on E0 is diagonalizable with rational powers (in practice the powers will
either be integral or half-integral).

The action of λ ∈ R>0 on E = C∞(Rn) ⊗ E0 is then defined by

ρλ · (ϕ(x) ⊗ e0) := ϕ(λ−1x) ⊗ ρ0
λ(e0).

This defines an action of R>0 on the space of functionals O(E) on E that we continue to denote by ρλ. Moreover, this action
preserves the space of local functionals Oloc(E).

In good circumstances, one can choose the action of R>0 on E0 such that the free part of a given action is invariant; in
this way, it acts on the space of interactions on Rn. For this purpose, we might treat the mass terms as if they are interacting
terms.

Definition 3.1.

• A classical field theory described by an interaction term I ∈ Oloc(E) is renormalizable if ρλ(I) flows to a fixed point as
λ → 0.

• A classical field theory described by an interaction term I ∈ Oloc(E) is scale-invariant if ρλ(I) = I for all λ ∈ R>0.

Note that from the scaling action x ↦→ λ−1x, if λ < 1, then we are zooming in the theory on Rn, whereas if λ > 1 we are
zooming out; in particular renormalizability means that the classical theory behaves well at high energy.

Example 3.2.

• Consider a scalar field theory onRn, so the classical BV complex is E =

(
C∞(Rn)

∆
−→ C∞(Rn)

)
concentrated in degrees

0 and 1. By requiring ρλ(
∫
φ∆φ) =

∫
φ∆φ, we obtain ρλ(φ)(x) = λ

2−n
2 φ(λ−1x). In order for the symplectic pairing

to have weight −n, a field ψ in degree 1 must satisfy ρλ(ψ)(x) = λ
−n−2

2 ψ(λ−1x). By construction, the massless free
scalar field theory is classically scale-invariant. On the other hand, if we introduce a mass, then we have the term∫
mφ2

↦→
∫
mφ2

= λ2
∫
mφ2; themassive free scalar field theory is not scale-invariant but classically renormalizable.

More generally, for an interaction term of the form Ik(φ) =
∫
φk, one has ρλ(Ik) = λn+

k(2−n)
2 Ik. For instance, if n = 4,

the interaction
∫
R4 φ

4 is scale-invariant, and if n = 6, the interaction
∫
R6 φ

3 is scale-invariant.
• Consider Chern–Simons theory on R3 so that

E =

(
Ω0(M; g)[1] d →→ Ω1(M; g)[0] d →→ Ω2(M; g)[−1] d →→ Ω3(M; g)[−2]

)
.

In a similar way, we obtain (ρλA)(x) = λ−kA(λ−1x) for A ∈ Ωk(M; g). In particular, the interaction term is scale-
invariant.

A natural question is what it means for a quantum field theory to be renormalizable or scale-invariant. The rest of this
section is devoted to formulating an answer to this question and developing a general theory around the notion.
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3.2. Quantum Local RG flow

We have just described an action of the group R>0 on classical field theories on Rn. We now turn to defining the local RG
flow on quantum field theories. We fix a translation-invariant free BV theory (E,Q ) on Rn as above, together with a choice
of a gauge fixing operator Q GF. Fix an action ρλ of R>0 on the free theory. We suppose that the induced action of ρλ on Q GF

is of the following form

ρλ · Q GF
:= ρλQ GFρλ−1 = λkQ GF (3.2.1)

for some k ∈ Q. We have already discussed how R>0 acts on the space of functionals O(E); this action will also be denoted
by ρλ.

Definition 3.3. Let {I[L]} be an effective family of translation-invariant functionals. Define a new, rescaled effective family
{Iλ[L]} by

Iλ[L] := ρλ(I[λ−kL]).

Lemma 3.4. SupposeR>0 acts on the gauge fixing operator as in (3.2.1). Then {I[L]} satisfies homotopy RG flow and the quantum
master equation if and only if {Iλ[L]} does.

Proof. Suppose {I[L]} satisfies homotopy RG flow. That is, for ε < L one has

I[L] = W (P(ε, L), I[ε]).

The condition (3.2.1) implies that the action of λ ∈ R>0 on the generalized Laplacian D = [Q ,Q GF
] is of the form

ρλ · D = λkD

since ρλ commutes with Q . Thus the action of ρλ on the heat kernel KL has the form ρλ · KL = KλkL. Finally, we compute the
induced action on the propagator

ρλ · P(ε, L) =

∫ L

t=ε
ρλ · (Q GF

⊗ 1)Ktdt

=

∫ L

t=ε
λk(Q GF

⊗ 1)Kλktdt

= P(λkε, λkL).

We need to show that {Iλ[L]} satisfies homotopy RG flow. That is, for each ε < Lwe need to verify

Iλ[L] = W (P(ε, L), Iλ[ε]).

Let us begin with the left-hand side. We have

Iλ[L] = ρλ · I[λ−kL]

= ρλ · W (P(λ−kε, λ−kL), I[λ−kε])

= W (P(ε, L), ρλ · I[λ−kε])
= W (P(ε, L), Iλ[ε])

as desired. The second line follows from homotopy RG flow for the original family {I[L]}, and the third line follows from the
explicit action of λ ∈ R>0 on the propagator as computed above.

Next, suppose that {I[L]} satisfies the quantum master equation 2.9. In particular, for each λ and L we have

QI[λ−kL] +
1
2
{I[λ−kL], I[λ−kL]}λ−kL +∆λ−kLI[λ

−kL] = 0.

Applying ρλ to both sides we obtain

QIλ[L] +
1
2
{Iλ[L], Iλ[L]}L + ρλ ·∆λ−kLI[λ

−kL] = 0.

The fact that ρλ preserves the BV bracket follows from the fact that the action of R>0 preserves the symplectic pairing
defining the classical theory. Thus, to show that Iλ[L] satisfies the scale L quantum master equation we must show that
ρλ ·∆λ−kLI[λ−kL] = ∆LIλ[L]. Indeed, the operator∆λ−kL is, by definition, contraction with the element Kλ−kL. Thus, ρλ ·∆λ−kL
is equal to ρλ composed with contraction with the element ρλ · Kλ−kL = KL, as desired. □

This lemma defines an action of R>0 on the space of translation-invariant quantum field theories on Rn, {I[L]} ↦→ {Iλ[L]}.
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Remark 3.5. A quantum field theory is definedmore generally as a family over the space of parametrices as in [24, Definition
8.2.9.1]. The action of R>0 is extended to this setting in Chapter 10 of the same book. In fact, the space of quantum field
theories forms a simplicial set and local RG flow is set up as an action on this simplicial set.

With this definition and lemma in hand, one can prove the following proposition.

Proposition 3.6 ([1, Chapter 4, Proposition 6.0.1]). Let {I[L]} be a theory and let {Iλ[L]} be the family of theories obtained from it
by scaling. Then Iλ ∈ Oloc(E)[[h̄]] ⊗ C[λ, λ−1, log λ], that is, each (Iλ)i,k depends on λ only as a polynomial in λ±1 and log λ.

In other words, regarding the dependence on λ, even if the action is diagonal at the classical level, we start to see log λ
at the quantum level. When it comes to defining the corresponding notions for renormalizability and scale-invariance, the
obvious extrapolating definitions from the classical case lead to the following.

Definition 3.7. Let {I[L]} be a quantum theory.

• A quantum field theory {I[L]} is renormalizable if Iλ depends on λ only via polynomials in λ and log λ.
• A quantum field theory {I[L]} is strictly renormalizable if Iλ depends on λ only via polynomials in log λ.

One should think of the appearance of log λ as the perturbative residue of some more subtle nonperturbative behavior
of a theory. That is, at the quantum level, a coupling constant c can flow like c ↦→ cλh̄ = ceh̄ log λ

= c + h̄c log λ + · · · or
c ↦→ cλ−h̄

= c − h̄c log λ + · · · . In an actual world where h̄ is a positive real number, the term λh̄ should be regarded as
renormalizable, because it tends to 0 as λ → 0, while λ−h̄ should not.

However, in perturbation theory, where h̄ is formal, both terms have log λ growth, just in different directions. In other
words, although our definition of (perturbative) renormalizability certainly excludes theories which are not renormalizable
in the ideal nonperturbative sense, it might still admit theories which have bad UV limiting behavior in terms of a
perturbative description (theories with a Landau pole). This motivates us to look at the sign of the log λ term in order to
try to detect this phenomenon, which leads to the notion of the β-function. This will also guide us to the definition of a
quantum field theory being scale-invariant.

3.3. The β-function for BV theories

Theβ-function of a perturbative quantum field theory is a function describing the rate of change of the coupling constants
in a theory as the energy scale changes. Having defined the local RG flow on the space of theories, we can define the β-
function carefully as the cohomology class of a certain functional. This functional measures the infinitesimal action of R>0
on the space of quantum field theories. That is, it represents a vector field on the space of translation-invariant quantum
field theories on Rn.

Suppose {I[L]} is such a quantum field theory. A first-order deformation of cohomological degree i of {I[L]} is a collection
of functionals {J[L]} ⊂ O(E)[[h̄]], each of cohomological degree i, such that the collection {I[L] + δJ[L]}, where δ is a formal
parameter of cohomological degree −i, satisfies homotopy RG flow and the quantum master equation modulo δ2.

The family of functionals {I[L]} defining a quantum field theory must also satisfy a certain locality constraint. Thus, to be
a vector field on the space of theories there is also an additional locality constraint. We will see that for classically scale-
invariant theories the one-loop β-functional automatically satisfies this and hence determines such a vector field.

3.3.1. The β-functional

Definition 3.8. Suppose {I[L]} is a translation-invariant quantum field theory onRn. For L > 0 define the scale L β-functional
to be the functional

Oβ[L] := lim
λ→1

λ
d
dλ
(Iλ[L]) .

Equivalently, we can describe Oβ [L] as the limit as λ → 1 of the logarithmic derivative d/d(log λ)(Iλ[L]).

Remark 3.9. While the effective β-functional makes sense even for non-renormalizable theories, it carries much less
meaningful data than in the renormalizable case. As we discussed at the end of the last section, the β-functional for
perturbatively renormalizable theories allows us to detect bad behavior in the UV limit, but for theories that are not
renormalizable this no longer applies, and the information encoded in the β-functional does not tell us anything so
fundamental.

Proposition 3.10. For any translation-invariant quantization {I[L]} onRn the collection {Oβ [L]} defines a first-order deformation
of {I[L]}.



C. Elliott et al. / Journal of Geometry and Physics 123 (2018) 246–283 255

Proof. Let δ be a formal parameter. We consider the collection of functionals {I[L] + δOβ [L]} and show that it satisfies both
homotopy RG flow and the quantum master equation modulo δ2.

For the statement about RG flow we must show that {Oβ [L]} satisfies

Oβ [L′
] = W (P(L, L′),Oβ [L]) (3.3.1)

for all L, L′. We have already seen that for each λ the collection {Iλ[L]} satisfies homotopy RG flow Iλ[L′
] = W (P(L, L′), Iλ[L]).

The weight operatorW (P(L, L′),−) acting on λ-dependent functionals commutes with the operator d/d(log λ) and hence

d
d(log λ)

(Iλ[L]) = W
(
P(L, L′),

d
d(log λ)

(Iλ[L])
)
.

Taking the λ → 1 limit we obtain the desired relation (3.3.1).
We now show that I[L] + δOβ [L] satisfies the quantum master equation. Since we are working modulo δ2, we see that

this is equivalent to the following relation

QOβ [L] + h̄∆Oβ [L] + {I[L],Oβ [L]}L = 0. (3.3.2)

That is, we must show that for each L, Oβ [L] is closed for the scale L quantum differential.
By Lemma 3.4 we know that {Iλ[L]} satisfies the quantum master equation

QIλ[L] + h̄∆LIλ[L] +
1
2
{Iλ[L], Iλ[L]}L = 0.

Applying the operator d/d(log λ) to both sides of the above equation we obtain

Q
(

d
d(log λ)

Iλ[L]
)

+ h̄∆L

(
d

d(log λ)
Iλ[L]

)
+

{
Iλ[L],

d
d(log λ)

Iλ[L]
}

L
= 0

where we have used the fact that d/d(log λ) commutes with the operators Q ,∆L and satisfies the Leibniz rule for the BV
bracket {−,−}L. Taking the limit λ → 1 we obtain (3.3.2) as desired. □

As usual, we are working over the ring R[[h̄]] so any functional can be expanded in powers of h̄. In particular we can
expand the scale L β-functional as

Oβ [L] = O(0)
β [L] + h̄O(1)

β [L] + O(h̄2).

Note that the limit O(0)
β = limL→0Oβ(0) [L] is well-defined, because it only involves tree diagrams. Moreover, if the classical

field theory which is described by the functional Icl = limL→0I[L] mod h̄ is scale-invariant then O(0)
β is identically zero.

Remark 3.11. In fact, the vanishing of O(0)
β is equivalent to the vanishing of O(0)

β [L] for all L, because the effective functional
O(0)
β [L] is obtained from O(0)

β under the renormalization group flow from 0 to L. The same is true at k loops as long as the
effective β-functional vanishes at all loop levels less than or equal to k.

In the case that the classical interaction is scale-invariant Proposition 3.10 has an immediate corollary.

Corollary 3.12. Let {I[L]} be a translation-invariant quantum field theory on Rn such that the classical interaction Icl is scale-
invariant. Then O(1)

β = limL→0O
(1)
β [L] exists and determines a closed element in Oloc(E).

Proof. Any effective family of functionals {J[L]} that satisfies both homotopy RG flow and is closed under the scale L classical
BV differential

QJ[L] + {Icl[L], J[L]}L = 0

automatically admits a limit J = limL→0J[L] as a local functional. We have already seen thatO(1)
β satisfies homotopy RG flow.

The fact that O(1)
β is closed under the classical BV differential follows from the fact that the full β-functional Oβ [L] is closed

under the quantum BV differential: the term linear in h̄ has the form

QOβ(1) [L] +∆LOβ(0) [L] + {Icl[L],Oβ(1) [L]}L + {I1[L],Oβ(0) [L]}L = 0.

Since the classical theory is scale-invariant we have ρλ · Icl[L] = Icl[L] so that the tree level β-functional is zero, that is,
Oβ(0) [L] = 0. The result follows. □

We have already seen that the effective family {Oβ [L]} determines a first-order deformation of the effective family {I[L]}.
This shows that the one-loop β-functional actually determines a vector field in the space of theories that are classically
scale-invariant.
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Remarks 3.13.

(1) Similarly, one can show that if O(i)
β = 0 for all i < k, then O(k)

β [L] satisfies homotopy RG flow and

QO(k)
β [L] + {Icl[L],O(k)

β [L]}L = 0.

In particular, the k-loop β-functional exists.
(2) The second part of Proposition 3.10 (and the proof of Corollary 3.12) implies that if we have two equivalent one-

loop quantizations {I[L]}, {Ĩ[L]} of the same classical scale-invariant theory, then the resulting elements O(1)
β , Õ(1)

β are
homotopic in Oloc(E) and hence determine the same element in cohomology.

3.3.2. Local RG flow and factorization algebra
The primary thesis of the series of books [24,26] is that the observables of a perturbative quantum field theory have the

structure of a factorization algebra. It is shown that a quantum field theory defined on a manifold M defines a factorization
algebra Obsq of quantum observables on M . To an open set U ⊂ M the factorization algebra assigns the space Obsq(U) of
quantum observables ‘‘supported’’ on U . The true definition of support is a somewhat subtle point and we refer the reader
to [24] for details.

We have already remarked that the space of quantum field theories forms a simplicial set. The category of factorization
algebras can also be given the structure of a simplicial set, and the construction of quantum observables can be promoted to
a simplicial map.

We focus, as above, on the case of translation-invariant quantum field theories on M = Rn. We have already discussed
the action of local RG flow on the space of such theories. There is an action of R>0 on the resulting factorization algebra that
intertwines with the construction of quantum observables. Let F be a translation-invariant factorization algebra on Rn (this
means that we have an action of the abelian Lie algebra Rn that is compatible with the factorization maps). For λ ∈ R>0,
define a new factorization algebra ρλF as the pushforward of F along the diffeomorphism λ−1

: Rn
→ Rn. For each open

set U ⊂ Rn the sections of this factorization algebra satisfy

(ρλF)(U) = F(λ · U).

This action of R>0 will also be referred to as the local RG flow, motivated by the following result.

Theorem 3.14 ([24, Theorem 10.3.4.4]). The map of simplicial sets from translation-invariant BV theories on Rn to translation-
invariant factorization algebras on Rn that sends a theory to the factorization algebra of quantum observables is equivariant with
respect to the local RG flow.

The map from BV theories to factorization algebra defines, for each fixed translation-invariant BV theory (E,Q , Iq) (we
are suppressing the dependence on scale in our notation for simplicity), a map of deformation complexes(

Oloc(E)R
n
[[h̄]],Q + {Iq,−}

)
→ Def

(
ObsqE

)
where the left-hand side is the translation-invariant deformation complex of the fixed quantum theory and the right
hand side denotes the translation-invariant deformation complex of the factorization algebra ObsqE . Given a 0-cocycle in
J ∈ Oloc(E)[[h̄]] – a deformation of the quantum theory – the deformation of the factorization algebra can be understood as
follows. Such a J allows us to deform the quantum interaction by Iq + J . Since J is a cocycle, this is still a quantum theory
and hence, by the theorem, it determines a factorization algebra ObsqE,J . This is a deformation of the original factorization
algebra.We have interpreted the β-function as a first-order deformation of a translation-invariant theory onRn. By themain
theorem above, it determines a deformation of the factorization algebra ObsqE .

Now, suppose that the quantum theory (E,Q , Iq) is scale-invariant. That is, its β-function vanishes. Then the associated
deformation at the level of factorization algebras is trivializable. Such a trivialization defines an automorphism of the
factorization algebra ObsqE . We can characterize this automorphism in the following way.

Start with a translation-invariant quantum field theory (E,Q , Iq). If we assume that the β-functional is cohomologically
trivial, there must exists a coboundary at the level of cochain complexes, say dJ = β where d is the quantum differential.

Lemma 3.15. The automorphism of the factorization algebra is given by the exponential of the derivation {J,−}.

Proof. On the field theory side this is a general consequence of the usual obstruction–deformation yoga. The fact that it
induces an automorphism at the level of factorization algebra follows from Theorem 3.14. □

3.3.3. Interpretation as a scale anomaly
There is an alternative way of thinking about the β-functional which we can describe in this formalism. We will see

that the β-functional can be thought of as an obstruction to lifting the rescaling symmetry to the quantum level. This
problem of lifting symmetries is familiar in field theory. For instance, one often encounters the problem of quantizing gauge
symmetries of a classical gauge theory. Of course, this is not always possible, as ismeasuredby the so-called ‘‘gauge anomaly’’.
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This notion is made precise in the rigorous formulation of perturbative quantum field theory in the books of Costello and
Gwilliam [24,26].

We will restrict attention to the case of theories that are classically scale-invariant. That is, we start with a field theory
whose space E of fields admits an action of the Lie group R>0, which we write as

ρ : R>0 → Aut(E)

as in Section 3.1, and for which the classical action functional is invariant. Taking the derivative of ρ at the identity 1 ∈ R>0
we obtain an action of the Lie algebra Lie(R>0) = R on the space of fields. This induces an action of the abelian Lie algebra R
on the algebra O(E) by derivations that we will denote dρ : R → Der(O(E)). This action still preserves the classical action
functional, and so defines an action on the classical theory.

We can describe actions of a Lie algebra on classical theory in the following structural way. Recall, the classical action
functional for a field theory with fields E can be thought of as a Maurer–Cartan element in the dg Lie algebra Oloc(E)[−1].
Here, the Maurer–Cartan equation is equivalent to the classical master equation. Similarly, actions of any Lie algebra g on
a classical field theory described by a space of fields E are also given by certain Maurer–Cartan elements. Consider the dg
Lie algebra Oloc(E)[−1] and the commutative algebra given by the Chevalley–Eilenberg cochains C∗

Lie(g). There is a natural
structure of a dg Lie algebra on C∗

Lie(g) ⊗ Oloc(E)[−1].

Definition 3.16. An action of g on a classical field theory E is a Maurer–Cartan element

Ĩ ∈ C∗

Lie(g) ⊗ Oloc(E)[−1].

Wecan decompose Ĩ as I+Ig where I ∈ Oloc(E) (no dependence on g) satisfies the classicalmaster equation. The functional
Ig is aMaurer–Cartan element in C∗

Lie,red(g)⊗Oloc(E)[−1]. The standard Koszul duality between Lie algebras and commutative
algebras allows us to think of Ig as a map of L∞-algebras Ig : g → Oloc(E)[−1]. In particular, for an element X ∈ g we can
consider of the local functional IgX ∈ Oloc(E).

We will focus on the case g = Rwhere the action on the classical theory comes from the derivative of an action ρ of the
Lie group R>0. Since C∗

Lie(R) = C[ϵ] with ϵ of degree one, we see that a general Maurer–Cartan element is of the form

I + ϵIR ∈ Oloc(E)[−1] ⊕ ϵOloc(E)[−1].

As above, I is the local functional of degree zero determining the classical theory, and IR is a local functional of degree −1
satisfying QIR + {I, IR} = 0. That is, IR is closed for the classical differential. The condition that IR encodes the derivative of
the scaling action means that for any J ∈ Oloc(E) we have

(dρ)(1) · J = {IR, J}

where (dρ)(1)· denotes the action of 1 ∈ R = Lie(R>0) on functionals and {−,−} is the BV bracket. By linearity, the action
of µ ∈ R is given by (dρ)(µ) · J = µ{IR, J}.

In what follows we will work in a simplified version of the powerful general formalism developed in [24, Chapter 12] to
handle the problem of quantization for arbitrary (L∞) actions of Lie algebras.

Suppose I ∈ Oloc(E) is the classical interaction term for the theory.We consider themodified theory defined by deforming
this classical interaction term by the interaction IR. That is, we replace the classical interaction by I + IR. Note that this is
a local functional in the bigger space C∗

Lie(R;Oloc(E)). We fix a choice of prequantization, as in the ordinary case. This is a
family of functionals {Ĩ[L]} satisfying homotopy RG flow which modulo h̄ reduces to

lim
L→0

(Ĩ[L] mod h̄) = I + IR.

The anomaly for quantizing the classical rescaling symmetry is the obstruction of Ĩ[L] ∈ C∗

Lie(R;O(E)) satisfying a variant
of the quantum master equation, namely:

Q (Ĩ[L]) + h̄∆L(Ĩ[L]) +
1
2
{Ĩ[L], Ĩ[L]}L = 0.

In the case that QIR = 0 we see that modulo h̄ the equation above is equivalent to {IR, I} = 0. The combination of these two
conditions is equivalent to scale-invariance of the classical theory.

The one-loop anomaly of this symmetry is the obstructionΘ (1)
[L] to satisfying the above equationmodulo h̄2. By standard

manipulations, the collection {Θ (1)
[L]} satisfies both homotopy RG flow and is closed under the classical BV differential.

Hence Θ (1)
:= limL→0Θ

(1)
[L] exists and is a cocycle in C∗

Lie(R;Oloc(E)) = Oloc(E) ⊕ ϵOloc(E) of degree 1. Moreover, if we
assume that there is no obstructions to quantizing the bare theory, described by the local functional I , this obstruction must
lie inΘ (1)

∈ ϵOloc(E). In other words, since ϵ is degree one,Θ (1) determines a degree zero local functional in Oloc(E).

Theorem 3.17. Let (E,Q , {I[L]}) be a translation-invariant quantum field theory on Rn defined to order h̄. Moreover, suppose
that the classical interaction Icl = limL→0I[L] mod h̄ is scale-invariant, so that the Lie algebra Lie(R>0) = R acts. Then, the
one-loop anomalyΘ (1)

∈ Oloc(E), to quantizing the scaling action is cohomologous to the one-loop beta functional O(1)
β .
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Proof. By assumption the non-equivariant functionals {I[L]} satisfy the quantum master equation modulo h̄2. That is

QI[L] + h̄∆LI[L] +
1
2
{I[L], I[L]} = 0. (3.3.3)

We choose a prequantization for the equivariant classical theory Icl + IR. It is of the form I[L] + IR[L] where I[L] is the
non-equivariant quantization and IR[L] is an effective family depending on the fields E as well as the Lie algebra. Moreover,
the sum {I[L]+ IR[L]} satisfies homotopy RG flow (just as in the non-equivariant case, such a prequantization always exists).

The anomaly, at scale L, is the obstruction to I[L] + IR[L] satisfying the equivariant quantum master equation. Thus, it is
of the form

Θ (1)
[L] = h̄−1

(
Q (I[L] + IR[L]) + h̄∆L(I[L] + IR[L]) +

1
2
{I[L] + IR[L], I[L] + IR[L]}L

)
.

The scale zero obstruction is limL→0Θ
(1)

[L]. First, note that the terms involving just I[L] vanish by the ordinary QME. Next,
we consider the term involving the BV Laplacian, namely h̄∆LIR[L]. We can write this expression as

lim
L′→L

h̄∆LIR[L′
].

Now, since we only care about this term modulo h̄2, only the tree level part of IR contributes. But, we know that at the tree
level the limit limL′→0IR[L′

] mod h̄ = IR exists. By the compatibility of∆L with homotopy RG flow it suffices to show that

lim
L′→0

∆LIR[L′
] = ∆LIR = 0.

This follows from the fact that IR is a local functional (i.e. the integral of a density) combined with the fact that the heat
kernel KL vanishes along the diagonal.

We can thus write the scale L obstruction as the h̄ linear piece of

QIR1 [L] + {I0[L], IR1 [L]}L + {IR0 [L], I1[L]}L

where Ii[L] + IRi [L] denotes the term of the prequantization that is linear in h̄i. We perform the same trick as above: replace
the term QIR1 [L] + {I0[L], IR1 [L]}L by

lim
L′→L

QIR1 [L′
] + {I0[L], IR1 [L′

]}L.

Now, the L → 0 limit of QIR1 [L′
] + {I0[L], IR1 [L′

]} is equal to (Q + {Icl,−})IR1 [L′
] = 0. Note that the operator Q + {Icl,−}

is precisely the differential of the classical deformation complex (Oloc(E),Q + {Icl,−}). In particular, we see that the term
involving IR1 [L] defines an exact element in the deformation complex. Thus, the scale zero obstruction is cohomologous to
the term limL→0{IR0 , I1[L]} appearing in the equivariant QME.

By construction, bracketing with IR is equivalent to acting by the operator dρ. Thus, the obstruction is given by

Θ (1)
= lim

L→0
(dρ)(1) · (I (1)[L]).

On the other hand, since λ d
dλ

⏐⏐
λ=1 = (dρ)(1), this coincides with the L → 0 limit of the β-functional O(1)

β [L] defined in
Section 3.3.1. □

Remark 3.18. From now onwewill be investigating the common cohomology class [O(1)
β ] = [Θ (1)

]. The theorem above tells
us that there are two interestingly different ways of computing this cohomology class, either as the class of the one-loop
anomaly or as the class of the logarithmic derivative of the one-loop effective interaction under RG flow.

3.3.4. The β-function
Having defined the β-functional as a cocycle in the local deformation complex, we wish to understand a simpler object,

namely its cohomology class. We will call this the β-function of the perturbative quantum field theory. We will give a well-
defined definition to all order at once which does not admit a well-defined decomposition by loop order, but we will give an
invariant definition of the one-loop β-function in the scale-invariant case. We also give a natural definition in this language
of quantum scale-invariance.

Definition 3.19. Suppose {I[L]} is a translation-invariant quantum field theory on Rn. The scale L β-function of the theory is
the cohomology class β[L] = [Oβ [L]].

Remark 3.20. In general we cannot decompose β[L] into a power series in h̄ in a well-defined way, because addition of an
exact element can alter h̄-degree (that is, the complex of functionals is only filtered, not graded). However, in the cases we
discussed in Corollary 3.12 and Remarks 3.13 above, O(i)

β is closed for the classical differential and it is possible to consider
its cohomology class. We call this the i-loop β-function denoted by β (i): this is the main object we will be interested in for
the remainder of the paper.
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Remark 3.21. We should explain in what sense the β-function is a ‘‘function’’. In order to do so, let us first discuss the
cohomology of Oloc(E) with respect to the classical differential Q + {Icl,−}; cohomology classes here can be thought of
(non-canonically) as first-order deformations of the classical theory, or as the space of coupling constants. We will discuss
this further in Section 4.2, see in particular Lemma 4.6.

Now, consider instead the one-loop β-function in the scale-invariant case (so the L → 0 limit exists). Since the β-
functional is closed for the quantum BV differential, the one-loop β-functional is closed for the classical BV differential
by Corollary 3.12, and therefore we can consider the one-loop β-function as a function on H0(Oloc(E)), or an element of
the space of coupling constants as discussed above. In order to identify this cohomology group with the space of coupling
constants, one must choose a framing g for the space H0(Oloc(E)) (bare values for the coupling constants). There is a natural
choice: we can use the action functional itself (which is a cocycle because of the classical master equation) to trivialize this
torsor. Rescaling this trivialization corresponds to rescaling the action functional, or rescaling the coupling constants. One
thinks of the resulting value of the one-loop β-function as a function of this choice of trivialization.

Proposition 3.22. If β (1)
f [L] is the effective one-loop β-function in a scale- and translation-invariant theory associated to a choice

of one-loop quantization f ∈ H0(Oloc), and α is a linear map in GL(H0(Oloc(E))), then β
(1)
α(f )[L] = α(β (1)

f [L]).

Proof. Choose a representative for the cohomology class f , that is, a one-loop quantization {I (0)[L] + h̄I (1)[L]} so that the
cohomology class [I (1)] = f . Similarly, choose a representative one-loop quantization {I (0)[L]+ h̄I (1),α[L]} for the cohomology
classα(f ). By the construction of the effective one-loop interaction I (1)[L]by renormalization group flow,wehave the equality
[I (1),α[L]] = α[I (1)[L]] in H0(Oloc(E)). Applying the local RG flow, and then taking the logarithmic derivative, we obtain the
desired equality. □

In particular, if the one-loop β-function vanishes at one non-zero quantization then it vanishes at all non-zero quantiza-
tions. The same argument holds for β (k) when the i-loop β-function vanishes for all i < k. This fact, along with Remarks 3.13,
motivates the following definition.

Definition3.23. A scale- and translation-invariant classical theory onRn is quantum scale-invariant if it admits a quantization
such that the i-loop β-function β (i) vanishes for all i.

Note that vanishing ofβ (i) is inductivelywell-defined by Remarks 3.13 (1). By the observationwe justmade, this vanishing
condition is independent of the choice of quantization.

We will now prove a very useful property of the β-function – homotopy invariance.

Proposition 3.24. The β-function is locally constant on the space of quantum field theories with fixed classical BV complex and
gauge fixing operator.

Proof. It suffices to verify that the β-function is constant along a 1-simplex in the space of quantum field theories. Recall
that a 1-simplex in the space of quantum field theories is a family of effective interactions valued in Ω•([0, 1]), which we
can write as {I[L](t) + J[L](t)dt}, which satisfy the RGE and the quantum master equation. The quantum master equation
says that⎧⎪⎨⎪⎩

(Q + h̄∆L)I[L](t) +
1
2
{I[L], I[L]}L = 0

d
dt

I[L](t)dt = −(QJ[L](t) + {I[L](t), J[L](t)}L + h̄∆LJ[L](t))dt

so lim
λ→1

λ
d
dλ

d
dt

Iλ[L](t)dt = − lim
λ→1

λ
d
dλ
(QJλ[L](t) + {Iλ[L](t), Jλ[L](t)}L + h̄∆LJλ[L](t)) dt

using some of the calculations from Lemma 3.4 to keep track of the scale. In order to check that the β-function is constant
along the 1-simplex we need to verify that this expression vanishes in cohomology for all t . In order to see this, we observe

− 2 lim
λ→1

λ
d
dλ
(QJλ[L](t) + {Iλ[L](t), Jλ[L](t)}L + h̄∆LJλ[L](t)) dt

= −2
(
(Q + h̄∆L) lim

λ→1
λ

d
dλ

Jλ[L](t) +

{
I[L](t), lim

λ→1
λ

d
dλ

Jλ[L](t)
}

L
+

{
lim
λ→1

λ
d
dλ

Iλ[L](t), J[L](t)
}

L

)
dt

=

(
d
dt

lim
λ→1

λ
d
dλ

Iλ[L](t) +

{
J[L](t), lim

λ→1
λ

d
dλ

Iλ[L](t)
}

L

)
dt

−

(
(Q + h̄∆L) lim

λ→1
λ

d
dλ

Jλ[L](t) +

{
I[L](t), lim

λ→1
λ

d
dλ

Jλ[L](t)
}

L

)
dt

= (Q + h̄∆L) lim
λ→1

λ
d
dλ

Iλ[L](t) +

{
I[L](t), lim

λ→1
λ

d
dλ

Iλ[L](t)
}

L
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+

(
d
dt

lim
λ→1

λ
d
dλ

Iλ[L](t) +

{
J[L](t), lim

λ→1
λ

d
dλ

Iλ[L](t)
}

L

)
dt

−

(
(Q + h̄∆L) lim

λ→1
λ

d
dλ

Jλ[L](t) +

{
I[L](t), lim

λ→1
λ

d
dλ

Jλ[L](t)
}

L
+

{
J[L](t), lim

λ→1
λ

d
dλ

Jλ[L](t)
}

L
dt
)
dt

= d
(
lim
λ→1

λ
d
dλ

Iλ[L](t) − lim
λ→1

λ
d
dλ

Jλ[L](t)dt
)

where we introduced extra terms that sum to zero by Proposition 3.10, that is

(Q + h̄∆L) lim
λ→1

λ
d
dλ

Iλ[L](t) +

{
I[L](t), lim

λ→1
λ

d
dλ

Iλ[L](t)
}

L
= 0.

In the last line dL = Q + h̄∆L +ddR +{I[L](t)+ J[L](t)dt,−}L is the differential in the complex of quantum functionals valued
inΩ•([0, 1]) at scale L. Thus the derivative of the β-functional with respect to t is exact, meaning that the derivative of the
β-function vanishes, and the β-function is constant along 1-simplices, as required. □

Wewill conclude this section by explaining a sense in which the one-loop β-function is close to invariant along paths in
the space of classical field theories, up to reparametrization.

Corollary 3.25. If I1 and I2 are homotopy equivalent scale- and translation-invariant classical interactions on Rn and {I1[L]} and
{I2[L]} are non-zero renormalizable quantizations of I1 and I2 respectively, then the one-loop β-functions of the quantum field
theories {I1[L]} and {I2[L]} differ by a linear map α ∈ GL(Oloc(E)).

Proof. Choose a lift of the homotopy from I1 to I2 in the space of renormalizable quantum field theories, beginning at I1[L]
– we can always do this by Costello’s theorem [1, Chapter 4, Theorem 1.5.1]. By Proposition 3.24, the β-function is constant
along this path. Say the other end of this path is a quantization {I ′2[L]} of I2. We can find a linear map α ∈ GL(Oloc(E)) sending
the cohomology class of {I ′2[L]} to the cohomology class of {I2[L]}, and by Proposition 3.22 the resulting β-functions are
themselves related by the linear map α. □

3.4. Computing the one-loop β-function

Definition 3.26. We say a local functional F ∈ Oloc(E) has scaling dimension d if ρλ(F ) = λdF .

Proposition 3.27. Let I ∈ Oloc(E) be a translation- and scale-invariant local functional. Suppose that

(1) there exists a functional ICT(ε) ∈ Oloc(E) of scaling dimension 0 such that

Inaive[L] := lim
ε→0

∑
Γ ∈ one-loop

WΓ (P(ε, L), I − h̄ICT(ε))

exists and
(2) there exists J ∈ Oloc(E) of scaling dimension 0 such that for all L > 0 the functional

I[L] := Inaive[L] + h̄
∑
Γ ,v

WΓ (P(0, L), I, J)

satisfies the scale L quantum master equation modulo h̄2.

Then {I[L]} defines a quantization of I modulo h̄2 and the one-loop β-functional O(1)
β = limL→0O

(1)
β [L] satisfies

O(1)
β = kICTlog.

In (1) the sum is over the set of all connected one-loop graphs. In (2) the notation WΓ (PL
0, I, J) means that we take the

weight with respect to the tree Γ by labeling the distinguished vertex v by J and all other vertices by I . The sum in (2) is over
trees Γ together with the choice of a distinguished vertex v.

Proof. Condition (1) ensures that the effective family {Inaive[L]} defines a one-loop prequantization of I . That is, it satisfies
one-loop homotopy RG flow and I = limL→0Inaive[L] mod h̄. Condition (2) guarantees that {I[L]} defines a one-loop
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quantization of I . This family satisfies homotopy RG flow (just as Inaive[L] does) and the quantum master equation modulo
h̄2. The fact that I was scale-invariant and that ICT and J were of scaling dimension 0 ensures that this quantum field theory
is strictly renormalizable as in Definition 3.7 (by [1, Chapter 4, Theorem 1.5.1]).

We will compute O(1)
β directly. By definition, it is given by

h̄O(1)
β = lim

L→0
lim
λ→1

λ
d
dλ
(Iλ[L])

= lim
L→0

lim
λ→1

λ
d
dλ

(
ρλ · I[λ−kL]

)
= lim

L→0
lim
λ→1

lim
ε→0

λ
d
dλ
ρλ ·

(
W (P(ε, λ−kL), I − h̄ICT(ε))

)
.

Now, since I is scale-invariant we observe

ρλ ·
(
W
(
P(ε, λ−kL), I − h̄ICT(ε)

))
= W

(
P(λkε, L), I − h̄ρλ · ICT(ε)

)
.

Making the substitution ε ↦→ λ−kε we see that the β-functional can be written as

h̄O(1)
β = lim

L→0
lim
λ→1

lim
ε→0

λ
d
dλ

W
(
P(ε, L), I − h̄ρλ · ICT(λ−kε)

)
.

Now, since our quantization was chosen to be strictly renormalizable we know that the counterterm has an ε expansion

ICT(ε) = (log ε)ICTlog +

∑
m>1

log(ε)mICTm

where ICTlog and ICTm are elements of Oloc(E). Upon applying the operator λ d
dλ only the log ε term survives so we are left with

the limit

O(1)
β = k lim

L→0
lim
ε→0

W (P(ε, L), ICTlog) = kICTlog. □

Remark 3.28. Given a choice of renormalization scheme, we can define the k-loop β-function to be the cohomology class of
the k-loop logarithmic counterterm, but in general it depends on the choice of renormalization scheme and is not manifestly
related to the functional O(k)

β which is generally not a cocycle. However, in the situation where O(i)
β vanishes for i < k the

above proof works identically, giving a well-defined functional which is closed for the classical differential.

4. The BV formalism for Yang–Mills theory

In this section we will explain how to put Yang–Mills theory (with arbitrary fermionic matter) into the BV formalism as
introduced in Remark 2.5 above. There are essentially two ways of doing this, via the usual ‘‘second-order’’ formalism, or via
the equivalent ‘‘first-order formalism’’, where we introduce an auxiliary field (essentially a Lagrange multiplier) so that the
equations of motion become first-order differential operators. We will prove that these two approaches are equivalent, but
use the first-order formalism to construct a perturbative quantization.

The usual description of Yang–Mills theory, in the second-order formalism, is as follows. Let G be a compact simple Lie
group, and let V be a finite-dimensional representation of G equipped with a non-degenerate invariant pairing V ⊗ V → R.
The fields of Yang–Mills theory are a gauge field A ∈ Ω1(R4

; g) and a spinor ψ ∈ Ω0(R4
; S ⊗ V ), where S ∼= S+ ⊕ S− is

the Dirac spinor bundle. The (infinitesimal) gauge transformations are controlled by the Lie algebraΩ0(R4
; g), with a gauge

transformation c acting on the fields by

A ↦→ dc + [c, A]

ψ ↦→ α(c)(ψ)

where α is the derivative of the representation G → Aut(V ).
In order to define the action of Yang–Mills theory we choose a non-degenerate G-invariant pairing µ : V ⊗ V → R, and

a positive operator m : V → V – the mass matrix of the fermions. We will also write ρ for the Clifford multiplication map
Ω1(R4

; S) → Ω0(R4
; S). The Yang–Mills action is the functional

S(A, ψ) =

∫
R4

1
2
∥FA∥2

+ µ(ψ, (/dA + m)ψ),

where FA = dA+g[A, A], and /dAψ = ρ(dψ+gα(A)ψ). The norm of FA is computed using the standardmetric onR4 together
with a non-degenerate invariant pairing on the Lie algebra g.
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Remark 4.1. We could have assumed that Gwas only semisimple rather than simple, and the construction above still makes
perfect sense. In what follows we will assume that G is simple for ease of exposition; in the case of a single simple factor
we will obtain a theory with a single coupling constant, so the β-function will be a function of one variable, whereas for
more general semisimple groups we have a coupling constant for each simple factor. Nevertheless, all the calculations we
will perform will still make sense for semisimple groups.

Remark 4.2. Here g is a real number – the coupling constant of the theory. While the classical theory is manifestly
independent of the value of g , provided g ̸= 0, the correlation functions in the quantum theory do depend on its value.
The aim of this paper is to rigorously determine the dependence of quantum Yang–Mills theory on the value of g , at least at
the one-loop level.

We can fit Yang–Mills theory into Costello’s framework for the perturbative BV formalism by computing the classical BV
complex as described in Remark 2.5 above. As a cochain complex, the classical BV complex takes the form

0 1 2 3

Fermion degree 0 Ω0(R4
; g) d →→ Ω1(R4

; g) d∗d →→ Ω3(R4
; g) d →→ Ω4(R4

; g)

Fermion degree 1 Ω0(R4
; S ⊗ V )

m+/d
→→ Ω0(R4

; S ⊗ V )

placed in cohomological degrees 0, 1, 2, 3. Notice there is an extra Z/2-grading in addition to the cohomological degree (or
‘‘ghost number’’), thatwe call the fermionic degree. This is a slight generalization of the classical BV theorieswe defined above.
Both gradings will contribute to signs: an element of bidegree (m, n) commutes if m + n = 0 mod 2 and anticommutes if
m+n = 1 mod 2. The differential of on the space of fields is of cohomological degree one and fermionic degree zero. The BV
complex additionally admits a (−3)-shifted symplectic structure: on the first line this is given by the wedge-and-integrate
pairingΩ i(R4

; g)⊗Ω4−i
c (R4

; g). On the second line it is given by the spinor pairing S⊗S → R (i.e. the canonical isomorphism
between S and its dual) along with the G-invariant pairing µ on the representation V . Note that this symplectic structure is
of fermionic degree zero.

There is a natural L∞-algebra structure on this space that describes the usual second-order formulation of Yang–Mills. The
binary bracket is proportional to g , and is given by the wedge product along with the Lie bracket on the first line, along with
the action ofΩ0(R4

; g) on the second line by the representation, and one additional Lie bracket,Ω1(R4
; g)[−1]⊗Ω0(R4

; S⊗

V )[−1] → Ω0(R4
; S ⊗V )[−2] (by Clifford multiplication). The trinary bracket is proportional to g2, and is a degree −1 map

given by the 3-fold bracket

[−, [−,−]] : Ω1(R4
; g)[−1]⊗3

→ Ω3(R4
; g)[−2].

The problem with this theory, as it is written above, is that it does not admit a gauge fixing operator satisfying the
conditions of a gauge fixing operator as defined above. This comes down to the fact that there is a piece of the differential that
is a second-order differential operator: the term d ∗ d from degree one to degree two. This term prevents us from using the
methods described in Section 2.3 to construct our heat kernels, and therefore to analyze the perturbative quantum theory.
We will fix this by proving the theory is equivalent to a different formulation, for which there does exist a natural choice of
gauge fixing.

4.1. First-order Yang–Mills

First-order Yang–Mills theory is an equivalent classical field theory to the ordinary, second-order Yang–Mills theory
described above. We will prove these theories are equivalent using the BV formalism, using the samemethod as Costello [1,
Chapter 6, Lemma 3.2.1] but keeping track of a matter field.

The first-order formalism introduces an additional self-dual 2-form field B ∈ Ω2
+
(R4

; g), which will not transform under
the gauge symmetry (in contrast to the theory Costello defines, where the infinitesimal gauge symmetry acts on B by the Lie
bracket). This field plays the role of a Lagrange multiplier: the action functional is modified to

SFO(A, B, ψ) =

∫
R4

⟨FA, B⟩ −
1
2
∥B∥2

+ µ(ψ, (/dA + m)ψ).
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Again, to actually work with this theory we will use the BV formalism. The classical BV complex in first-order Yang–Mills
theory is, as a cochain complex,

0 1 2 3

Fermion degree 0 Ω0(R4
; g) d →→ Ω1(R4

; g)
d+

→→ Ω2
+
(R4

; g)

Fermion degree 0 Ω2
+
(R4

; g)

−id
→→

d →→ Ω3(R4
; g) d →→ Ω4(R4

; g)

Fermion degree 1 Ω0(R4
; S ⊗ V )

m+/d
→→ Ω0(R4

; S ⊗ V ).

As before, there is an additional Z/2 grading given by fermionic degree and a cohomologically (−3)-shifted symplectic
pairing (that is degree zero for the fermionic degree). The pairing is exactly the same as in the second-order formalism
described above, where now the first line is paired with the second line. The L∞-algebra structure (with ℓ1 the differential
above) can be described as follows. The binary bracket is proportional to g , and is again given by g times the action of
Ω0(R4

; g) on all terms apart from theΩ2
+
summand in degree 1, along with the additional brackets

Ω1(R4
; g)[−1] ⊗Ω3(R4

; g)[−2] → Ω4(R4
; g)[−3]

andΩ1(R4
; g)[−1] ⊗Ω0(R4

; S ⊗ V )[−1] → Ω0(R4
; S ⊗ V )[−2].

Remark 4.3. From now on we will restrict attention to the situation where the fermions are massless. Allowing a mass
term for the fermions breaks classical scale-invariance, and thus precludes us from using our cohomological definition of
the one-loop β-function. This is not particularly restrictive, since we will see from the calculations below that the one-loop
logarithmic counterterm is actually independent of the fermion mass.

Intuitively, the equivalence between first- and second-order Yang–Mills is realized by an upper triangular change of
variables of the form B ↦→ B + 2(FA)+, which preserves the path integral measure by virtue of the fact that it is upper
triangular, so the Jacobian vanishes. In terms of the action functional, upon performing this change of variables we find
(looking only at the bosonic part of the action)

SFO(A, B + (FA)+) = ⟨FA, B + (FA)+⟩ −
1
2
⟨B + (FA)+, B + (FA)+⟩

= ⟨FA, B⟩ + ⟨FA, (FA)+⟩ −
1
2
⟨B, B⟩ − ⟨(FA)+, B⟩ −

1
2
⟨(FA)+, (FA)+⟩

=
1
2
⟨(FA)+, (FA)+⟩ −

1
2
⟨B, B⟩

=
1
2
SSO(A) −

1
2
⟨B, B⟩.

We can make this precise using the homological algebra of the BV formalism. To begin with, let us discuss the classical
equivalence following Costello.

We will consider second-order Yang–Mills coupled to a trivial self-dual 2-form field. That is – on the level of the classical
BV complex – we consider the direct sum of the second-order Yang–Mills theory with the abelian dg Lie algebra

EB =

(
Ω2

+
(R4

; g)
− id
→ Ω2

+
(R4

; g)
)

in degrees 1 and 2, where the only additional bracket is given by the action ofΩ0(R4
; g) on each term.

Lemma 4.4 ([1, Chapter 6, Lemma 3.2.1]). There is a homotopy equivalence of classical field theories between the first-order
Yang–Mills theory, and second-order Yang–Mills theory coupled to a trivial self-dual 2-form field.

Costello proves this by identifying the simplicial set of classical field theories for a fixed space of fields with the simplicial
set of local action functionals on those fields. He thenwrites down an explicit path S(t) in the space of local action functionals
between SFO and SSO − 2⟨B, B⟩, generated by flowing along a vector field.

Using the arguments in Section 3.3, in particular by applying Corollary 3.25, we can deduce the following result.

Corollary 4.5. First-order and second-order Yang–Mills theory have the same one-loop β-function, potentially up to a linear
reparametrization α ∈ Oloc(E).
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Proof. First, note that first-order Yang–Mills theory admits a renormalizable quantization: Costello proved this in the pure
gauge case, and we will see that this result still holds with matter in the cohomology calculation Corollary 4.8 below. The
combination of Lemma 4.4 with Corollary 3.25 implies that first-order Yang–Mills has the same one-loop β-function as
second-order Yang–Mills coupled to a free 2-form field, up to linear reparametrization.

It remains to argue that the free 2-form field does not contribute to the one-loop β-function. We can see this using the
Feynman rules for Yang–Mills theory. Indeed, the only new interaction term appearing in the coupled theory is of the form
cBB∨ coming from the action of the gauge symmetry on the kinetic term for the B field. Since B∨ is not of degree 0 it cannot
occur as an external leg. However, the field B∨ does not propagate – it does not appear in coefficient of the propagator as we
will see in Section 4.3 below, so the cBB∨ vertex cannot occur in any diagrams. Therefore, by Proposition 3.27, which says that
the one-loop β-function is computed as a counterterm, the addition of the free 2-form field does not alter the counterterms
so does not alter the one-loop β-function. □

4.2. The obstruction–deformation complex for first-order Yang–Mills

Having introduced Yang–Mills theory and its first-order formalism at the classical level, we will describe the algebra
of Poincaré-invariant quantizations. According to Costello’s formalism for perturbative field theory, we can do this by
computing the cohomology of the space Oloc(E)R

4⋉Spin(4) of Poincaré-invariant local functionals.
Costello computed this cohomology for pure Yang–Mills theory in his book on perturbative field theory [1, Chapter 6,

Theorem 5.0.1]. In this section wewill prove that his calculation also applies to Yang–Mills theory with arbitrary matter. We
will use the following result from Costello.

Lemma 4.6 ([1, Chapter 5, Lemma 6.7.1]). For any vector bundle E on Rn with sheaf of sections E , there is a canonical GLn(R)
invariant quasi-isomorphism

(Oloc(E)/R)R
n

∼= (O(J(E))0/R)⊗L
R[∂1,...,∂n]

|det|(Rn)

where J(E) is the jet bundle of E, O(J(E))0 is the fiber of O(J(E)) at 0, R[∂1, . . . ∂n] acts on (O(J(E))0/R) by derivations, and
|det|(Rn) is the trivial representation of R[∂1, . . . ∂n], acted on by GLn(R) by the absolute value of the determinant.

Wewill apply this result by computing (O(J(E))0/R) for Yang–Mills theory with arbitrary matter, and showing that after
taking Spin(4)-invariants the result is independent of the choice of matter representation. We can therefore use Costello’s
calculation of the Spin(4)-invariants on the right-hand side to obtain the desired result.

We will follow Costello’s notation. Let Y ⊗ g denote the pure gauge part of the first-order Yang–Mills BV complex, so

Y = Ω0(R4) →→ Ω1(R4) →→ Ω2
+
(R4)

Ω2
+
(R4)

↗↗

→→ Ω3(R4) →→ Ω4(R4)

placed in degrees −1 to 2. Let Ŷ denote the formal completion of Y at the origin, so concretely

Ŷ = R[[x1, x2, x3, x4]] →→ R4
[[x1, x2, x3, x4]] →→ ∧

2
+
(R4)[[x1, x2, x3, x4]]

∧
2
+
(R4)[[x1, x2, x3, x4]]

→→

→→ ∧
3(R4)[[x1, x2, x3, x4]] →→ ∧

4(R4)[[x1, x2, x3, x4]].

Similarly we write S for the fermionic part of the Yang–Mills BV complex, and Ŝ for its formal completion at the origin. The
algebra O(J(E)0/R) appearing in Lemma 4.6 is the same as the reduced Gel’fand–Fuchs cochains of the completed algebra
Ŷ ⊗ g ⋉ Ŝ ⊗ V . As such, it will be useful to compute the reduced Gel’fand–Fuchs cohomology.

The cohomology groups admit an additional grading, by scaling dimension as in Definition 3.26. We will denote the jth
graded piece by H•,j

red.

Lemma 4.7.

H i,0
red((Ŷ ⊗ g) ⋉ (Ŝ ⊗ V )) ∼= H i

red(g)

H i,−1
red ((Ŷ ⊗ g) ⋉ (Ŝ ⊗ V )) ∼= 0

H i,−2
red ((Ŷ ⊗ g) ⋉ (Ŝ ⊗ V )) ∼= 0

H i,−3
red ((Ŷ ⊗ g) ⋉ (Ŝ ⊗ V )) ∼= 0

H i,−4
red ((Ŷ ⊗ g) ⋉ (Ŝ ⊗ V )) ∼= H i(g; Sym2(g∨

⊗ ∧
2R4)) ⊕ H i(g; Sym2(V∨)) ⊗ (K (1) ⊗ K (2))∨

where K (i) is the scaling dimension i + 1/2 part of the complex Ŝ , which is concentrated in degree 0 since the Dirac operator is
surjective for each fixed scaling dimension.
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Proof. Wewill use Costello’s lemma [1, Chapter 6, Lemma 7.0.2] along with the Hochschild–Serre spectral sequence for the
semidirect product (Ŷ ⊗ g)⋉ (Ŝ ⊗ V ). This spectral sequence converges to the desired cohomology group, and its E2 page is

(E i,k
2 )j = H i,j((Ŷ ⊗ g); Symk((H•(Ŝ) ⊗ V )∨))

where the j indexes scaling dimension (and where H•(Ŝ) now just indicates the cohomology as a cochain complex). We can
divide the total scaling dimension into the scaling dimension of the two parts, by writing

(E i,k
2 )j =

⨁
j1+j2=j

H i((Ŷ ⊗ g)(j1); Symk((H•(Ŝ) ⊗ V )∨)(j2)).

By Costello’s result, these are only non-trivial (for j ≥ −4) if (j1, j2) = (0, 0), (−4, 0) or (0,−4). Costello computed the first
two of these, so we need only compute the third, i.e.

H i(g; Symk((H•(Ŝ) ⊗ V )∨)(−4)).

Since dimensional analysis tells us that fundamental fermions have scaling dimension 3/2, degree k monomials in Ŝ have
scaling dimension 3/2+k, so in order to have total scaling dimension−4 it suffices to consider elements in (K (1)⊗K (2))∨ ⊗

Sym2(V∨) ⊆ Sym2((H•(Ŝ) ⊗ V )∨). Since all scaling dimension 0 and −4 elements are concentrated in a single Sym-degree
and the differentials preserve scaling dimension, there are no differentials in the Hochschild–Serre spectral sequence, and
the result follows. □

Corollary 4.8. The cohomology of the space of Poincaré-invariant local action functionals in Yang–Mills theory with arbitrary
matter is equivalent to the cohomology of the space of Poincaré-invariant local action functionals in pure Yang–Mills.

Proof. It suffices to observe that the new term, H i(g; Sym2(V∨)) ⊗ (K (1) ⊗ K (2))∨ in the Lie algebra cohomology of the
completed space of fields admits no Spin(4) invariants. The group Spin(4) acts entirely on the factor (K (1) ⊗ K (2))∨, so
we only need to decompose this into a sum of irreducible representations and prove that there is no trivial summand. We
observe

K (1) ∼= S+ ⊕ S− and K (2) ∼= (S+ ⊗ Sym2S−) ⊕ (S− ⊗ Sym2S+)

so

K (1) ⊗ K (2) ∼= (S+ ⊕ S−) ⊗
(
(S+ ⊗ Sym2S−) ⊕ (S− ⊗ Sym2S+)

)
∼= (S+ ⊗ S+ ⊗ Sym2S−) ⊕ (S− ⊗ S+ ⊗ Sym2S−) ⊕ (S+ ⊗ S− ⊗ Sym2S+) ⊕ (S− ⊗ S− ⊗ Sym2S+)
∼= Sym2S− ⊕ (Sym2S+ ⊗ Sym2S−) ⊕ (S− ⊗ S+) ⊕ (Sym3S− ⊗ S+)

⊕ (S+ ⊗ S−) ⊕ (S+ ⊗ S−) ⊕ (Sym3S+ ⊗ S−) ⊕ Sym2S+ ⊕ (Sym2S− ⊗ Sym2S+)

which has no trivial summand, as required. □

4.3. Quantization of first-order Yang–Mills

In order to compute counterterms in first-order Yang–Mills theory, we will need to begin by computing the propagators
in the quantum field theory. There are, we will argue, four summands in the total propagator – arising from four summands
in the tensor square of the BV complex – relevant for the one-loop divergences. Each of these can be associated to a pair of
particles, incoming and outgoing.

First, let us investigate the heat kernel in first-order Yang–Mills. Aswe described in Section 2.3, the heat kernel is obtained
from the classical BV complex with its (−1)-shifted symplectic pairing as the integral kernel for the map et[Q ,Q

GF
]. Thus we

must begin by describing a gauge fixing operator Q GF and the associated BV Laplacian [Q ,Q GF
].

4.3.1. Gauge fixing
We will regularize first-order Yang–Mills using a gauge fixing operator and heat kernels coming from the associated

generalized elliptic operator as sketched in Section 2.3. We define the gauge fixing operator Q GF to be the following operator
of degree −1 on the graded vector space of fields in first-order Yang–Mills theory

Ω0(R4
; g) Ω1(R4

; g)d∗

←← Ω2
+
(R4

; g)2d∗

←←

Ω2
+
(R4

; g) Ω3(R4
; g)

2d∗
+

←← Ω4(R4
; g)d∗

←←

Ω0(R4
; S ⊗ V ) Ω0(R4

; S ⊗ V ).
/d−m
←←

.
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In order to show that this defines a gauge fixing operator we must compute the operator [Q ,Q GF
], and check that it is a

generalized elliptic operator. In the pure gauge sector, it is the sum of two terms: the usual Laplacian on differential forms,
plus a first-order operator Dvert defined by

Ω0(R4
; g) Ω1(R4

; g) Ω2
+
(R4

; g)

Ω2
+
(R4

; g)

−2d∗

↑↑

Ω3(R4
; g)

−2d∗
+

↑↑

Ω4(R4
; g).

Note that Dvert is essentially −2 times the d∗ operator acting on the appropriate space of differential forms.
Restricted to the fermions, the operator [Q ,Q GF

] is clearly just the usual Laplacian – obtained as the square of the Dirac
operator – minus the identity timesm2. Therefore the total generalized Laplacian is the sum of two terms:

[Q ,Q GF
] = (∆Ω − m2idmatter) + Dvert

where∆Ω is the usual Laplacian operator on differential forms, andDvert is the vertical operator defined above. This is clearly
a generalized Laplacian, so our choice Q GF was indeed a valid gauge fixing operator.

Next, we will write down the heat kernel associated to the generalized Laplacian [Q ,Q GF
] above. It is obtained as the

integral kernel Kt ∈ E ⊗ E for the operator e−t[Q ,QGF
] with respect to the shifted symplectic pairing defining the classical

theory. The element Kt satisfies

⟨Kt (x, y), ϕ(y)⟩y =

(
e−t[Q ,QGF

]ϕ

)
(x).

Because the symplectic pairing splits as a sum of symplectic pairings for the pure gauge sector and the pure matter sector
we see that the heat kernel also splits as Kt = K gauge

t + Kmatter
t . We will compute these kernels separately in the next two

sections.

4.3.2. Pure gauge sector
We have already noted that the pure gauge sector of Yang–Mills can be written as Y ⊗ g where Y is the complex in

Section 4.2. Thus, we can view the heat kernel for the pure gauge sector K gauge
t as a product of an analytic part KY

t and
an algebraic part. In fact, the algebraic factor is simply the dual of the pairing κ defining the symplectic structure. This is
well-defined since κ is non-degenerate, and we view it as an element κ∨

∈ g ⊗ g.
In order to write the analytic part of the heat kernel, we will introduce some notation for a set of generators of Ω2

+
(R4)

as a C∞(R4)-module. For convenience, we fix a basis x1, x2, x3, x4 for R4 and write {σ 12
x , σ

13
x , σ

14
x } for the C∞(R4)-basis

{dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx3 − dx2 ∧ dx4, dx1 ∧ dx4 + dx2 ∧ dx3} of Ω2
+
(R4). We will use capital letters I, J, K , . . .

for indices in the set {12, 13, 14}. Also, the classical BV complex for first-order Yang–Mills has two copies ofΩ2
+
(R4): one in

degree 0 and one in degree 1. In order to distinguish between these two spaces, we will write {σ 12
x , σ

13
x , σ

14
x } for the set of

elements generating the copy in degree 0, and {σ
′12
x , σ

′13
x , σ

′14
x } for those generating the copy in degree 1.

Recall that on the pure gauge sector the generalized Laplacian associated to our choice of a gauge fixing operator splits
into two factors [Q ,Q GF

] = ∆Ω + Dvert. We will see that the analytic heat kernel also splits into a sum

KY
t = K∆t + K̃t

where K∆t is the heat kernel for the operator∆Ω (this is because D2
vert = 0, so e−tDvert = 1 − tDvert). Let us calculate the two

terms separately.

1. First, let us describe the heat kernel for the Laplacian∆Ω . The heat kernel for the usual Laplacian acting on functions
on R4 is well known: it has the form

kt (x, y) =
1

(4π t)2
e−|x−y|2/4t .

We can write the complex Y as the tensor product of the space of smooth functions on R4 with a finite-dimensional
complex Y . Using this decomposition we can write the heat kernel for the operator ∆Ω in terms of the scalar heat
kernel and the pairing on this finite-dimensional complex Y . It has the form

K∆t (x, y) = kt (x, y) · (KAA∨ + KBB∨ + Kcc∨ )

where the components KAA∨ , KBB∨ , and Kcc∨ come from the different irreducible components of the symplectic pairing
on Y . Explicitly, we find

KAA∨ = dxj ⊗ ∗dyj + ∗dxj ⊗ dyj,

KBB∨ = −
1
2

(
σ I

⊗ σ
′I

+ σ
′I

⊗ σ I
)
,

Kcc∨ = −(dvolx ⊗ 1 + 1 ⊗ dvoly)

where we sum over repeated indices as usual.
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2. Now, one canunderstand the second factor K̃t in termsof the first factor in the followingway.Note thatDvert manifestly
squares to zero and commutes with the usual Laplacian acting on forms. Thus, for a fixed field ϕ ∈ Y we have

e−t(∆Ω+Dvert)ϕ = e−t∆Ω (1 − tDvert)ϕ = e−t∆Ωϕ − te−t∆ΩDvertϕ.

It follows that the second piece of the analytic heat kernel can be written as

K̃t = −t (Dvert ⊗ 1) K∆t .

Note that K̃t is still of cohomological degree one since the vertical operator has cohomological degree zero.

Putting these terms together, we have shown the following.

Proposition 4.9. The heat kernel for pure Yang–Mills theory can be written as

KY
t = (1 − t(Dvert ⊗ 1)) (kt (x, y) · (KAA∨ + KBB∨ + Kcc∨ )) .

Now thatwe have described the heat kernel, let us describe the pure gauge part of the propagator. The analytic propagator
for the pure gauge sector is, by definition

PY (ε, L) =

∫ L

t=ε
(Q GF

⊗ 1)KY
t dt.

Note that Q GF is nothing but the operator d∗ (or its projection d∗
+
) up to a possible factor of 2. Just like the heat kernel the

propagator splits into two parts

PY (ε, L) = P∆(ε, L) + P̃(ε, L)

where P∆(ε, L) comes from the heat kernel of the ordinary Laplacian, and P̃(ε, L) comes from K̃L. Again, we will compute
them one at a time.

1. Using the presentation for the heat kernel in Proposition 4.9 we will write the pieces of the first summand of the
propagator in the following form:

P∆(ε, L) =

∫ L

t=ε

∂kt
∂xi

(x, y)
(
P i
AB + P i

A∨c

)
dt

where the two terms correspond to irreducible summands in Sym2(Y), namely P i
AB ∈ Ω1

⊗ Ω2
+

⊕ Ω2
+

⊗ Ω1 and
P i
A∨c ∈ Ω3

⊗Ω0
⊕Ω0

⊗Ω3: these specific terms arise by applying the gauge fixing operator Q GF to the summands
of the heat kernel KΩ . Explicitly, we find

(Q GF
⊗ 1)ktKAA∨ =

∂kt
∂xi

(1 ⊗ ∗dyi +
1
2
σ ij
x ⊗ dyj)

(Q GF
⊗ 1)ktKBB∨ =

1
2
∂kt
∂xi

∗ (dxiσ 1j
x ) ⊗ σ 1j

y

(Q GF
⊗ 1)ktKcc∨ =

∂kt
∂xi

∗ dxi ⊗ 1.

Hence the irreducible summands of the propagator are given by

P i
AB = σ ij

x ⊗ dyj + ∗(dxiσ 1j
x ) ⊗ σ 1j

y

P i
A∨c =

(
1 ⊗ ∗dyi + ∗dxi ⊗ 1

)
where we have used the summation convention as usual. The term P i

A∨c came from applying the gauge fixing operator
to the Kcc∨ term of the heat kernel and to the A-component of the KAA∨ term, and P i

AB came from applying the gauge
fixing operator to the K BB∨

term and to the A∨-component of the KAA∨ term.
2. Similarly, the remaining part P̃(ε, L) of the propagator is obtained by applying the operator t(Dvert ⊗ 1) to P∆(ε, L). It

has the form

P̃(ε, L) = −

∫ L

t=ε
t
∂2kt
∂xi∂xj

(P ij
AA + P ij

B∨c)dt

where P ij
AA ∈ Ω1

⊗Ω1 and P ij
B∨c ∈ Ω2

+
⊗Ω0. We can compute these elements by applying Dvert ⊗ 1 to the summands

of the heat kernel, then applying the gauge fixing operator and integrating as above; that is we compute

P̃ = −

∫
t(Q GF

⊗ 1)(Dvert ⊗ 1)Ktdt.
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By evaluating this expression we find that P ij
B∨c = 0, and

P ij
AA = 4(δijdxℓ − δiℓdxj) ⊗ dyℓ

again using the summation convention over the index ℓ.

4.3.3. Matter sector
Again, it will be useful to introduce some notation for a basis for the space of spinors. Choose an orthonormal basis

{ψ1, ψ2, ψ3, ψ4
} for the space S of Dirac spinors, Write {ψ

′1, ψ
′2, ψ

′3, ψ
′4
} for the same basis, but for the space S[−1] of

spinors in degree 1 (just like we distinguished the elements σ I and σ
′I ).

The heat kernel for the matter sector is

Kψ,t = kt ·
1
2
(ψ j

⊗ ψ ′j
+ ψ

′j
⊗ ψ j).

Recall, the gauge fixing operator Q GF restricted to thematter sector is the Dirac operator /dwhichwe canwrite as ρ ◦dwhere
ρ is Clifford multiplication.

Thus we can write the propagator as

Pψ (ε, L) =
1
2

∫ L

t=ε

∂kt
∂xi

P i
ψ

where

P i
ψ = (Γ iψ j) ⊗ ψ

′j
+ ψ

′j
⊗ (Γ iψ j).

5. One-loop divergences

In this section we will prove the following theorem, recovering the well-known expression for the β-function of Yang–
Mills theory.

Theorem 5.1. The one-loop β-function of Yang–Mills theory is equal to

β (1)(g) = −
g3

16π2

(
11
3

C(g) −
4
3
C(V )

)
where C(g)idg and C(V )idV are the quadratic Casimir invariants for the representations g and V of G respectively.

Remark 5.2. As we noted in Remark 4.1 we could generalize the above to a general semisimple gauge group, at the cost of
having a coupling constant for each simple factor.

We can compute the one-loop β-function of Yang–Mills in the first-order formalism by Corollary 4.5, which told us
that the first and second-order Yang–Mills theories have the same one-loop β-function, up to an overall rescaling of g
corresponding to changing the choice of renormalizable quantization. By Remark 3.21 and the cohomology calculation in
Corollary 4.8 we know we can think about the one-loop β-function in Yang–Mills theory as a function of a single variable
(for a simple gauge group). We will compute this function using Proposition 3.27.

5.1. Structure of the calculation

Let us begin the proof of Theorem 5.1. In this sectionwewill reduce the claim to a sequence of slightlymessy calculations.
We will use Proposition 3.27, which tells us that in order to compute the one-loop β-functional we need to compute the log
part of the counterterm ICT(ε). Equivalently, we need to compute the log divergent part of the functional WΓ (P(ε, L), I) for
all one-loop graphs Γ .

In our specific situation – that of first-order Yang–Mills theory – the interaction is purely cubic, so the only graphs that
contribute are wheels with k outgoing legs (it suffices to consider 1PI graphs only because the deletion of a separating edge
does not affect the divergence). In fact, we only need to consider a single graph.

Proposition 5.3. The weight WΓ (PY (ε, L) + PS(ε, L), I) is convergent in the limit ε → 0 for all wheels Γ with more than 2
vertices.

Proof. Let Γ be a wheel with number of vertices equal to n > 2. We label the vertices by vi, 1 ≤ i ≤ n. We will show that
both limε→0WΓ (PY (ε, L), I) and limε→0W (PS(ε, L), I) exist.

First, we focus on the pure gauge sector and hence the term involving the propagator PY (ε, L). Recall that the gauge
propagator splits as PY (ε, L) = P∆(ε, L) + P̃(ε, L). The weight of the wheel Γ splits up into a sum of terms involving a
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Fig. 1. An n-leg wheel with propagators labeled as indicated.

v propagators each involving some number of propagators of type P∆(ε, L) and propagators of type P̃(ε, L). We label the
inputs of the weight by α1, . . . , αn ∈ Y . Let us consider the term involving k∆ propagators of type P∆(ε, L) and k̃ propagators
of type P̃ . Necessarily, we have k∆ + k̃ = n. Moreover, without loss of generality we suppose that the P∆(ε, L) connects
vertices vi and vi+1 for 1 ≤ i ≤ k∆ + 1 and P̃(ε, L) connects vertices vj and vj+1 for k∆ + 1 ≤ j ≤ n (by convention vn+1 = v1.
We indicate this in Fig. 1.

Up to combinatorial factors, such a term has the form∫
(x1,...,xn)∈(R4)×v

n∏
i=1

αi(xi)
k∆∏
i=1

P∆(ε, L)(xi, xi+1)
n∏

j=k∆+1

P̃(ε, L)(xj, xj+1). (5.1.1)

Now, we know that the propagators can be written as

P(ε, L)(x, y) = Pi

∫ L

t=ε

∂kt
∂xi

(x, y)dt = Pi

∫ L

t=ε

xi − yi

t3
e−|x−y|2/4tdt

P̃(ε, L)(x, y) = Pij

∫ L

t=ε
t
∂2kt
∂t i∂t j

(x, y)dt = Pij

∫ L

t=ε

(
δij

t2
+

(xi − yi)(xj − yj)
2t3

)
e−|x−y|2/4tdt

where Pi, Pij are constant coefficient differential forms whose precise form will not be necessary for the proof. To simplify
the integral, we make the following change of coordinates. Define

zi = xi − xj, for 1 ≤ i < n

zn = xn.

Let S ⊂ {k∆ + 1, . . . , n − 1} be an arbitrary (possibly empty) subset and define functions

pij(t) =
δij

t2

qij(z, t) =
z iz j

t3
.

Finally, let Qn(t) = Qn(t1, . . . , tn) be the following block diagonal, t-dependent, 4(n − 1) × 4(n − 1) matrix

Qn(t) =

⎛⎜⎝Rn(t)
. . .

Rn(t)

⎞⎟⎠
where Rn(t) =

(
Qn(t)ij

)
is the (n − 1) × (n − 1) matrix defined by

Rn(t)ij =

{
t−1
i + t−1

n , if i = j
t−1
n , if i ̸= j.
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With this notation and the explicit forms of the propagators above can write the integral (5.1.1) as a sum of terms of the
form ∫

z1,...,zn

∫
t1,...,tn

Φ ·

⎛⎝ z i11
t31

· · ·
z
ik∆
k∆

t3k∆

⎞⎠(∏
s∈S

pjsks (zs, ts)

)⎛⎝∏
s̸∈S

qjsks (zs, ts)

⎞⎠ pjnkn (tn)e−zTQn(t)z (5.1.2)

and ∫
z1,...,zn

∫
t1,...,tn

Φ ·

⎛⎝ z i11
t31

· · ·
z
ik∆
k∆+1

t3k∆

⎞⎠(∏
s∈S

pjsks (zs, ts)

)⎛⎝∏
s̸∈S

qjsks (zs, ts)

⎞⎠ qjnkn (z1 + · · · + zn−1, tn)e−zTQn(t)z (5.1.3)

for some compactly supported functionΦ ∈ C∞((R4)n) and integers im, js, ks ∈ {1, . . . , 4}.
We study the convergence of (5.1.2). The main tool we utilize is integration by parts to put it in a form where we may

readily apply Wick’s lemma to estimate the ε → 0 limit. For 1 ≤ m ≤ n and im ∈ {1, . . . , 4} define the differential operator

Dm
im (t) :=

∂

∂z imm
−

1
t1 + · · · + tn

n−1∑
k=1

tj
∂

∂z imk
.

Then, we immediately verify that

Dm
im (t)e

−xTQn(t)x = −
z imm
tm

e−zTQn(t)z .

Note that the differential operatorDm
im (t) is bounded in the variables t .We integrate byparts using the operatorsD1

i1
, . . . ,Dk∆

ik∆
.

To show the ε → 0 convergence of (5.1.2) it suffices to show convergence of∫
z1,...,zn

∫
t1,...,tn

Φ ′
·

1
(t1 · · · tk∆+1)2

(∏
s∈S

1
t2s

)⎛⎝∏
s̸∈S

qjsks (zs, ts)

⎞⎠ 1
t2n

e−zTQn(t)z,

whereΦ ′ is some (other) compactly supported function on (R4)n that is independent of t . Now, wewish to use the operators
Ds
js ,D

s
ks , for s ∈ {k∆ + 1, . . . , n} \ S, to integrate by parts. Since ∂

∂zjss
(zkss ) = δjsks there are now two types of terms we must

consider: (A) those corresponding to the instances where the operator Ds
js hits the linear term zkss and (B) where the operator

hits the exponential e−zTQn(T )z . Terms of type (A) have the form∫
z1,...,zn

∫
t1,...,tn

ΦA ·

(
1

t1 · · · tn

)2

e−zTQn(t)z . (5.1.4)

Terms of type (B) are of the form:∫
z1,...,zn

∫
t1,...,tn

ΦB ·

(
1

t1 · · · tk∆

)2
(∏

s∈S

1
ts

)2
⎛⎝∏

s̸∈S

zkss
t2s

⎞⎠ 1
t2n

e−zTQn(t)z . (5.1.5)

We can apply an additional integration by parts to terms of type (B) to put it in the form∫
z1,...,zn

∫
t1,...,tn

Φ ′

B ·

(
1

t1 · · · tk∆

)2
(∏

s∈S

1
ts

)2
⎛⎝∏

s̸∈S

1
ts

⎞⎠ e−zTQn(t)z . (5.1.6)

To estimate the integrals we apply Proposition A.1, the version of Wick’s lemma proven in Appendix B, applied to the
variables z1, . . . , zn−1 ∈ (R4)n−1. The determinant of Qn(t) is given by

detQn(t) = (det Rn(t))4 =

(
t1 + · · · + tn

t1 · · · tn

)4

.

Up to factors of 2 and π we see that the first term in the Wick expansion for terms of type (A) in Eq. (5.1.4) is∫
zn∈R4

Φ(z1 = 0, . . . , zn−1 = 0, zn)
∫
t1,...,tn

1
(t1 + · · · + tn)2

.

It suffices to show the ε → 0 convergence of the t1, . . . , tn-integral, which is over the region [ε, L]n. Indeed, we have∫
t1,...,tn

1
(t1 + · · · + tn)2

dvolt ≤

∫
t1,...,tn

1
(t1 · · · tn)2/n

dvolt =

n∏
i=1

∫ L

ti=ε

dti
t2/ni

.
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Fig. 2. The four purely bosonic one-loop Feynman diagrams that contribute to the log divergence, and therefore to the one-loop β-function. The internal
propagators are decorated when the species of a particle alters between its two end points.

Fig. 3. The remaining diagram that contributes to the one-loop β-function, depending on a choice of matter representation.

This is clearly convergent in the limit ε → 0 if and only if n > 2.
To show the convergence of terms of type (B) in Eq. (5.1.6) we use the fact that(

1
t1 · · · tk∆

)2
(∏

s∈S

1
ts

)2
⎛⎝∏

s̸∈S

1
ts

⎞⎠ 1
t2n

≤

(
1

t1 · · · tn

)2

in the region |t1|, . . . , |tn| ≤ 1. The term on the right-hand side is exactly the integrand of terms of type (A), which we have
already shown to be convergent in the ε → 0 limit. The convergence of (5.1.3) is analyzed in a completely similar way.

The case of the weights involving the matter propagator is similar. Indeed, every such weight is a sum of terms of the
form (5.1.1) with k∆ = n. So it is a special case of the above analysis. □

Remark 5.4. The tadpole – the one-loopwheel – vanishes, because the only propagator has the source and target. As we saw
in Section 4.3 the propagators involve derivatives of the scalar heat kernel. Since the scalar heat kernel attains a maximum
along the diagonal {x = y} in R4

x × R4
y we see that the tadpole diagrams are all identically zero.

Therefore we only need to compute the log divergent part of the weight WΓ (P(ε, L), I) where Γ is a wheel with two
outgoing legs. It is natural to split this calculation up, according to the decomposition of the propagator P and the vertex I
into their summands, as explained in Section 4.3 above. As usual we think of these summands as corresponding to particle
flavors, and label the edges of the Feynman diagram Γ accordingly. There are five possible ways of labeling the diagram that
contribute to the calculation, which we indicate in Figs. 2 and 3.

We will refer to the four diagrams in Fig. 2 as diagram I to IV, or as ΓI to ΓIV (left to right, then top to bottom). We will
refer to the fermionic diagram in Fig. 3 as diagram V, or as ΓV.

Remark 5.5. There is an additional labeling which makes sense combinatorially, where the external legs are labeled by ψ ,
and the internal edges are both labeled by A. This diagram will not be relevant because it vanishes after taking cohomology,
as we can see from Corollary 4.8, which tells us that the inclusion of the local functionals in pure Yang–Mills theory into the
local functionals for Yang–Mills with matter is a quasi-isomorphism.

Since we ultimately want to compute the β-function rather than the functional, we will want to compute the class of the
sum of these terms

∑
X I

CT
log,ΓX

(P(ε, L), I) in cohomology. In fact, we will see that the terms ICTlog,ΓI (P(ε, L), I)+ ICTlog,ΓII (P(ε, L), I),
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ICTlog,ΓIII (P(ε, L), I), I
CT
log,ΓIV

(P(ε, L), I), and ICTlog,ΓV (P(ε, L), I) are individually closed for the classical differential on Oloc(E): this is
clear for diagram V from our calculations in Section 4.2, and follows for the remaining terms by a similar spectral sequence
using the filtration by sym-degree with respect to the summand Ω2

+
(R4) in the BV complex. Nevertheless we will also see

this from direct calculation.
To summarize, we have argued that the one-loop β-function is the sum of the five terms WΓX (P(ε, L), I), where X =

I, . . . ,V. We must, therefore, compute these five terms. There is, however, one more simplification which should clarify
our thinking about these calculations. Recall from the calculations in Section 4.3 that all the bosonic propagators split into
elements of (E⊗2

ab )∨ ⊗ (g∗)⊗2, and the fermionic propagator splits into an element of (E⊗2
ab )∨ ⊗ (V ∗)⊗2 where Eab is the classical

BV complex in the theory with gauge group U(1) and trivial matter representation. The interaction terms also split in this
way, and therefore theweight associated to each diagram, itself splits into the product of a quadratic functional in the abelian
theory, and an element of (g∗)⊗2. Wewill refer to this latter element as the Lie theoretic factor. It can be computed separately,
which we will do in Section 5.2 below.

Once we have done this, it remains for us to compute the weightsWΓX (P(ε, L), I) for each diagram in the abelian theory.
These are slightly messy calculations that themselves can be divided into an analytic part and a combinatorial part. We will
explain how to do this at the beginning of Section 5.3. To summarize, we prove Theorem 5.1 as follows.

• Identify the one-loop β-functional with the sum of log divergences in one-loop diagrams.
• Check that only the two-leg wheel contributes to the log divergence, and notice that there are five ways of labeling

this diagram by particle species.
• Find explicit coboundaries relating multiples of these cocycles, to determine the cohomology class of their sum.
• Split each of these five terms into a Lie theoretic factor and a factor coming from the purely abelian theory.
• Compute each of these five weights in the abelian theory.

5.2. Lie theoretic factors

Let us work out the algebraic factors in the relevant one-loop diagrams for first-order Yang–Mills theory. These are
elements in (g ⊗ g)∗ obtained by contracting the tensors associated to the internal propagators with the tensor associated
to the vertices.

First let us consider the AA, AB and A∨c propagators, which have the same algebraic part. The part of the propagator is
an element Pg of the tensor product g ⊗ g. We can figure out exactly which element it is by considering the leading (tree
level) term in the Feynman diagram expansion for the two-point function, which on the one hand sends a pair of functionals
O1,O2 on the fields to P(O1 ⊗O2), and on the other hand should be interpreted as having the value ⟨O1,QO2⟩ (up to a gauge
fixing condition). Since both the BV operator and the gauge fixing operator act trivially on the Lie algebra part of the fields,
we expect

Pg(Y1 ⊗ Y2) = κ∨(Y1, Y2)

where Y1 and Y2 are elements of g∗, κ is the symmetric invariant pairing on g we specified in order to define the action
functional, and κ∨ is its dual pairing (using the fact that κ was non-degenerate).

Similarly, we can consider the ψψ-propagator. This has a Lie theoretic part, which is an element PV of V ⊗ V , and by a
similar argument we deduce that

PV (w1, w2) = µ∨(w1, w2),

where now w1 and w2 are elements of V ∗, and µ : V ⊗ V → R is the non-degenerate pairing used to define the fermionic
part of the action functional.

For the rest of this section we will work in index notation, with indices a, b, c, . . . representing a basis for g and indices
i, j, k, . . . representing a basis for V . We write κab for the pairing κ ∈ g∗

⊗ g∗, κab for its dual in g ⊗ g, µij for the pairing
µ ∈ V ∗

⊗ V ∗ andµij for its dual, and finally f abc for the Lie bracket, viewed as an element of g∗
⊗ g∗

⊗ g and αai
j for the action

of g on V , viewed as an element of g∗
⊗ V ∗

⊗ V .

Proposition 5.6. The Lie theoretic part of the purely bosonic diagrams is C(g), the quadratic Casimir invariant for the Lie algebra
g. The Lie theoretic part of the fermionic one-loop diagram is C(V ), the quadratic Casimir invariant for the representation V of g.

Proof. First, we will identify the Lie theoretic parts of the relevant vertices. This is fairly easy, because the vertices only
involve the Lie bracket. The AAB-vertex brackets first the two A fields together, then pairs the result with the B field, yielding
the element κabf cdb ∈ g∗

⊗ g∗
⊗ g∗. The AA∨c-vertex is identical. Finally the Aψψ-vertex has the A-field act on one of the ψ

fields, then pair with the other, so the resulting element is µijαak
j ∈ g∗

⊗ V ∗
⊗ V ∗.
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Now we can start evaluating diagrams (at least, their algebraic parts). First let us consider the two leg wheel where the
external legs are both A-fields, and the internal lines are spinors. Evaluating this diagram yields

µijµklµ
imµjnαak

m α
bl
n = δjmµklµ

jnαak
m α

bl
n

= µklµ
mnαak

m α
bl
n

= αan
l α

bl
n

= C(V )κab.

Here we observed that the third line involved the composition of the action α withµ⊗µ∨, which has the affect of replacing
the representation by its dual. To deduce the last line, note that αan

l α
bl
n defines an invariant symmetric bilinear pairing on

the Lie algebra g (in coordinate free notation it is the pairing ⟨X, Y ⟩ = Tr(ρ(X)ρ(Y ))). Since g is semisimple and the pairing
respects the decomposition of g into simple factors, it is proportional to the Killing form, so αan

l α
bl
n = c · κab. Finally recall

that the Casimir invariant C(V ) is defined by

αai
j α

bj
k κab = C(V )δik,

so

αai
j α

bj
i κab = C(V ) dim(V )

and thus c = C(V ).
Let us also consider the two leg wheels where the internal lines are given by bosonic propagators. These diagrams can be

evaluated to be

κabκcdf aeg κ
gbf bfh κ

hd
= C(g)κef

by the same method as above (indeed, the algebraic part of this diagram is the same as the algebraic part of the previous
diagram for V = g the adjoint representation). □

5.3. Analytic and combinatorial factors

Having computed the Lie theoretic factors, we just have to extract the relevant singular parts of our one-loop diagrams
for the gauge group G = U(1) and its trivial representation. To compute these factors, we will write out and evaluate the
integrals computing the weight of the Feynman diagrams. As well as an analytic calculation the expressions will involve a
contraction of simple tensors, which we must evaluate to obtain an additional combinatorial factor for each diagram.

According to the discussion in Section 5.1, it remains for us to evaluate the weight WΓX (P(ε, L), I) for each diagram
X = I, . . . ,V, and in the abelian theory. Recall that the weight associated to a diagram is defined by contracting a copy of a
propagator for each internal edge in the diagram with an interaction term for each vertex. The propagators split up – even
in the abelian theory – as we saw in Section 4.3 into the tensor product of a scalar propagator with an element of a finite-
dimensional graded vector space ((Y ⊕ S ⊕ S[−1])∗)⊗2: the ‘‘combinatorial factors’’. When we evaluate the counterterms
we integrate the scalar propagators and extract the logarithmic divergences, and contract the combinatorial factors with
interaction terms in (Y ⊕ S ⊕ S[−1])⊗3 for each vertex.

As such, we think about our diagrammatic calculation as follows. First decompose the constituents of the weight of each
diagram in the following way. We will write Φ for the graded vector space Y ⊕ S ⊕ S[−1] – the combinatorial part of the
classical BV complex.

• Decompose the external fields as elements of C∞(R4) ⊗Φ: we will write the external fields as φi
⊗ vi where {vi} is a

basis for the graded vector spaceΦ .
• Likewise, decompose the propagators as elements of

(
C∞(Rt ) ⊗ (C∞(R4))⊗2

)
⊗ (Φ∗)⊗2. According to our calculations

in Section 4.3 the propagators are not pure tensors, but can be written as a sum of the form f α(t; x, y) ⊗ cα .
• Write the interaction vertices as elements ι ofΦ⊗3.
• The resulting counterterm can now be computed as a sum over the indices α associated to the propagators. If our two

external fields are φi
⊗vi and φ

′j
⊗v′

j , our two source terms are two propagators are f α(t; x, y)⊗cα and gβ (t; x, y)⊗dβ ,
and our two interaction terms are ι and ι′, then the logarithmic counterterm associated to the diagram has the form

ICTlog =

∑
α,β,i,j

singlog(ε)

(∫
dvolx

∫
dvoly

∫ L

ε

dt1

∫ L

ε

dt2φiφ
′jf α(t1; x, y)gβ (t2; x, y)

)
· ⟨ι⊗ ι′, cα ⊗ dβ ⊗ vi ⊗ v′

j⟩

=

∑
α,β,i,j

IαβijΓ CΓ ,αβij, (5.3.1)

where we have explicitly written out the sum for clarity. Here the angle brackets indicate the contraction of tensors
according to the shape of the diagram.Wewill refer to IαβijΓ as the analytic weights of the diagram, and to CΓ ,αβij as the
combinatorial weights of the diagram.
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We have computed all the relevant logarithmic singular parts of regularization integrals in Appendix B; in the rest of
this section we will compute, for each diagram, the sum over the indices α and β weighted by the combinatorial factors
⟨ι⊗ ι′, cα ⊗ dβ⟩.

5.3.1. Diagram I

Definition 5.7. From now onwewill write ICTX for the logarithmic counterterm limL→0limε→0ICTlog,ΓX (P(ε, L), I) that computes
the part of the observable O(1)

β associated to the diagram ΓX .

We compute to the logarithmic divergent part ICTI of the weight WΓ1 (P(ε, L), I) of diagram I using the structure of
Eq. (5.3.1). In this diagram the external legs are both labeled by A = Aadxa, and the internal propagators are both copies
of P i

AB. As mentioned above we will write the weight as the contraction of an analytic weight and a combinatorial weight.
Indeed, we see that

ICTΓI,log(A) = g2CΓI,abijI
1
ij (Aa(x)Ab(y))

where, for ϕ ∈ C∞
c (R4

× R4), we define

I1ij (ϕ) := Singlog ε

(∫
x

∫
y

∫ L

t1=ε

dt1

∫ L

t2=ε

dt2ϕ(x, y)
∂kt1
∂xi

(x, y)
∂kt2
∂xj

(x, y)dvolxdvoly

)
.

In Appendix B we compute, using Wick’s formula, the integral I ij1 . Indeed, according to Proposition B.1 we see that

I1ij (ϕ) = −
1

16π2

1
6

(∫
x

(
∂2ϕ

∂xi∂xj

)
x=y

dvolx +
1
2
δij
∫
x

(
∂2ϕ

∂xm∂xm

)
x=y

dvolx

)
.

Next, we can compute the combinatorial weights. Again using the formula for P i
AB and the Feynman rules for first-order

Yang–Mills, we can write down these weights as

CΓI,abijdvolx ⊗ dvoly =
(
dxadxnσ 1m

x

)
⊗
(
dyb ∗ (dyiσ 1m)σ jn

y

)
.

We can compute these via an elementary calculation.

Lemma 5.8. If a = b, the combinatorial tensor can be computed as

CΓI,aaij =

{0 if i ̸= j
3 if i = j = a
−2 if i = j ̸= a.

If a ̸= b, the combinatorial tensor is instead given by

CΓI,abij =

⎧⎪⎨⎪⎩
3 if i = b, j = a
2 if i = a, j = b
±1 if εijab = ±1
0 otherwise.

In particular in this latter situation only the cases where i = b, j = a and i = a, j = b contributes to the counterterm, because the
analytic integral is symmetric in i and j, and the contraction with a purely antisymmetric tensor vanishes.

Let us put the analytic and combinatorial factors together. We will write Jabij for the singular part of the integral
Singlog ε

(∫
∂Aa
∂xi∂xj

Abdvolx
)
. If a = b the contraction of the analytic and combinatorial tensors contributes∑

i,j

CΓI,abij

(
Jabij +

1
2
δijJabij

)
=

(
3 −

3
2

)
Jaaaa +

∑
i̸=a

(
−2 −

3
2

)
Jaaii

=
3
2
Jaaaa −

∑
i̸=a

7
2
Jaaii

and if a ̸= b it contributes∑
i,j

CΓI,abij

(
Jabijdvolx +

1
2
δijJabij

)
= 5Jabba.

Therefore, the logarithmic counterterm associated to diagram I in the abelian theory is the local functional

ICTI (A) =
g2

16π2

1
6

⎛⎝−

∑
a

3
2
Jaaaa +

∑
i̸=a

7
2
Jaaii − 5

∑
a̸=b

Jabba

⎞⎠ .
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This functional is not a cocycle, but we will see shortly that its sumwith the logarithmic counterterm associated to diagram
II is a cocycle.

5.3.2. Diagram II
Now, let us compute the logarithmic divergent piece ICTII of the weight of diagram II in the same way. Again, we write the

weight as a contraction

ICTII = g2CΓII,ijI
ij
1 (Aa(x)Ab(y))

of the combinatorial and analytic weights. Since the analytic part of this propagator is the same as the analytic part of P i
AB,

the analytic tensor is the same as in diagram I, that is I ijΓII = −
1

16π2
1
6 (J

abij
+

1
2δijJ

abmm) where Jabij = Singlog ε
(∫

∂Aa
∂xi∂xj

Abdvolx
)
.

It remains to compute the combinatorial weights. These are straightforward to evaluate:

CΓII ,ijdvolxdvoly = −((dxa ∗ dxi) ⊗ (dyb ∗ dyj))

so CΓII ,ij = −δiaδjb.

Putting the analytic and combinatorial factors together, the total contribution of diagram II is

ICTII (A) =
g2

16π2

1
6
δiaδjb

(
Jabij +

1
2
Jabii

)

=
g2

16π2

1
6

⎛⎝3
2

∑
a

Jaaaa +

∑
a̸=b

Jabba +
1
2

∑
a̸=m

Jaamm

⎞⎠ .
Again, this local functional is not a cocycle. However, when we take the sum of the logarithmic counterterms for diagrams I
and II, the result is a cocycle:

ICTI (A) + ICTII (A) =
g2

16π2

1
6

⎛⎝4
∑
a̸=m

Jaamm
− 4

∑
a̸=b

Jabba

⎞⎠
= −

g2

16π2

2
3

∫
x
dA ∧ ∗dA

= −
g2

16π2

4
3

∫
x
FA+ ∧ FA+.

5.3.3. Diagram III
We now consider diagram III. This diagram uses the AA and AB propagators and has two inputs both labeled by A =

Aa(x)dxa and B = Bb(x)σ 1b
x . As above, the log counterterm associated to diagram III can be evaluated as a contraction

ICTΓIII,log(A, B) = g2CΓIII,abijkI
3
ijk (Aa(x)Bb(y))

of an analytic and a combinatorial weight. The analytic weight associated to diagram III now depends on both the external
fields A and B, and the analytic parts of the propagators P i

AB and P jk
AA. It will be simplest to split this analytic weight up into

two summands. Indeed, we observe that d∗
+

= −d+∗, and d∗d∗
+

=
1
2 (−∗∆+d∗d), whichmeans we can split up the weight

of diagram III – computed using the AB and AA propagators from Section 4.3.2 – as

ICTIII (A, B) = Singlog ε2
∫
x,y,t1,t2

A(x)B(y)
(
2(d∗

+
⊗ 1)KAA∨

t1

)(
4t2(d∗d∗

+
⊗ 1)KAA∨

t2

)
= Singlog ε8

∫
x,y,t1,t2

A(x)B(y)
(
(d+ ∗ ⊗1)KAA∨

t1

)(
t2(∗∆⊗ 1)KAA∨

t2

)
+

− Singlog ε8
∫
x,y,t1,t2

A(x)B(y)
(
(d+ ∗ ⊗1)KAA∨

t1

)(
t2(d ∗ d ⊗ 1)KAA∨

t2

)
,

where the factor of 2 appears because we must count not only the diagram with a PAB propagator in the t1 slot and a PAA
propagator in the t2 slot as written here, but also the (equal) diagramwith a PAA propagator in the t1 slot and a PAB propagator
in the t2 slot.

We can write the analytic weights explicitly for a compactly supported function ϕ(x, y), as

I3ijk (ϕ(x, y)) = Singlog ε4
∫
x,y,t1,t2

ϕ(x, y)t2
∂kt1
∂xi

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2+

− Singlog ε4
∫
x,y,t1,t2

ϕ(x, y)t2
∂kt1
∂xi

∂2kt2
∂xj∂xk

dvolx ⊗ dvolydt1dt2.
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We can again compute these log divergences using results from the appendix. By Propositions B.4 and B.3 respectively, we
have

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t2
∂kt1
∂xi

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2 = −
1

16π2

1
4

∫
x

∂ϕ

∂xi

⏐⏐⏐⏐
x=y

dvolx

and Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t2
∂kt1
∂xi

∂2kt2
∂xj∂xk

dvolx ⊗ dvolydt1dt2 =

1
16π2

1
12

(
δij
∫
x

∂ϕ

∂xk

⏐⏐⏐
x=y

dvolx + δik
∫
x

∂ϕ

∂xj

⏐⏐⏐
x=y

dvolx − 2δjk
∫
x

∂ϕ

∂xi

⏐⏐⏐
x=y

dvolx

)
.

Next we need to compute the combinatorial weights CΓIII,abijk. From the calculation above we can see that

CΓIII,abijkdvolx ⊗ dvoly = dxadxkσ im
x ⊗ σ 1b

y ⊗ dym ⊗ dyj

so CΓIII,1bijkδ
ij

= −4δbk

CΓIII,1bijkδ
ik

= −3δbj

and CΓIII,1bijkδ
jk

= +1δbi,

where for simplicity we have analyzed the combinatorial factors for a = 1; the general combinatorial factor is similar.
Contracting the combinatorial and analytic weights, in the case where A = A1dx1, we find

ICTIII (A, B) =
g2

16π2

(
−

4
4
δbi
∫
∂A1

∂xi
Bb(x)dvolx+

−
4
12

(
−4δbk

∫
∂A1

∂xk
Bb(x)dvolx − 3δbj

∫
∂A1

∂xj
Bb(x)dvolx − 2δbi

∫
∂A1

∂xi
Bb(x)dvolx

))

=
g2

16π2 2
∫
∂A1

∂xb
Bb(x)

= −
g2

16π2 2
∫

FA ∧ B.

The calculation is identical for a = 2, 3 and 4. Since the functional is linear in A, the functional ICTIII (A, B) is equal to the cocycle
−

g2

16π2 2
∫
FA ∧ B.

5.3.4. Diagram IV
The final diagram involving pure gauge propagators is diagram IV. This diagram uses only the AA propagator and has

two inputs both labeled by B. As above we can write the logarithmic counterterm as a contraction of an analytic and a
combinatorial weight

ICTΓIV,log(B) = g2CΓIV,ijkℓmnI
ijkℓ
3 (Ba(x)Bb(y)),

but this timewewill evaluate the analyticweight by splitting it up into four summands. Indeed,we know from the calculation
of PAA in Section 4.3.2, combined with the identity d∗d∗

+
=

1
2 (− ∗∆+ d ∗ d), that we can write the weight associated to ΓIV

as

ICTIV (B) = Singlog ε

∫
x,y,t1,t2

B(x)B(y)
(
4t1(d∗d∗

+
⊗ 1)Kt1 (x, y)

) (
4t2(d∗d∗

+
⊗ 1)Kt2 (x, y)

)
= Singlog ε4

∫
x,y,t1,t2

B(x)B(y)
(
(t1 ∗∆⊗ 1)KAA∨

t1 (x, y)
)(

(t2 ∗∆⊗ 1)KAA∨

t2 (x, y)
)

+

− Singlog ε4
∫
x,y,t1,t2

B(x)B(y)
(
(t1 ∗∆⊗ 1)KAA∨

t1 (x, y)
)(

(t2d ∗ d ⊗ 1)KAA∨

t2 (x, y)
)

− Singlog ε4
∫
x,y,t1,t2

B(x)B(y)
(
(t1d ∗ d ⊗ 1)KAA∨

t1 (x, y)
)(

(t2 ∗∆⊗ 1)KAA∨

t2 (x, y)
)

+

+ Singlog ε4
∫
x,y,t1,t2

B(x)B(y)
(
(t1d ∗ d ⊗ 1)KAA∨

t1 (x, y)
)(

(t2d ∗ d ⊗ 1)KAA∨

t2 (x, y)
)
.
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We can rewrite this a bit more explicitly by expanding B(x) as Ba(x)σ 1a
x and using the observation that the second and

third integrals are equal. We find

ICTIV (B) = 4CΓIV,abmnmnSinglog ε

∫
x,y,t1,t2

Ba(x)Bb(y)t1t2
∂kt1
∂t1

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2+

+ 8CΓIV,abinmnSinglog ε

∫
x,y,t1,t2

Ba(x)Bb(y)t1t2
∂2kt1
∂xm∂xi

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2+

+ 4CΓIV,abijmnSinglog ε

∫
x,y,t1,t2

∂Ba(x)
∂xn

Bb(y)t1t2
∂2kt1
∂xm∂xi

∂2kt2
∂xj

dvolx ⊗ dvolydt1dt2.

In the last line, we have performed an integration by parts.
We can simplify these analytic weights using our calculations from the appendix. By Propositions B.4, B.5 and B.6

respectively, we know that for any compactly supported function ϕ(x, y) we have

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t1t2
∂kt1
∂t1

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2 = −
1

16π2

∫
x
ϕ(x, x)dvolx

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t1t2
∂2kt1
∂xm∂xi

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2 =
1

16π2 δ
im 1

4

∫
x
ϕ(x, x)dvolx

and Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t1t2
∂2kt1
∂xm∂xi

∂kt2
∂xj

dvolx ⊗ dvolydt1dt2 = 0.

It remains for us to compute the combinatorial weight CΓIV,abijmn, which is fairly straightforward. In general the
combinatorial weight is given by the formula

CΓIV,abijmndvolx ⊗ dvoly = σ 1a
x dxmdxj ⊗ σ 1b

y dyndyi

so in particular CΓIV,abmnmn = −4δab. Therefore the total weight is given by the contraction

ICTIV (B) = −
g2

16π2

(
−16 +

32
4

)∫
x
Ba(x)Ba(x)dvolx

= −
g2

16π2

32
4

∫
x
Ba(x)Ba(x)dvolx

= −
g2

16π2 4
∫

B ∧ B.

5.3.5. Diagram V
We conclude with diagram V, which uses the spinor propagator from Section 4.3.3 and has two inputs both labeled by A.

The weight here is easy to write down explicitly:

ICTV (A) = g2CΓV,abijI
1
ij (Aa(x)Ab(y))

where, as for diagrams I and II

I1ij (Aa(x)Ab(y)) = Singlog ε

∫
x,y,t1,t2

Aa(x)Ab(y)
∂kt1
∂xi

∂kt2
∂xj

dvolx ⊗ dvoly,

which canbe simplified just aswedid for those diagrams: I1ij = −
1

16π2
1
6 (J

abij
+

1
2δijJ

abmm)where Jabij = Singlog ε
(∫

∂Aa
∂xi∂xj

Abdvolx
)
.

The combinatorial weights are given by CΓV,abij = − Tr(Γ iΓ aΓ jΓ b), which can be simplified using standard facts about
Γ -matrices:

Tr(Γ iΓ aΓ jΓ b) = 4(δiaδjb − δijδab + δibδaj).

Therefore, the contraction of the analytic and combinatorial weights gives the overall expression

ICTV (A) =
g2

16π2

4
6

(
Jabab − Jaaii + Jabba −

1
2

(
Jaamm

− δiiJaamm
+ Jaamm))

=
g2

16π2

4
3

(
Jabba − Jaamm)

=
g2

16π2

4
3

∫
dA ∧ ∗dA

=
g2

16π2

8
3

∫
FA+ ∧ FA+.
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5.4. Completing the proof

To conclude the proof of Theorem 5.1 we must compare the cocycles we computed above. That is, since we know from
the calculations of Section 4.2 that the complex of local functionals is quasi-isomorphic to R, in order to define the one-loop
β-functionwemust fix a choice of quasi-isomorphism.Wewill choose the quasi-isomorphism given by the action functional
of the first-order formalism: the one that sends the cocycle (A, B) ↦→ SFO(A, B) to 1 ∈ R. As we will see, this is equal to half
the trivialization that sends the cocycle (A, B) ↦→

∫
FA+ ∧ FA+ to 1.

Since H0(Oloc(E)) is 1-dimensional, any 0-cocycle is cohomologous to some multiple of
∫
FA+ ∧ FA+. In particular, we can

write down some explicit coboundaries. Specifically, it is straightforward to compute

dcl

(∫
FA+ ∧ B∨

)
= 2

(∫
FA+ ∧ FA+ −

∫
FA+ ∧ B

)
dcl

(∫
B ∧ B∨

)
= 2

(∫
B ∧ FA+ −

∫
B ∧ B

)
.

This tells us that, in cohomology,[∫
FA+ ∧ FA+

]
=

[∫
B ∧ FA+

]
=

[∫
B ∧ B

]
.

The action functional in our first-order theory took the form
∫
B ∧ FA+ −

1
2

∫
B ∧ B, so it represents the cohomology class

1
2

[∫
FA+ ∧ FA+

]
.

Now we can apply this to the weights we calculated above. We calculated the weights in the abelian theory, but the
weights in the general non-abelian theory are simply theproducts of the abelianweightswith the relevant Casimir invariants,
as we saw in Section 5.2. Thus in a general first-order Yang–Mills theory we have shown that

O(1)
β (A, B) =

g2

16π2

1
2

(
−

4
3
C(g)

∫
FA+ ∧ FA+ − 2C(g)

∫
FA+ ∧ B − 4C(g)

∫
B ∧ B +

8
3
C(V )

∫
FA+ ∧ FA+

)
,

and therefore, taking the cohomology class of this functional and applying our chosen trivialization, we get

β (1)(g) =
g3

16π2

(
−

11
3

C(g) +
4
3
C(V )

)
recovering the physically expected result.
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Appendix A. A general version of Wick’s lemma

Let Q be an n × n symmetric positive-definite matrix. Define the following differential operator acting on C∞(Rn)

D(Q ) = exp
(
1
2
(Q−1)ij

∂

∂xi
∂

∂xj

)
= 1 +

1
2
(Q−1)ij

∂

∂xi
∂

∂xj
+

1
8
(Q−1)ij(Q−1)kℓ

∂

∂xi
∂

∂xj
∂

∂xk
∂

∂xℓ
+ · · · .

Introduce a formal parameter λ and consider the symmetric matrix Q/λ thought of as a matrix in R[λ, λ−1
] ⊂

R[λ1/2, λ−1/2
]. If f (λ) is an element in R[λ1/2, λ−1/2

] we let f (λ)(N) denote its Nth truncation, i.e. the sum of terms of f (λ) of
homogeneous degree ≤ N .

Proposition A.1. Let ϕ ∈ C∞
c (Rn) be a compactly supported function and Q be a symmetric positive-definite matrix Q . Then, for

any N > 0 one has∫
x∈Rn

ϕ(x)e−
1
2 x

T (Q/λ)xdvolx =

(
λd/2

√
det

(
2πQ−1

)
(D(Q/λ)ϕ) (0)

)
(N)

+ O(λN+d/2+1). (A.0.1)
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Proof.
We will use the ordinary statement of Wick’s lemma. It states that for any polynomial p(x) = p(x1, . . . , xd) one has∫

x
p(x)e−xTQxdvolx =

√
det

(
2πQ−1

)
(D(Q )p(x)) (0).

Notice that if p is homogeneous and of odd degree then the right-hand side is necessarily zero. Now, wewrite the compactly
supported function ϕ as a Taylor expansion near zero. For any N ≥ 0 we can write

ϕ(x) =

2N+1∑
k≥0

∑
|(a1,...,ad)|=k

1
(a1)! · · · (ad)!

(
∂kϕ

∂(x1)a1 · · · ∂(xd)ad

)
x=0

(x1)a
1
· · · (xd)a

d
+ R(x)

where R(x) is the remainder. Applying Wick’s lemma for polynomials we obtain the first term on the right-hand side of
Eq. (A.0.1). To complete the proof, it suffices to show that the integral of R(x) against e−xT (Q/λ)x is of order λN+1. We break
the integration over Rd into three regions. First, let r > 0 be such that |R(x)| < C |x|2N+2 for |x| < r (this exists by Taylor’s
theorem). Then, by (a slightly modified version of) Wick’s lemma for polynomials we have∫

Br (0)
|R(x)|e−xT (Q/λ)xdvolx ≤ C

∫
Br (0)

|x|2N+2e−xT (Q/λ)xdvolx ≤ C ′
|λ|N+d/2+1

for some constant C ′ > 0.
We write Rd

= Br (0)∪ Jr ∪ J ′r where Jr = supp(ϕ) \ Br (0) and J ′r = R4
\ supp(ϕ). It remains to show that the integral over

the regions Jr , J ′r is of order λ
N+d/2+1.

If Jr is empty, we are done. If it is not empty, letM = maxx∈Rd |R(x)|. Then∫
Jr
e−xT (Q/λ)xdvolx ≤ Cλd/2 max

x∈J
e−xT (Q/λ)x

≤ C ′Me−s2/λ

for some constants C, C ′ and some s ∈ Rd with |s| = r . The right-hand side vanishes exponentially fast as λ goes to zero, so
we may discard it.

Finally, we estimate the integral over J ′r . As ϕ vanishes in J ′r we know that R(x) is given by the Taylor polynomial in that
domain. Thus, there is some constant C such that |R(x)| ≤ Cf (x), where f (x) is a homogeneous polynomial of degree 2N + 2,
in J ′r . Then, we have by Wick’s lemma for polynomials∫

J ′r

|R(x)|e−xT (Q/λ)xdvolx ≤ C
∫
Rd

f (x)e−xT (Q/λ)x
= C ′λN+d/2+1

as desired. □

An immediate corollary that we use often in the proof of asymptotic freedom is when we take n = 4 and A =
1
2τ · id4×4.

We state it here for reference.

Corollary A.2. For any compactly supported function ϕ ∈ C∞
c (R4) and τ > 0 one has∫

x∈R4
ϕ(x)e−τ |x|2/4dvolx = (4π )2τ−2

(
exp

(
τ−1

∑
m

∂

∂xm
∂

∂xm

)
ϕ

)
(0).

Appendix B. Calculation of analytic factors

In this appendix we will evaluate the analytic integrals we needed for the diagram calculations in Section 5.3 using the
form of Wick’s lemma given as Corollary A.2 above. Throughout these calculations we will write τ =

1
t1

+
1
t2
. We will

frequently use the following elementary calculations which we present here for reference.

Singlog ε

∫ L

t1,t2=ε

dt1dt2
1

t31 t
2
2τ

3
= Singlog ε

∫ L

t1,t2=ε

dt1dt2
t2

(t1 + t2)3
= −

1
2

Singlog ε

∫ L

t1,t2=ε

dt1dt2
1

t31 t
3
2τ

3
= Singlog ε

∫ L

t1,t2=ε

dt1dt2
1

(t1 + t2)3
= 0

Singlog ε

∫ L

t1,t2=ε

dt1dt2
1

t31 t
3
2τ

4
= Singlog ε

∫ L

t1,t2=ε

dt1dt2
t1t2

(t1 + t2)4
= −

1
6

Singlog ε

∫ L

t1,t2=ε

dt1dt2
1

t41 t
2
2τ

4
= Singlog ε

∫ L

t1,t2=ε

dt1dt2
t21

(t1 + t2)4
= −

1
3
.
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Proposition B.1. For any compactly supported function ϕ(x, y) ∈ C∞
c (R4

× R4), we have

Singlog ε

(∫
x

∫
y

∫ L

t1=ε

dt1

∫ L

t2=ε

dt2ϕ(x, y)
∂kt1
∂xi

(x, y)
∂kt2
∂xj

(x, y)dvolxdvoly

)
= −

1
16π2

1
6

(∫
x

(
∂2ϕ

∂xi∂xj

)
x=y

dvolx +
1
2
δij
∫
x

(
∂2ϕ

∂xm∂xm

)
x=y

dvolx

)
.

Proof. The derivative of the heat kernel is given by

∂kt1
∂xi

= −
1

(4π )2
xi − yi

2t3
e−|x−y|2/4t .

Thus the integral on the left-hand side can be written as

1
(4π )4

1
4

∫
x,y,t1,t2

ϕ(x, y)
(xi − yi)(xj − yj)

t31 t
3
2

exp
(
−
τ

4
|x − y|2

)
where τ =

1
t1

+
1
t2

as above. Next, we make the following change of coordinates (x, y) ↦→ (z, w) = (x − y, y). In these
coordinates the integral simplifies to

1
(4π )4

1
4

∫
z,w,t1,t2

ϕ(z, w)
z iz j

t31 t
3
2
exp

(
−
τ

4
|z|2

)
.

We now perform a Wick expansion using Corollary A.2 in z ∈ R4, which gives us

1
16π2

1
4

∫
w,t1,t2

dt1dt2dvolw
1

t31 t
3
2τ

2

(
exp

(
τ−1

∑
m

∂

∂zm
∂

∂zm

)
z iz jϕ(z, w)

)
(z = 0).

The first nonzero term in the exponential above is of the form

1
16π2

1
4

∫
w,t1,t2

dt1dt2dvolw
1

t31 t
3
2τ

2

(
τ−1

∑
m

∂

∂zm
∂

∂zm
(z iz jϕ(z, w))

) ⏐⏐⏐
z=0

which does not contribute a log ε divergence. The next nonzero term in the Wick expansion is

1
16π2

1
4
1
2

∫
w

(
8
∂

∂z i
∂

∂z j
ϕ + 4δij

∑
m

∂2ϕ

∂(zm)2

)
(z = 0, w)

∫ 1

t1,t2=ε

dt1dt2
t1t2

(t1 + t2)4
.

The logarithmic divergent part of the t1, t2 integral is given by −
1
6 log ε. It is easy to see that the higher terms in the Wick

expansion are convergent as ε → 0, so do not contribute to the log divergence. We conclude that

Singlog ε

(∫
x

∫
y

∫ L

t1=ε

dt1

∫ L

t2=ε

dt2ϕ(x, y)
∂kt1
∂xi

(x, y)
∂kt2
∂xj

(x, y)dvolxdvoly

)
= −

1
16π2

1
6

(∫
x

(
∂2ϕ

∂xi∂xj

)
x=y

dvolx +
1
2
δij
∫
x

(
∂2ϕ

∂xm∂xm

)
x=y

dvolx

)
,

as desired. □

Proposition B.2. For any compactly supported function ϕ(x, y) ∈ C∞
c (R4

× R4), we have

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t2
∂kt1
∂xi

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2 = −
1

16π2

1
4

∫
x

∂ϕ

∂xi

⏐⏐⏐⏐
x=y

dvolx.

Proof. Expanding the derivatives of the heat kernels we find that this integral is equal to

1
(4π )4

1
2

∫
ϕ(x, y)(xi − yi)

1
t31 t

2
2
e−

τ
4 |x−y|2dvolxdt1dt2 −

1
(4π )4

1
8

∫
ϕ(x, y)(xi − yi)|x − y|2

1
t31 t

3
2
e−

τ
4 |x−y|2dvolxdt1dt2.
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Applying Wick’s lemma we find that in the first term only the linear summand in the Wick expansion contributes to the log
divergence,

Singlog ε
1

(4π )4
1
2

∫
ϕ(x, y)(xi − yi)

1
t31 t

2
2
e−

τ
4 |x−y|2dvolxdt1dt2 =

1
16π2 Singlog ε

∫
∂iϕ(x, x)

1
t31 t

2
2τ

3
dvolxdt1dt2

= −
1

16π2

1
2

∫
∂iϕ(x, x)dvolx.

Likewise in the second term only the quadratic summand contributes,

Singlog ε
1

(4π )4
1
8

∫
t1,t2,x,y

ϕ(x, y)(xi − yi)|x − y|2
1

t31 t
3
2
e−

τ
4 |x−y|2

=
1

16π2

1
8
12 Singlog ε

∫
∂iϕ(x, x)

1
t31 t

3
2τ

4
dvolxdt1dt2

= −
1

16π2

1
4

∫
∂iϕ(x, x)dvolx.

Thus the total log divergence of the sum of the above two integrals is given by −
1

16π2
1
4

∫
x ∂iϕ(x, x)dvolx as desired. □

Proposition B.3. For any compactly supported function ϕ(x, y) ∈ C∞
c (R4

× R4), we have

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t2
∂kt1
∂xi

∂2kt2
∂xj∂xk

dvolx ⊗ dvolydt1dt2

=
1

16π2

1
12

(
δij
∫
x

∂ϕ

∂xk

⏐⏐⏐
x=y

dvolx + δik
∫
x

∂ϕ

∂xj

⏐⏐⏐
x=y

dvolx − 2δjk
∫
x

∂ϕ

∂xi

⏐⏐⏐
x=y

dvolx

)
.

Proof. Expanding the heat kernels we see this integral is given by

1
(4π )4

1
4
δjk
∫

(xi − yi)ϕ
1

t31 t
2
2
e−

τ
4 |x−y|2

−
1

(4π )4
1
8

∫
(xi − xi)(xj − xj)(xk − xk)ϕ

1
t31 t

3
2
e−

τ
4 |x−y|2

Applying Wick’s lemma, in the first term only the linear part of the Wick expansion contributes. The log divergence of this
term is given by −

1
16π2

1
4δ

jk
∫
∂iϕ(x, x)dvolx. In the second term only the quadratic part of the Wick expansion contributes,

and the log divergence of the second term is read off as

1
16π2

1
12

(
δij
∫
x

∂ϕ

∂xk

⏐⏐⏐
x=y

dvolx + δik
∫
x

∂ϕ

∂xj

⏐⏐⏐
x=y

dvolx + δjk
∫
x

∂ϕ

∂xi

⏐⏐⏐
x=y

dvolx

)
.

Adding these terms up we obtain the result. □

Proposition B.4. For any compactly supported function ϕ(x, y) ∈ C∞
c (R4

× R4), we have

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t1t2
∂kt1
∂t1

∂kt2
∂t2

dvolx ⊗ dvolydt1dt2 = −
1

16π2

∫
x
ϕ(x, x)dvolx.

Proof. By expanding the t-derivative of the heat kernel the desired integral can be written as a sum of three terms

1
(4π )4

4
∫
z,w,t1,t2

ϕ(z, w)
1

t21 t
2
2
e−

τ
4 |z|2 (B.0.1)

−
1

(4π )4
1
2

∫
z,w,t1,t2

ϕ(z, w)|z|2
t1 + t2
t31 t

3
2

e−
τ
4 |z|2 (B.0.2)

+
1

(4π )4
1
16

∫
z,w,t1,t2

ϕ(z, w)
(
|z|2

)2 1
t31 t

3
2
e−

τ
4 |z|2 . (B.0.3)

We evaluate each of these integrals using Wick’s lemma. First, for term (B.0.1) only the first term in the Wick expansion
contributes to the log divergence. We can read this divergence off as

Singlog ε
1

(4π )4
4
∫
z,w,t1,t2

ϕ(z, w)
1

t21 t
2
2
e−

τ
4 |z|2

= −
1

16π2 4
∫
ϕ(x, x)dvolx.

To evaluate (B.0.2) again only the linear term in the Wick expansion contributes to the log divergence. It is read off as

Singlog ε
1

(4π )4
1
2

∫
z,w,t1,t2

ϕ(z, w)|z|2
t1 + t2
t31 t

3
2

e−
τ
4 |z|2

= −
1

16π2 4
∫
ϕ(x, x)dvolx.
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Finally, we compute the log divergence of (B.0.3). Now only the quadratic term of Wick expansion contributes to the
logarithmic divergence. This term is of the form

Singlog ε
1

(4π )4
1
16

4∑
i,j=1

∫
z,w,t1,t2

ϕ(z, w)(z i)2(z j)2
1

t31 t
3
2
e−

τ
4 |z|2

=
1

16π2

1
16

1
2

4∑
i,j=1

4∑
m,ℓ=1

∫
w

(
∂2

∂(zm)2
∂2

∂(zℓ)2
(z i)2(z j)2ϕ

)⏐⏐⏐⏐
z=0

dvolwSinglog ε

∫
dt1dt2

1
t31 t

3
2τ

4

= −
1

16π2

1
16

1
2
1
6
192

∫
ϕ(x, x)dvolx

= −
1

16π2

∫
ϕ(x, x)dvolx.

Summing up these three terms, the result follows. □

Proposition B.5. For any compactly supported function ϕ(x, y) ∈ C∞
c (R4

× R4), we have

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t1t2
∂2kt1
∂xi∂t

∂kt2
∂xj

dvolx ⊗ dvolydt1dt2 =
1

16π2 δ
ij 1
4

∫
x
ϕ(x, x)dvolx.

Proof. We compute the second derivative

∂2kt
∂xi∂t

=
1

(4π )2

(
3
2
(xi − yi)

t41
−

1
8
(xi − yi)|x − y|2

t51

)
e−

τ
4 |x−y|2 .

Thus, the integral on the left-hand side can be written as a sum of two terms, namely
1

(4π )4
3
4

∫
z,w,t1,t2

ϕ(z, w)z iz j
1

t31 t
2
2
e−

τ
4 |z|2 (B.0.4)

−
1

(4π )4
1
16

∫
z,w,t1,t2

ϕ(z, w)z iz j|z|2
1

t41 t
2
2
e−

τ
4 |z|2 . (B.0.5)

As usual, we evaluate these using Wick’s lemma. For term (B.0.4), only the linear term in the Wick expansion contributes to
the logarithmic divergence. We read it off as

Singlog ε
1

(4π )4
3
4

∫
z,w,t1,t2

ϕ(z, w)z iz j
1

t31 t
2
2
e−

τ
4 |z|2

=
1

16π2

3
4
2δij

∫
ϕ(x, x)dvolxSinglog ε

∫
dt1dt2

1
t31 t

2
2τ

3

= −
1

16π2

3
4
2δij

∫
ϕ(x, x)dvolx.

Finally, we evaluate the logarithmic divergence of term (B.0.5). Only the quadratic part of theWick expansion contributes
to the logarithmic divergence. It is given by

− Singlog ε
1

(4π )4
1
16

4∑
k=1

∫
z,w,t1,t2

ϕ(z, w)z iz j(zk)2
1

t41 t
2
2
e−

τ
4 |z|2

= −
1

16π2

1
16

1
2

4∑
m,ℓ=1

∫
w

(
∂2

∂(zm)2
∂2

∂(zℓ)2
z iz j|z|2ϕ

)⏐⏐⏐⏐
z=0

Singlog ε

∫
dt1dt2

1
t41 t

2
2τ

4

=
1

16π2

1
16

1
2
48
3

∫
ϕ(x, x)dvolx

=
1

16π2

1
2

∫
ϕ(x, x)dvolx.

Again, summing these terms together yields the desired result. □

Proposition B.6. For any compactly supported function ϕ(x, y) ∈ C∞
c (R4

× R4) the logarithmic singular part

Singlog ε

∫
x,y,t1,t2

ϕ(x, y)t1t2
∂2kt1
∂xm∂xi

∂kt2
∂xj

dvolx ⊗ dvolydt1dt2

vanishes identically.



C. Elliott et al. / Journal of Geometry and Physics 123 (2018) 246–283 283

Proof. This is similar in form to Proposition B.3. Expanding the heat kernels we see this integral is given by
1

(4π )4
1
4
δjk
∫

(xi − yi)ϕ
1

t21 t
2
2
e−

τ
4 |x−y|2

−
1

(4π )4
1
8

∫
(xi − yi)(xj − yj)(xk − yk)ϕ

1
t31 t

2
2
e−

τ
4 |x−y|2 .

The first term of the Wick expansion of each of the two integrals above has t-integrals of the form∫ L

t1,t2=ε

t1t2
(t1 + t2)3

and
∫ L

t1,t2=ε

t21 t2
(t1 + t2)4

respectively. It is easy to see that both of these integrals are convergent in the limit ε → 0. □
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