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Abstract: We introduce the concept of a holomorphic field theory on any complexman-
ifold in the language of the Batalin–Vilkovisky formalism.When the complex dimension
is one, this setting agrees with that of chiral conformal field theory. Our main result con-
cerns the behavior of holomorphic theories under renormalization group flow. Namely,
we show that holomorphic theories are one-loop finite.We use this to completely charac-
terize holomorphic anomalies in any dimension. Throughout, we compare our approach
to holomorphic field theories to more familiar approaches including that of supersym-
metric field theories.
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1. Introduction

From a mathematical perspective, much of the appeal of quantum field theory is that
often theories depend naturally on input geometric data. Furthermore, the usual quanti-
ties in quantum field theory such as expectation values and the partition function produce
invariants of these underlying geometries. An important and fruitful instance of this is
the notion of a topological field theory. Mathematically, a topological field theory can
be defined on an arbitrary manifold of a fixed dimension. In a precise way, topological
theories depend naturally on the smooth structure of the manifold (or smooth structures
on associated data such as a bundle). A more complicated class of theories are Rie-
mannian field theories, which, in addition to smooth structures, are sensitive to input
metric data. These theories have more refined invariants associated to them, such as the
β-function, and are often more relevant to physical examples. In this paper, we study
a class of theories that lie between the aforementioned examples. These holomorphic
theories depend naturally on the complex structure of the underlying space-time.

The idea of studying holomorphic dependence in quantumfield theory is certainly not
a new one. The most well-known case of this appears in complex dimension one with
the notion of a chiral conformal field theory. Here, the holomorphic structure shines
most brightly through the operator product expansion (OPE) of chiral operators in
the theory. This says that the dependence on the product of operators on their relative
position is holomorphic, even at the quantum level. These operators combine to form a
mathematical object called a vertex algebra. Numerous calculations in conformal field
theory reduce to algebraic manipulations at the level of vertex algebras. Furthermore,
on arbitrary algebraic curves, the phenomena of operator product expansions has been
interpreted mathematically through the pioneering work of Beilinson and Drinfeld on
chiral algebras [BD04]. This is arguably one of the greatest successes of mathematics
in describing a small, albeit important, class of field theories.

Past dimension one, in complex dimensions two, four and six, an approach to study-
ing special types of holomorphic theories has appeared in the work of Nekrasov and
collaborators [Nek96,LMNS97,LMNS96]. In the physics literature, a holomorphic ver-
sion of Chern–Simons theory has appeared as a twist of 10d supersymmetric Yang–Mills
theory [Bau11] as well as in [Pop99,Pop00].

A holomorphic theory of gravity has been proposed in [BCOV94]. Recently, Costello
and Li [CLa,CLb,Cosa,Cosb] have given a mathematical construction of this theory in
the BV formalism and have studied applications to the topological string. Ourmotivation
for the definition of a holomorphic quantum field theory is largely based off of an
abstraction of the formalism that Costello and Li have developed in their work. Many
of the technical methods that are employed here are generalizations of some key results
that appear in this work.

The goal of this paper is two-fold. In the first part the discussion is fairly formal.
After a short recollection of field theory in the Batalin–Vilkovisky formalism, we go
on to define the definition of a holomorphic field theory on any complex manifold. We
characterize holomorphic deformations of holomorphic theories and provide numerous
examples of these theories in the language we set up.

The second part of the paper proceeds to study quantizations of holomorphic field
theories defined on C

d , for any d ≥ 1. Of course, studying properties of quantization is
extremely theory-dependent. Nevertheless, our main result says that when it comes to
renormalization, holomorphic theories are generically well-behaved. We show that the
renormalization of a holomorphic theory on C

d is finite for quantization at one-loop. A
more precise statement is given in Theorem 3.4.
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The approach to quantum field theory we use follows Costello’s theory of renormal-
ization and the Batalin–Vilkovisky formalism developed in [Cos11]. In broad strokes,
it says that to construct a full quantum field theory it suffices to define the theory at
each energy (or length) scale and to ask that these descriptions be compatible as we
vary the scale. Concretely, this compatibility is through the renormalization group (RG)
flow and is encoded by an operator W (Pε<L ,−) acting on the space of functionals.
The functional W (Pε<L ,−) is defined as a sum over weights of graphs which is how
Feynman diagrams appear in Costello’s formalism. The infamous infinities of quan-
tum field theory arise due to studying behavior of theories at arbitrarily high energies
(or small lengths). In physics this is called the ultra-violet (UV) divergence. Our result
can be interpreted by saying that, at one-loop, holomorphic theories have no UV diver-
gences.

Although we do not consider this topic in the present paper, a large collection of
examples of holomorphic theories come from familiar physical theories. Namely, holo-
morphic theories generically appear asminimal twists of supersymmetric theories. These
are more general than the topological twists considered by Witten [Wit88]. Any super-
charge Q of a supersymmetric theory satisfying Q2 = 0 allows one to construct a “twist".
In some cases, where Clifford multiplication with Q spans all translations such a twist
becomes a topological theory (in the weak sense). In any case, however, such a Q defines
a “holomorphic twist" [Cos13], which results in the type of holomorphic theories we
consider. Regularization in supersymmetric theories, especially gauge theories, is noto-
riously difficult. Our result implies that after twisting the analytic difficulties become
much easier to deal with. Consequently, facets of these theories, such as their anoma-
lies, can be cast in a more algebraic framework. For a recent discussion of holomorphic
aspects of twists of supersymmetric theories see [ES].

In no way does this paper tell the complete story of holomorphic field theory. A
major future program of the author is to study the behavior of operators for holomorphic
field theory, even in the case that the complex manifold is X = C

d . In general, the
operators of any quantum field theory form a factorization algebra [CG17,CG]. For
one-dimensional holomorphic theories, our formalism recovers the theory of chiral and
vertex algebras [Wil17,GGW,CG17]. When d ≥ 2 there is strong evidence that the
factorization algebras of holomorphic theories combine to form somehigher dimensional
vertex algebra structure, where the OPE still varies holomorphically with respect to the
relative location of the operators. We will return to this in later publications.

Notation and homological conventions.

• Vector spaces and cochain complexes are defined over C. All tensor products ⊗ =
⊗C are defined over C, unless otherwise specified.

• If V ∗ is a graded vector space, then V ∗[k] is the graded vector space which is V i+k

in degree i .
• If V ∗ is a graded vector space, the notation v ∈ V ∗[k] will signify that v is a
homogenous element of degree k.

• All products and commutators [−,−]will be understood as products and commuta-
tors in the graded sense, and will hence follow the Koszul rule of signs. For instance,
if v is degree i and w is degree j then [v,w] = − (−1)i j [w, v] whenever [v,w] and
[w, v] are defined.
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2. The Definition of a Holomorphic Field Theory

The goal of this section is to define the notion of a holomorphic field theory. This is a
variant of Costello’s definition of a theory in the Batalin–Vilkovisky formalism, which
wewill recall at a rapid pace in the first part of this section. In crude summary, to arrive at
the definition of a holomorphic field theory we modify the definition of an ordinary BV
theory by inserting theword “holomorphic” in front ofmost objects (bundles, differential
operators, etc..). By applying the Dolbeault complex in appropriate locations, we will
recover Costello’s definition of a theory, but with a holomorphic flavor, see Table 1.

2.1. A recollection of the BV-BRST formalism. In this section we will give an expedient
review of the classical Batalin–Vilkovisky formalism. We will also set up the requisite
conventions and notations that we will use throughout this paper.

2.1.1. Classical field theory Classical field theory is a formalism for describing a physi-
cal system in terms of objects called fields. Mathematically, the space of fields is a (most
often infinite dimensional) vector space E. Classical physics is described by the critical
locus of a (usually real or complex valued) linear functional on the space of fields

S : E → R or C, (1)

called theaction functional. The critical locus is the locus of fields that have zero variation

Crit(S) := {ϕ ∈ E | dS(ϕ) = 0}. (2)

A field ϕ satisfying the equation dS(ϕ) = 0 is said to be a solution to the classical
equations of motion.

Even in the finite dimensional case, if the functional S is not sufficiently well-behaved
the critical locus can be still be highly singular. The starting point of the classical Batalin–
Vilkovisky formalism is to instead consider the derived critical locus. To get a feel for
this, we review the finite dimensional situation. Let M be a manifold, which is our ansatz
for E at the moment, and suppose S : M → R is a smooth map. The critical locus is
the intersection of the graph of dS in T ∗M with the zero section 0 : M → T ∗M . Thus,
functions on the critical locus are of the form

O(Crit(S)) = O(�(dS)) ⊗O(T ∗M) O(M).

The derived critical locus is a derived space whose dg ring of functions is

O(Crith(S)) = O(�(dS)) ⊗L

O(T ∗M) O(M).

We have replaced the strict tensor product with the derived one. Using the Koszul res-
olution of O(M) as a O(T ∗M)-module one can write this derived tensor product as a
complex of polyvector fields equipped with some differential:

O(Crith(S)) � (PV−∗(M), ιdS
)
.

In cohomological degree −i we have PV−i (M) = �(M,∧i T M) and ιdS denotes con-
traction with the one-form dS (which raises cohomological degree with our regrading
convention). With our grading convention we have O(T ∗[−1]M) = PV−∗(M). The
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space O(T ∗[−1]M) has natural shifted Poisson structure, which takes the form of the
familiar Schouten–Nijenhuis bracket of polyvector fields.

The takeaway is that the derived critical locus of a functional S : M → R has
the structure of a (−1)-shifted symplectic space. This will be the starting point for our
definition of a theory in the BV formalism in the general setting.

In all non-trivial examples the space of fields E is infinite dimensional and we must
be careful with what functionals S we allow. The space of fields we consider will always
have a natural topology, and we will choose functionals that are continuous with respect
to it. We include a discussion of our convention for infinite dimensional vector spaces
including duals and spaces of functionals in the Appendix.

In general, the space of fields of a field theory is equal to the space of smooth sections
of a Z-graded vector bundle E → X on a manifold E = �(X, E). The Z-grading is the
cohomological, or BRST,1 grading of the theory.

2.1.2. Local functionals The class of functionals S : E → R defining the classical
theories we consider are required to be local, or given by the integral of a Lagrangian
density. We define this concept now.

Let DX denote the sheaf of smooth differential operators on X . If E is any graded
vector bundle on X let Jet(E) denote its bundle of∞-jets. This is a smooth vector bundle,
albeit infinite rank, on X whose fiber over y ∈ X can be identified with

Ey × C[[x1, . . . , xn]].
Here, {xi } is a formal coordinate near y. This object is given the natural structure of a
pro object in the category of vector bundles. We let J (E) denote the associated sheaf of
smooth sections. It is well-known that Jet(E) is equipped with a natural flat connection
rendering J (E) with the structure of a smooth DX -module.

In the Appendix we define the algebra of functions O(E(X)) on the space of global
sections E(X). This is the completed symmetric algebra on the linear dual of E(X),
where the tensor product and dual are interpreted in the appropriate topological sense.
Likewise, there is the space of reduced functionals Ored(E(X)) = O(E(X))/R. It is the
quotient of all functionals by the constant polynomial functions.

The space Ored(J (E)) inherits a natural DX -module structure from J (E). We refer
to Ored(J (E)) as the space of Lagrangians on the vector bundle E . Every element
F ∈ Ored(J (E)) can be expanded as F =∑n Fn where each Fn is an element

Fn ∈ HomC∞
X

(J (E)⊗n,C∞
X )Sn

∼= PolyDiff(E⊗n,C∞(X))Sn

where the right-hand side is the space of polydifferential operators. The proof of the
isomorphism on the right-hand side can be found in Chapter 5 of [Cos11]. We refer to
Ored(J (E)) as the (left) DX -module of Lagrangians on the vector bundle E .

A local functional is given by a Lagrangian densities modulo total derivatives. The
mathematical definition is the following.

Definition 2.1. Let E be a graded vector bundle on X . Define the sheaf of local func-
tionals on X to be

Oloc(E) = DensX ⊗DX Ored(J (E)),

where we use the natural right DX -module structure on densities.

1 Named after Becchi, Rouet, Stora, Tyutin, for which our approach to field theory is greatly influenced by
their original mathematical approach to quantization.
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Note thatwe always consider local functionals coming fromLagrangiansmodulo con-
stants.Wewill not be concerned with local functions associated to constant Lagrangians.

From the expression for functionals in Lemma A.4 we see that integration defines an
inclusion of sheaves

i : Oloc(E) ↪→ Ored(Ec). (3)

Often times when we describe a local functional we will write down its value on test
compactly supported sections, then check that it is given by integrating a Lagrangian
density, which amounts to lifting the functional along i .

2.1.3. The definition of a classical field theory Before giving the definition, we need to
recall what the proper notion of a shifted symplectic structure is in the geometric setting
that we work in.

Definition 2.2. Let E be a graded vector bundle on X . A k-shifted symplectic structure
is an isomorphism of graded vector spaces

E ∼=ω E ![k] = (DensX ⊗ E∨) [k]
that is graded anti-symmetric.

If ω∗ is the formal adjoint of the isomorphism ω∗ : E ∼= E ![k], anti-symmetry
amounts to the condition ω∗ = −ω. In general, ω does not induces a Poisson structure
on the space of all functionals O(E). This is because, as we have seen above, elements
of this space are given by distributional sections and hence we cannot pair elements
with overlapping support. The symplectic structure does, however, induce a Poisson
bracket on local functionals.2 Wewill denote the bracket induced by a shifted symplectic
structure by {−,−}.

We are now ready to give the precise definition of a classical field theory.

Definition 2.3 ([CG] Definition 5.4.0.3). A classical field theory in the BV formalism
on a smooth manifold X is a Z-graded vector bundle E equipped with a (−1)-shifted
symplectic structure together with a local functional S ∈ Oloc(E) such that:

(1) the functional S satisfies the classical master equation

{S, S} = 0;
(2) S is at least quadratic, so we can write it (in a unique way) as

S(ϕ) = ω(ϕ, Qϕ) + I (ϕ)

where Q is a linear differential operator such that Q2 = 0, and I ∈ Oloc(E) is at
least cubic;

(3) the complex (E, Q) is elliptic.

In the physics literature, the operator Q is known as the linearized BRST operator,
and {S,−} = Q + {I,−} is the full BRST operator. Ellipticity of the complex (E, Q)

is a technical requirement that will be very important in our approach to the issue of
renormalization in perturbative quantum field theory. The classical master equation is
equivalent to

QI +
1

2
{I, I } = 0.

2 Note that Oloc(E) is not a shifted Poisson algebra since there is no natural commutative product.
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A free theory is a classical theory with I = 0 in the notation above. Thus, a free
theory is a simply an elliptic complex equipped with a (−1)-shifted symplectic pairing
where the differential in the elliptic complex is graded skew-self adjoint for the pairing.

Although the spaceO(E) does not have awell-defined shifted Possoin bracket induced
from the symplectic pairing, the operator {S,−} : O(E) → O(E)[1] iswell-defined since
S is local by assumption. By assumption, it is also square zero. The complex of global
classical observables of the theory is defined by

ObsclE(X) = (O(E(X)), {S,−}).
This complex is the field theoretic replacement for functions on the derived locus of S
from the beginning of this section. Although it does not have a P0-structure, there is a
subspace that does. This is sometimes referred to as the BRST complex in the physics
literature.

2.1.4. A description using L∞ algebras There is a completely equivalent way to
describe a classical field theory that helps to illuminate the mathematical meaning-
fulness of the definition given above. The requisite concept we need to introduce is that
of a local Lie algebra (or local L∞ algebra).

First, recall that an L∞ algebra is a modest generalization of a dg Lie algebra where
the Jacobi identity is only required to hold up to homotopy. The data of an L∞ algebra
is a graded vector space V with, for each k ≥ 1, a k-ary bracket

	k : V⊗k → V [2 − k]
of cohomological degree 2−k. These maps are required to satisfy a series of conditions,
the first of which says 	21 = 0. The next says that 	2 is a bracket satisfying the Jacobi
identity up to a homotopy given by 	3. For a detailed definition see we refer the reader
to [Sta92,Get09].

We now give the definition of a local L∞ algebra on a manifold X . This has appeared
in Chapter 4 of [CG].

Definition 2.4. A local L∞ algebra on X is the following data:

(i) a Z-graded vector bundle L on X , whose sheaf of smooth sections we denote Lsh,
and

(ii) for each positive integer n, a polydifferential operator in n inputs

	n : Lsh × · · · × Lsh
︸ ︷︷ ︸

n times

→ Lsh[2 − n]

such that the collection {	n}n∈N satisfy the conditions of an L∞ algebra. In particular,
L is a sheaf of L∞ algebras.

The simplest example of a local Lie algebra starts with the data of an ordinary Lie
algebra g. We can then take the constant bundle g

X
with fiber g. The Lie bracket on g

extends to define the structure of a local Lie algebra. In this case, the sheaf of Lie algebras
is C∞

X ⊗ g. Another important example of a local Lie algebra is given by the Lie algebra
of vector fields Vect(X) on a smooth manifold. The Lie bracket of vector fields is a
bidifferential operator on the tangent bundle and this equips the sheaf of sections with
the structure of a sheaf of Lie algebras.
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Just as in the case of anordinary gradedvector bundle,we candiscuss local functionals
on a local Lie algebra L . In this case, the L∞ structure maps give this the structure of
a sheaf of complexes, providing a local version of the Chevalley–Eilenberg cochain
complex. Indeed, the ∞-jet bundle J L is an L∞ algebra object in DX -modules and so
we can define the DX -module of reduced Chevalley–Eilenberg cochains C∗

Lie,red(J L).
Mimicking the definition above, we arrive at the following local version of Lie algebra
cohomology that will come up again and again in this thesis.

Definition 2.5. Let L be a local Lie algebra. The local Chevalley–Eilenberg cochain
complex is the sheaf of cochain complexes

C∗
loc(L) = DensX ⊗DX C∗

Lie,red(L).

We denote the global sections by C∗
loc(L(X)).

Remark 2.6. Concretely, a section I of C∗
loc(L) supported onU ⊂ X is a sum of cochains

of the form

φ →
∫

U
(D1φ1 · · · Dnφn) dvolX

where φ is a compactly supported section of L over U and where Di are differential
operators L → C∞

X

The local cohomology of a local Lie algebra is the cohomology of the local CE
complex, which we will denote H∗

loc(L(X)).

Remark 2.7. We have already remarked that for a graded vector bundle E there is an
embedding Oloc(E) ↪→ Ored(E). This translates to an embedding of sheaves of cochain
complexes C∗

loc(L) ↪→ C∗
Lie,red(Lc) for any local Lie algebra L. In the case of vector

fields, there is a related cochain complex that has been studied extensively in the context
of characteristic classes of foliations [Fuk86,Gui73,Los98,BR73]. Suppose, for sim-
plicity, that X is a compact smooth manifold. If Vect(X) is the Lie algebra of vector
fields on X then the (reduced) diagonal cochain complex is the subcomplex

C∗
�,red(Vect(X)) ⊂ C∗

Lie,red(Vect(X))

consisting of cochains ϕ : Vect(X)⊗k → C satisfying ϕ(X1, . . . , Xk) = 0 if⋂k
i=1 Supp(Xi ) = ∅. That is, the cocycle vanishes unless all of the supports of the

inputs overlap nontrivially. The inclusion of the local cochain complex C∗
loc(Vect(X)) ⊂

C∗
Lie,red(Vect(X)) factors through this subcomplex to give a sequence of inclusions

C∗
loc(Vect(X)) ↪→ C∗

�,red(Vect(X)) ↪→ C∗
Lie,red(Vect(X)).

This is because the cochain of Vect(X) defined from a local cochain involves the integral
of local operators applied to the inputs.

It turns out that the definition of a classical field theory can be repackaged in terms of
certain structures on a local L∞ algebra. The first piece of data we need to transport to the
L∞ side is that of a symplectic pairing. The underlying data of a local L∞ algebra L is
a graded vector bundle. In Definition 2.2 we have already defined a k-shifted symplectic
pairing. On the local Lie algebra sign, we ask for k = − 3 shifted symplectic structures
that are also invariant for the L∞ structure maps.

Also, an important part of a classical field theory is ellipticity. We say a local L∞
algebra is elliptic if the complex (L, d = 	1) is an elliptic complex.
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Proposition 2.8 ([CG] Proposition 5.4.0.2). The following structures are equivalent:

(1) A classical field theory in the BV formalism (E, ω, S);
(2) An elliptic local Lie algebra structure on L = E[1] equipped with a (−3)-shifted

symplectic pairing.

Proof. (Sketch) The underlying graded vector bundle of the space of fields E is E and
we obtain the bundle underlying the local L∞ algebra by shifting this down L = E[1].
The (−1)-shifted symplectic structure on E transports to a (−3)-shifted on on L . The
L∞ structure maps for L come from the Taylor components of the action functional S.
The exterior derivative of S is a section

dS ∈ C∗
loc(L,L![−1]),

where on the right-hand side we have zero differential. The Taylor components are of
the form (dS)n : L⊗n → L![−1]. Using the shifted symplectic pairing we can identify
these Taylor components with maps (dS)n : L⊗n → L[2]. Thus, dS can be viewed
as a section of C∗

loc(L,L[2]). This is precisely the space controlling deformations of
L as a local Lie algebra. One checks immediately that the classical master equation
is equivalent to the fact that dS is a derivation, hence it determines the structure of a
local Lie algebra. The first Taylor component 	1 is precisely the operator Q before, so
ellipticity of (E, Q) is equivalent to ellipticity of (L, 	1). ��

2.2. Free holomorphic field theories. In this section we proceed with the general defi-
nition of a classical holomorphic field theory. In complex dimension one, this definition
has appeared in Section 3.2 of [Li], where it was referred to as a “two-dimensional chi-
ral theory". The formulation here can be seen as a straightforward generalization of the
definition of a chiral theory on a Riemann surface to arbitrary complex manifolds.

Throughout this section, we fix a complex manifold X of complex dimension d. We
start with the definition of a free holomorphic field theory on X , from there we will go
on to describe how to incorporate interactions.

The essential information that governs a classical field theory are its equations of
motion. For a free theory, the equations of motion are linear in the space of fields. At
least classically, the setting of free theories can essentially be reduced to the study linear
partial differential equations.

First, we must come to terms with the fields of a holomorphic theory. Just as in the
case of an ordinary field theory, they will arise as sections of some Z-graded vector
bundle on X . The Z-grading plays the same role as in the usual setting, it counts the
BRST, or ghost, degree. We will also refer to this as the cohomological degree. For a
holomorphic theory the crucial step is that we impose that this graded vector bundle
be holomorphic. By a holomorphic Z-graded vector bundle we mean a Z-graded vector
bundle V • = ⊕i V i [−i] (which we will usually abbreviate simply as V ) such that each
graded piece V i is a holomorphic vector bundle (here V i is in cohomological degree
+i). Thus, in order to define a holomorphic field theory on a complex manifold X we
start with the data:

(1) a Z-graded holomorphic vector bundle V • = ⊕i V i [−i] on X , so that the finite
dimensional holomorphic vector bundle V i is in cohomological degree i .

Remark 2.9. For supersymmetric theories it may be desirable to include an additional
Z/2, or fermionic, grading into the data of the space of fields, but we do not consider
that here.
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A free classical theory is made up of a space of fields as above together with the data
of a linearized BRST differential QBRST and a shifted symplectic pairing of cohomo-
logical degree−1. Ordinarily, the BRST operator is simply a differential operator on the
underlying vector bundle defining the fields. For the class of theories we are considering,
we require this operator be holomorphic. For completeness, we briefly recall this notion.

Suppose that E and F are two holomorphic vector bundles on X . Note that the
Hom-bundle Hom(E, F) inherits a natural holomorphic structure. By definition, a holo-
morphic differential operator of order m is a linear map

D : �hol(X; E) → �hol(X; F)

such that, with respect to a holomorphic coordinate chart {zi } on X , D can be written as

D|{zi } =
∑

|I |≤m

aI (z)
∂ |I |

∂zI
(4)

where aI (z) is a local holomorphic section of Hom(E, F). Here, the sum is over all
multi-indices I = (i1, . . . , id) and

∂ |I |

∂zI
:=

d∏

k=1

∂ ik

∂zikk
.

The length of the multi-index I is defined by |I | := i1 + · · · + id .

Example 2.10. The most basic example of a holomorphic differential operator is the
holomorphic de Rham operator ∂ . For each 1 ≤ 	 ≤ d = dimC(X), it is a holomorphic
differential operator from E = ∧	T 1,0∗X to F = ∧	+1T 1,0∗X which on sections is

∂ : 	,hol(X) → 	+1,hol(X).

Locally, of course, it has the form

∂ =
d∑

i=1

(dzi ∧ (−))
∂

∂zi
,

where dzi ∧(−) is the vector bundle homomorphism∧	T 1,0∗X → ∧	+1T 1,0∗X sending
α → dzi ∧ α.

The next piece of data we fix is:

(2) a square-zero holomorphic differential operator

Qhol : Vhol → Vhol

of cohomological degree +1. Here Vhol denotes the holomorphic sections of V .

Finally, to define a free theory we need the data of a shifted symplectic pairing. For
reasons to become clear in a moment, we must choose this pairing to have a strange
cohomological degree. The last piece of data we fix is:

(3) an invertible bundle map

(−,−)V : V ⊗ V → KX [d − 1].
Here, KX is the canonical bundle on X .
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The definition of the fields of an ordinary field theory are the smooth sections of the
vector bundle V . In our situation this is a silly thing to do since we lose all of the data of
the complex structure we used to define the objects above. The more natural thing to do
is to take the holomorphic sections of the vector bundle V . By construction, the operator
Qhol and the pairing (−,−)V are defined on holomorphic sections, so on the surface
this seems reasonable. The technical caveat that the sheaf of holomorphic sections does
not satisfy certain conditions necessary to study renormalization and observables in our
approach to QFT. For more details on this see Remark 2.13. The solution to this problem
is to take a natural resolution of holomorphic sections in order to relate to the usual
definition of a classical BV theory.

Given any holomorphic vector bundle V we can define its Dolbeault complex
0,∗(X, V ) with its Dolbeault operator

∂ : 0,p(X, V ) → 0,p+1(X, V ).

Here, 0,p(X, V ) denotes smooth sections of the vector bundle
∧p

(T 0,1)∨X ⊗ V . For
any U ⊂ X open subset, the complex 0,∗(U, V ) is defined. In this way, we obtain a
natural sheaf of complexes on X , that we denote by 

0,∗
X (V ). The fundamental property

of the Dolbeault complex is that by Dolbeault’s Theorem it provides a resolution for the
sheaf of holomorphic sections:

Vhol → 0
X (V )

∂−→ 
0,1
X (V )

∂−→ · · · .

Wenow take agradedholomorphic vector bundleV = V • as above, equippedwith the
differential operator Qhol. The Dolbeault resolution 0,∗(X, V •) is now equipped with
two differentials Qhol and ∂ . The complex of fields is the totalization of this complex:

EV = Tot
(
0,∗(X, V ), ∂, Qhol

)
=
(
0,∗(X, V ), ∂ + Qhol

)
.

The operator ∂+Qhol will be the linearized BRST operator of our theory. By assumption,
we have [∂, Qhol] = 0 so that (∂ +Qhol)2 = 0 and hence the fields still define a complex.

By construction, EV has the natural structure of a sheaf of complexes. When we
want to consider global sections over X we use the notation EV (X). There is similarly a
cosheaf of compactly supported sectionsEV,c whose underlying graded is the compactly
supported Dolbeault forms 

0,∗
c (X, V ).

The pairing (−,−)V defines a pairing on EV as follows. The thing to observe here is
that (−,−)V extends to the Dolbeault complex in a natural way: we simply combine the
wedge product of forms with the pairing on V . We obtain the following composition.

EV,c ⊗ EV,c
(−,−)V ��

ωV
��


0,∗
c (X, KX )[d − 1]

∫
X

��

C[−1].
The top Dolbeault forms with values in the canonical bundle KX are precisely the top
forms on the smooth manifold X , and we use the integration map

∫
X : 

d,d
c (X) → C.

We note that integration is of cohomological degree d, as exhibited in the diagram.
We arrive at the following definition.
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Definition/Lemma 1. A free holomorphic theory on a complex manifold X is the data
(V, Qhol, (−,−)V ) as in (1), (2), (3) above such that Qhol is a square zero holomorphic
differential operator that is graded skew self-adjoint for the pairing (−,−)V . The triple
(EV , QV = ∂ + Qhol, ωV ) defines a free BV theory in the usual sense.

The usual prescription for writing down the associated action functional holds in this
case. If ϕ ∈ 0,∗(X, V ) denotes a field the action is

S(ϕ) =
∫

X

(
ϕ, (∂ + Qhol)ϕ

)

V
.

We arrive at an example, which is a higher dimensional version of a familiar chiral
CFT.

Example 2.11. The free βγ system. Suppose that

V = C ⊕ KX [d − 1].
Let (−,−)V be the pairing

(C ⊕ KX ) ⊗ (C ⊕ KX ) → KX ⊕ KX → KX

sending (λ, μ)⊗ (λ′, μ′) → (λμ′, λ′μ) → λμ′ +λ′μ. In this example we set Qhol = 0.
One immediately checks that this is a holomorphic free theory as above. The space of
fields can be written as

EV = 0,∗(X) ⊕ d,∗(X)[d − 1].
We write γ ∈ 0,∗(X) for a field in the first component, and β ∈ d,∗(X)[d − 1] for a
field in the second component. The action functional reads

S(γ + β) =
∫

X
β ∧ ∂γ.

When d = 1 this reduces to the ordinary chiral βγ system from conformal field theory.
Theβγ system is a bosonic version of the ghost bc system that appears in the quantization
of the bosonic string, see Chapter 6 of [Pol98]. For instance, we will see how this theory
is the starting block for constructing general holomorphic σ -models.

Of course, there are many variants of the βγ system that we can consider.

Example 2.12. Coefficients in a bundle For instance, if E is any holomorphic vector
bundle on X we can take

V = E ⊕ KCd ⊗ E∨[d − 1]
where E∨ is the linear dual bundle. The pairing is constructed as in the case above
where we also use the evaluation pairing between E and E∨. In thise case, the fields are
γ ∈ 0,∗(X, E) and β ∈ d,∗(X, E∨)[d − 1]. The action functional is simply

S(γ + β) =
∫

evE (β ∧ ∂γ ).

Here, evE stands for the evaluation pairing between sections of E and sections of the
dual E∨. When E is a tensor bundle of type (r, s) this theory is a bosonic version of
the bc ghost system of spin (r, s). For a general bundle E we will refer to it as the βγ

system with coefficients in the bundle E .
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Remark 2.13. We will only work with a holomorphic theory prescribed by the data
(V, (−,−)V , Qhol) through its associated BV theory. One might propose a definition of
a BV theory in the analytic category based off of holomorphic sections of holomorphic
vector bundles. There are numerous technical reason why this approach fails in our
approach to QFT. In particular, the sheaf of holomorphic sections of a holomorphic
bundle is not fine, and there do not exists partitions of unity in general. In addition, there is
no holomorphic analog of compactly supported smooth functions. Compactly supported
functions are imoportant when considering locality in field theory. For instance, themain
result of [CG] is that the observables of any QFT form a factorization algebra, which is
heavily on the existence of sections with compact support.

2.3. Interacting holomorphic field theories. We proceed to define what an interacting
holomorphic theory is. A general interacting field theory with space of fields E is pre-
scribed by a functional

S : E → C

that satisfies the classical master equation. The key technical condition is that this
functional must, in addition, be local.

Since X is a complex manifold, it makes sense to consider the sheaf of holomorphic
differential operators that we denote by Dhol

X . If V is a holomorphic vector bundle we
define the bundle of holomorphic ∞-jets Jethol(V ) as follows [GG80,CW04]. This is a
pro-vector bundle that is holomorphic in a natural way. The fibers of this infinite rank
bundle Jethol(V ) are isomorphic to

Jethol(V )|w = Vw ⊗ C[[z1, . . . , zd ]],
where w ∈ X and where {zi } is the choice of a holomorphic formal coordinate near
w. We denote by J holV the sheaf of holomorphic sections of this jet bundle. The sheaf
J holV has the structure of a Dhol

X -module, that is, it is equipped with a holomorphic flat
connection ∇hol. This situation is completely analogous to the smooth case. Locally, the
holomorphic flat connection on Jethol(V ) is of the form

∇hol|w =
d∑

i=1

dwi

(
∂

∂wi
− ∂

∂zi

)
,

where {wi } is the local coordinate on X near w and zi is the fiber coordinate labeling
the holomorphic jet expansion.

One natural appearance of the bundle of holomorphic jets is in providing an explicit
description of holomorphic differential operators. The statement in the smooth category
is simply that a differential operator between vector bundles is equivalent to the data
of a map of D-modules between the associated ∞-jet bundles. In a completely analo-
gous way, holomorphic differential operators are the same as bundle maps between the
associated holomorphic jet bundles. A similar result holds for polydifferential operators,
which we also state.

Lemma 2.14. Suppose V,W are holomorphic vector bundles with spaces of holomor-
phic sections given by Vhol,Whol respectively. There is an isomorphism of sheaves on
X

Diffhol(Vhol,Whol) ∼= HomDhol
X

(J hol(V ), J hol(W )).
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Similarly, if V1, . . . , Vn,W are holomorphic bundles on X, there is an isomorphism

PolyDiffhol(Vhol
1 × · · · × Vhol

n ,Whol) ∼= Hom(J hol(V1) ⊗ · · · ⊗ J hol(Vn),W ).

In both cases, the right-hand side denotes the space of homomorphisms of holomorphic
D-modules that are compatible with the adic topology on jets.

We will utilize this intepretation of holomorphic jet bundles momentarily.
In ordinary field theory, local functionals are defined as integrals of Lagrangian

densities. By definition, a Lagrangian density is a density valued functional on the fields
that only depends on the fields through its partial derivatives. In the holomorphic setting
we have the following definition.

Definition 2.15. Let V be a vector bundle. The sheaf of holomorphic Lagrangian den-
sities on V is

Laghol(V ) = 
d,hol
X ⊗Ohol

X

(
∏

n>0

HomOhol
X

(J hol(V )⊗n,Ohol
X )Sn

)

.

The Hom-space inside the parentheses denotes maps of holomorphic vector bundles
respecting the natural filtration on ∞-jets. That is, we require the bundle maps to be
continuous with respect to the natural adic topology. We also take coinvariants for the
symmetric group Sn .

Note that we take the product over n > 0 so we do not want to consider Lagrangians
that are constant in the fields.

Equivalently, a holomorphic Lagrangian density is of the formω⊗F whereω is a top
holomorphic form and F is a functional F = ∑k Fk where, for each k, the multilinear
map

Fk : Vhol × · · · × Vhol → Ohol
X

depends only on the holomorphic ∞-jet of sections of V .
The next definition we will need is that of a holomorphic local functional. Just as

in Definition 2.1, this is given by the sheaf of Lagrangians modulo total derivatives. Of
course, in this setting we require both the Lagrangians and derivatives to be holomorphic
in the appropriate sense.

Definition 2.16. The sheaf of holomorphic local functionals is defined to be the quotient

Ohol
loc(V ) := Laghol(V )/Thol

X · Laghol(V ), (5)

where TX · Laghol(V ) denotes the subsheaf of holomorphic Lagrangians that are in the
image of the Lie derivative by some holomorphic vector field. Given a holomorphic
Lagrangian I hol ∈ Laghol(V ), we denote its class in local functionals by

∫
I hol ∈

Ohol
loc(V ).

Equivalently, we may express the quotient (5) using holomorphic D-modules in the
following way. The left Dhol

X -module structure on J hol(V ) carries over to a left Dhol
X -

module structure on the product
∏

n>0

HomOhol
X

(J hol(V )⊗n,Ohol
X ).
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Using the natural structure of a right Dhol
X -module structure on 

d,hol
X , we obtain an

isomorphism

Ohol
loc(V ) = 

d,hol
X ⊗Dhol

X

(
∏

n>0

HomOhol
X

(J hol(V )⊗n,Ohol
X )Sn

)

.

We use the notion of a holomorphic local functional to formulate the definition
of an interacting holomorphic field theory. Suppose that V is part of the data of a
free holomorphic theory (V, Qhol, (−,−)V ). The pairing (−,−)V endows the space of
holomorphic local functionals with a bracket on local functionals. Likewise, the operator
Qhol determines a differential on local functionals. These facts are summarized in the
following lemma.

Lemma 2.17. Suppose (V, Qhol, (−,−)V ) is the data of a free holomorphic theory. The
pairing (−,−)V (respectively, operator Qhol) defines a bracket {−,−}hol (respectively,
differential Qhol) on Ohol

loc(V ) of degree d − 1 (respectively, degree +1).
This yields the structure of a sheaf of dg Lie algebras:

(
Ohol
loc(V )[d − 1], Qhol, {−,−}hol

)

where Qhol is the differential, and {−,−}hol is the Lie bracket.
Proof. The operator Qhol extends to an operator on holomorphic Lagrangians in the
obvious way. Indeed, if a holomorphic Lagrangian is of the form I hol = ω ⊗ F where
F : Vhol × Vhol → Ohol, then we define QI hol = ω ⊗ (QholF). This descends to an
operator on Ohol

loc(V ) of cohomological degree +1.
Next, we show how (−,−)V defines a bracket {−,−}hol on the sheaf of holomorphic

local functionals. Denote by ωhol : Vhol ⊗Ohol Vhol → d,hol the map of Ohol-modules
which sends ϕ1 ⊗ ϕ2 → (ϕ1, ϕ2)V . A derivation X of the algebra HomOhol(Vhol,Ohol)

can be expanded in components of the form

X (k) : (Vhol)⊗k → Vhol.

Using ωhol, we define the Sk+1-invariant map of Ohol
X -modules

X (k) ∨ ωhol : (Vhol)⊗(k+1) → d,hol

which sends ϕ1 ⊗ · · · ⊗ ϕk+1 → ω(ϕ1, X (k)(ϕ2, . . . , ϕk+1)).
Any holomorphic local functional

∫
I hol ∈ Ohol

loc(V ) is Hamiltonian in the sense that

there exists a derivation Xhol
I such that

∫
I hol = ∑

k≥0 X
(k),hol
I ∨ ωhol. Moreover, Xhol

I
is a local derivation in the sense that it preserves the subspace of local holomorphic
functionals.

Given
∫
I hol,

∫
J hol ∈ Ohol

loc(V ), we define

{∫
I hol,

∫
J hol
}hol

= Xhol
I

(∫
J hol
)

∈ Ohol
loc(V ).

Note that if
∫
I hol is of total cohomological degree 	, then the derivation Xhol

I is of
degree 	 + d − 1. Thus, the bracket {−,−}hol is of degree −d + 1. It is immediate to
verify that this bracket satisfies the appropriate graded Jacobi identity and that Qhol acts
as a graded derivation. ��



1708 B. R. Williams

We can now state the definition of a classical holomorphic theory. The definition
involves a holomorphic Lagrangian I hol that is at least cubic. For brevity, we will make
the following definition.

Definition 2.18. The subsheaf of cubic holomorphic Lagrangians is

Laghol,+(V ) := 
d,hol
X ⊗Ohol

X

∏

n≥3

Hom(Jethol(V )⊗n, KX )Sn ⊂ Laghol(V )

and the corresponding space of local functionals will be denoted O
hol,+
loc (V ).

Definition 2.19. A classical holomorphic theory on a complex manifold X is the data
of a free holomorphic theory (V, Qhol, (−,−)V ) plus a holomorphic Lagrangian

I hol ∈ Laghol,+(V )

of cohomological degree d, such that the local functional
∫
I hol ∈ O

hol,+
loc (V ) is a solution

to the Maurer–Cartan equation in the dg Lie algebra (Ohol
loc(V )[d −1], Qhol, {−,−}hol):

Qhol
∫

I hol +
1

2

{∫
I hol,

∫
I hol
}hol

= 0.

As in the free case, we proceed to verify that a holomorphic theory defines an inter-
acting classical BV theory in the sense of Definition 2.3.

The underlying space of fields, as we have already seen in the free case, is EV =
0,∗(X, V ). We show how to extend a holomorphic Lagrangian to a functional on this
Dolbeualt complex.

Recall, a holomorphic Lagrangian can be written as I hol = ∑
k I

hol
k where I holk =

ω ⊗ Fk for ω ∈ d,hol and Fk : Vhol × · · · × Vhol → Ohol is of the form

Fk(ϕ1, . . . , ϕk) =
∑

i1,...,ik

Di1(ϕ1) · · · Dik (ϕk) ∈ Ohol
X .

Here, ϕi ∈ Vhol is a holomorphic section, and each Di j is a holomorphic differential
operator Di j : Vhol → Ohol.

In general, suppose V,W are holomorphic vector bundles. Every holomorphic differ-
ential operator D : V → W extends to a smooth differential operator on the associated
Dolbeualt complexes with the property that it is compatible with the ∂-operator on both
sides.

To see how this works, suppose D : Vhol → Whol is locally of the form

D =
∑

m1,...,md

am1···md (z)
∂m1

∂zm1
1

· · · ∂md

∂zmd

where am1···md (z) denotes a local holomorphic section of Hom(V,W ). Then, if α =
sI (z, z)dz I ∈ 0,∗(X, V ), where sI is a local smooth section of V , we define

D0,∗
α =

∑

m1,...,md

am1···md (z)

(
∂m1

∂zm1
1

· · · ∂md

∂zmd
sI (z, z)

)
dz I ∈ 0,∗(X,W ).
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In this way, D extends to a differential operator

D0,∗ : 0,∗(X, V ) → 0,∗(X,W ).

Since D is holomorphic, it is immediate that D0,∗
∂V = ∂W D0,∗

where ∂V , ∂W are
the (0, 1)-connections on V,W respectively. Thus, D0,∗

is a map of sheaves of cochain
complexes.

Via this construction, we extend Fk to a 0,∗(X)-valued functional on 0,∗(X, V )

by the formula

F0,∗
k : (α1, . . . , αk) →

∑

i1,...,ik

D0,∗
i1 (α1) ∧ · · · ∧ D0,∗

ik (αk) ∈ 0,∗(X).

Here, as above, the αi ’s denote sections in 0,∗(X, V ).
We have thus produced a linear map

(−)
0,∗ : HomOhol((J holV )⊗k,Ohol) → HomC∞((J0,∗(X, V ))⊗k,0,∗(X))

where J0,∗(X, V ) denotes the sheaf of smooth jets of the graded vector bundle under-
lying the Dolbeault complex. This map clearly restricts to the symmetric coinvariants
on both sides. Taking direct products and tensoring with 

d,hol
X we have a map

Laghol(V ) → d,hol ⊗C∞
∏

k>0

HomC∞(J0,∗(X, V )⊗k,0,∗(X))

∼= d,∗ ⊗C∞
∏

k>0

Hom(J0,∗(X, V )⊗k,C∞).

We have already mentioned that this map is compatible with the ∂-operator on the
right-hand side. Moreover, the holomorphic differential operator Qhol also extends to a
differential operator on the right-hand side in a way compatible with ∂ . Thus, (−)

0,∗

is a map of cochain complexes, where Laghol(X) is equipped with the differential Qhol

and the right-hand side has differential ∂ + Qhol.
The right-hand side admits a map of degree −d to d,d ⊗C∞

∏
k>0 Hom(J0,∗

(X, V )⊗k,C∞) by projecting onto the (d, d)-component of d,∗. Note that this map is
only graded linear, it does not preserve the ∂-differential. However, once we quotient by
the action of vector fields we do get a well-defined map

Ohol
loc(V ) → d,d ⊗D

∏

k>0

Hom(J0,∗(X, V )⊗k,C∞)Sk [−d].

Note that we have accounted for the shift of d coming from d,∗ → d,d [−d]. The
right-hand side is precisely the (shifted) space of ordinary local functionals for the sheaf
EV = 0,∗(X, V ) defined in Definition 2.1.

In conclusion, we have obtained the following map of sheaves of cochain complexes
∫

(−)
0,∗ : Ohol

loc(V ) → Oloc(
0,∗(X, V ))[−d]. (6)

In fact, we have the following stronger result, that this map is compatible with the
brackets on both sides.
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Lemma 2.20. The map
∫
(−)

0,∗
defines an map of sheaves of dg Lie algebras

∫
(−)

0,∗ : Ohol
loc(V )[d − 1] → Oloc(EV )[−1]

Proof. By definition, the sheaf of local functionals on EV is equal to

DensX ⊗DX Ored(JEV ).

Since Ored(JEV ) is flat as a DX -module [Cos11], we can replace the tensor product
⊗DX with the derived tensor product ⊗L

DX
.

We now use the following observation about D-modules. If M is a holomorphic
Dhol

X -module which is given by the sections of a holomorphic vector bundle, then it
forgets down to an ordinary smooth DX -module (with the same underlying C∞

X -module
structure) that we denote MC∞

. Moreover, there is a quasi-isomorphism of D-modules


d,hol
X ⊗L

Dhol
X

M[d] � 
d,d
X ⊗L

DX
MC∞

.

We apply this to the caseM = Ored(J holV ), where V is a holomorphic vector bundle
This says that there is a quasi-isomorphism


d,hol
X ⊗L

Dhol
X

Ored(J
holV )[d] � 

d,d
X ⊗L

DX
Ored(J

holV ). (7)

This quasi-isomorphism is compatible with the Qhol differential and the bracket
{−,−}hol on both sides. Note that the left-hand side is simply the space of shifted
holomorphic local functionals Ohol

loc(V )[d].
Next, observe that themap (−)

0,∗
determines amap of sheaves of cochain complexes

(−)
0,∗ : 

d,d
X ⊗L

DX
Ored(J

holV ) → DensX ⊗L

DX
Ored(JEV ). (8)

The right-hand side is quasi-isomorphic to Oloc(EV ). The composition of (7) and (8) is
simply the map (6)

∫
(−)

0,∗ : Ohol
loc(V )[d] → Oloc(EV ).

One checks immediately that this map is compatible with the brackets, namely

{
∫

I hol,
∫

J hol}hol = {
∫

I0,∗
,

∫
J0,∗}.

��
As a result of the equivalence between solutions to the classical master equation and

Maurer–Cartan elements in the dg Lie algebras of shifted local functionals, we have the
following.

Proposition 2.21. Every classical holomorphic theory (V, Qhol, (−,−)V , I hol) deter-
mines the structure of a classical BV theory. The underlying free BV theory is given in
Definition/Lemma 1 (EV , Q, ωV ) and the interaction is I = ∫ I0,∗

.

Table 1 is a useful summary showing how we are producing a BV theory from a
holomorphic theory.
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Table 1. From holomorphic to BV

Holomorphic theory BV theory

Holomorphic bundle V Space of fields EV = 0,∗(X, V )

Holomorphic differential operator Qhol Linear BRST operator ∂ + Qhol

Non-degenerate pairing (−, −)V (−1)-symplectic structure ωV

Holomorphic Lagrangian I hol Local functional I = ∫ I
0,∗ ∈ Oloc(EV )

Example 2.22. Holomorphic BF-theory Let g be a Lie algebra and X any complex
manifold. Consider the following holomorphic vector bundle on X :

V = g
X
[1] ⊕ KX ⊗ g∨

X
[d − 2].

The notation g
X
denotes the trivial bundle with fiber g. The pairing V ⊗V → KX [d−1]

is similar to the pairing for the βγ system, except we use the evaluation pairing 〈−.−〉g
between g and its dual g∨. In this example, Qhol = 0.

We describe the holomorphic Lagrangian. If fi : X → C, i = 1, 2 are holomorphic
functions and β ∈ KX , consider the trilinear functional

I hol( f ⊗ X + β ⊗ X∨) = f 2β〈X∨, [X, X ]〉g.
This defines an element I hol ∈ O

hol,+
loc (V ) of degree d and the Jacobi identity for g

guarantees {I hol, I hol}hol = 0. The fields of the corresponding BV theory are

EV = 0,∗(X, g)[1] ⊕ d,∗(X, g∗)[d − 2].
The induced local functional I0,∗

on EV is

I0,∗
(α, β) =

∫

X
〈β, [α, α]〉g.

The total action is S(α, β) = ∫ 〈β, ∂α〉 + 〈β, [α, α]〉g. This is formally similar to BF
theory (see below) and for that reason we refer to it as holomorphicBF theory. The mod-
uli problem this describes is the cotangent theory to the moduli space of holomorphic
connections on the trivialG-bundle near the trivial bundle. There is an obvious enhance-
ment that works near any holomorphic principal bundle. When d = 2, in [Joh94], or
for a more mathematical treatment see [Cosc], it is shown that this theory is a twist of
N = 1 supersymmetric pure Yang–Mills on R

4.

Example 2.23. Topological BF-theory This is a deformation of the previous example
that has appeared throughout the physics literature. Suppose we take as our graded
holomorphic vector bundle

V =
(
g
X

⊗
(
⊕d

k=0 ∧k T ∗1,0X [1 − k]
))

⊕
(
g∗

X
⊗
(
⊕d

k=0 ∧k T ∗1,0X [2(d − 1) − k]
))

.

Here∧0T ∗1,0X is understood as the trivial bundleCX . The pairing is given by combining
the evaluation pairing between g and g∗ and taking the wedge product and projecting
onto the components isomorphic to KX . Explicitly, the pairing is equal to the sum of
bundle maps of the form

evg ⊗ ∧ :
(
g
X

⊗ ∧kT ∗1,0X [1 − k]
)

⊗
(
g∗

X
⊗ ∧d−kT ∗1,0X [d − 1 + k]

)
→ KX [d − 1].
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The holomorphic differential is of the form

Qhol = idg ⊗ ∂ + idg∗ ⊗ ∂,

where ∂ is the holomorphic de Rham differential. The holomorphic interaction is given
by combining the Lie algebra structure on g with the wedge product of the holomorphic
bundles ∧kT ∗1,0X . We observe that the associated BV theory has classical space of
fields given by

(A, B) ∈ EV = ∗(X, g[1] ⊕ g∗[2d − 2])
where ∗ is now the full de Rham complex. The action functional is

S =
∫

X
〈B, dA〉g + 1

3
〈B, [A, A]〉g.

As above, 〈−,−〉g denotes the pairing between g and its dual. This is the well-known
topological BF theory on the even dimensional realmanifold X (of real dimension 2d).
It might seem silly that we have used the formalism of holomorphic field theory to
describe a very simple topological theory. We will discuss advantages of this approach
at the send of the next section. In particular, the theory of regularization for holomorphic
theories we will employ has peculiar consequences for renormalizing certain classes of
topological theories such as topological BF theory.

Remark 2.24. We have mentioned an alternative formulation of classical field theory in
terms of sheaves of L∞ algebras. Just as in the ordinary case we can formulate the data
of a classical holomorphic theory in terms of sheaves of L∞ algebras. We will not do
that here, but hope the idea of how to do so is clear.

Remark 2.25. Our definition of a holomorphic theory is compatible with the definition
of a two-dimensional chiral conformal field theory given in [Li] when the complex
dimension is d = 1.

2.4. Holomorphically translation invariant theories. Whenworking on affine space one
can ask for a theory to be invariant with respect to translations. In this section, we take
a break from holomorphic theories defined on general complex manifolds to consider
the affine manifold C

d = R
2d . We recall what a holomorphically translation invariant

theory is, and state a general result about deformations for such theories. This particular
class of theories has been discussed in Chapter 10 of [CG], and it is a special case of a
general holomorphic theory as defined above.

Let V be a holomorphic vector bundle on C
n and suppose we fix an identification of

bundles

V ∼= C
d × V0

where V0 is the fiber of V at 0 ∈ C
d . We want to consider a classical theory with space

of fields given by 0,∗(Cd , V ) ∼= 0,∗(Cd)⊗C V0. Moreover, we want this theory to be
invariant with respect to the group of translations onC

d . Per usual, it is best to work with
the corresponding Lie algebra of translations. Using the complex structure, we choose
a presentation for the complex Lie algebra of translations given by

C
2d ∼= spanC

{
∂

∂zi
,

∂

∂zi

}

1≤i≤d
.
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To define a theory, we need to fix a non-degenerate pairing on V . Moreover, we want
this to be translation invariant. So, suppose

(−,−)V : V ⊗ V → KCd [d − 1] (9)

is a skew-symmetric bundle map that is equivariant for the Lie algebra of translations.
The shift is so that the resulting pairing on the Dolbeault complex is of the appropriate
degree. Here, equivariance means that for sections v, v′ we have

(
∂

∂zi
v, v′

)

V
+

(
v,

∂

∂zi
v′
)

V
= L∂zi

(v, v′)V

where the right-hand side denotes the Lie derivative applied to (v, v′)V ∈ 
d,hol
Cd . There

is a similar relation for the anti-holomorphic derivatives. We obtain a C-valued pairing
on 

0,∗
c (Cd , V ) via integration:
∫

Cd
◦(−,−)V : 0,∗

c (Cd , V ) ⊗ 0,∗
c (Cd , V )

∧·(−,−)V−−−−−→ d,∗(Cd)

∫

−→ C. (10)

The first arrow is the wedge product of forms combined with the pairing on V . The
second arrow is only nonzero on forms of type d,d . Clearly, integration is translation
invariant, so that the composition is as well.

The pairing (10) together with the differential ∂ are enough to define a free theory.
However, it is convenient to consider a slightly generalized version of this situation. We
want to allow deformations of the differential ∂ on Dolbeault forms of the form

Q = ∂ + Qhol

where Qhol is a holomorphic differential operator of the form

Qhol =
∑

I

∂

∂z I
μI (11)

where I is some multi-index and μI : V → V is a linear map of cohomological degree
+1. Note that we have automatically written Qhol in a way that it is translation invariant.
Of course, for this differential to define a free theory there needs to be some compatibility
with the pairing on V .

We can summarize this in the following definition, which should be viewed as a slight
modification of a free theory to this translation invariant holomorphic setting.

Definition 2.26. A holomorphically translation invariant free BV theory is the data of a
holomorphic vector bundle V together with

(1) an identification V ∼= C
d × V0;

(2) a translation invariant skew-symmetric pairing (−,−)V as in (9);
(3) a holomorphic differential operator Qhol as in (11);

such that the following conditions hold

(1) the induced C-valued pairing
∫ ◦(−,−)V is non-degenerate;

(2) the operator Qhol satisfies (∂ + Qhol)2 = 0 and is skew self-adjoint for the pairing:
∫

(Qholv, v′)V = ±
∫

(v, Qholv′).
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The first condition is required so that we obtain an actual (−1)-shifted symplectic
structure on0,∗(Cd , V ). The second condition implies that the derivation Q = ∂+Qhol

defines a cochain complex

EV =
(
0,∗(Cd , V ), ∂ + Qhol

)
,

and that Q is skew self-adjoint for the symplectic structure. Thus, in particular, EV
together with the pairing define a free BV theory in the ordinary sense. In the usual way,
we obtain the action functional via

S(ϕ) =
∫

(ϕ, (∂ + Qhol)ϕ)V .

Before going further, we will give a familiar example from the last section.

Example 2.27. The free βγ system on C
d . Consider the βγ system with coefficients in

any holomorphic vector bundle from Example 2.11 (and the remarks after it) special-
ized to the manifold X = C

d . One immediately checks that this is a holomorphically
translation invariant free theory.

2.4.1. Translation invariant interactions Let’s fix a general free holomorphically trans-
lation invariant theory (V, (−,−)V , Qhol) as above. We now define what a holo-
morphically translation invariant interacting theory is. Recall, translations span a 2d-

dimensional abelian Lie algebra C
2d = C

{
∂

∂zi
, ∂

∂zi

}
. The first condition that an interac-

tion be holomorphically translation invariant is that it be translation invariant, so invariant
for this Lie algebra. The additional condition is a bit more involved.

Let ηi denote the operator on Dolbeault forms given by contraction with the anti-
holomorphic vector field ∂

∂zi
. Note that ηi acts on the Dolbeault complex on C

d with
values in any vector bundle. In particular it acts on the fields of a free holomorphically
translation invariant theory as above, in addition to functionals on fields.

Definition 2.28. A holomorphically translation invariant local functional is a translation
invariant local functional I ∈ Oloc(EV )C

2d
such that ηi I = 0 for all 1 ≤ i ≤ d.

There is a succinct way of expressing holomorphic translation invariance as the
Lie algebra invariants of a certain dg Lie algebra. Denote by C

d [1] the abelian d-
dimensional graded Lie algebra in concentrated in degree −1 by the elements {ηi }. We
want to consider deformations that are invariant for the action by the total dg Lie algebra
C
2d|d = C

2d ⊕ C
d [1]. The differential sends ηi → ∂

∂zi
. The space of holomorphically

translation invariant local functionals are denoted by Oloc(EV )C
2d|d

. The enveloping
algebra of C

2d|d is of the form

U (C2d|d) = C

[
∂

∂zi
,

∂

∂zi
, ηi

]

with differential induced from that in C
2d|d . Note that this algebra is quasi-isomorphic

to the algebra of constant coefficient polynomial holomorphic differential operators

C[∂/∂zi ] �−→ U (C2d|d).
A way of recasting the condition that a local function I be both translation invariant

and ηi I = 0 is to require it lie in the subspace of invariants for the dg Lie algebra C
2d|d .
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In other words, the space of holomorphically translation invariant local functionals is
Oloc(EV )C

2d|d
.

From the definitions, we see that any translation invariant local functional is a sum
of functionals of the form

ϕ →
∫

Cd
F(D1ϕ, . . . , Dkϕ)dd z (12)

where Dα is an operator in the space

C

[
dzi ,

∂

∂zi
,

∂

∂zi
, ηi

]
,

and F : 0,∗(Cd , V )⊗k → 0,∗(Cd) is a linear map of the form

0,∗(Cd , V )⊗k ∼= (0,∗(Cd) ⊗ V0)
⊗k = 0,∗(Cd)⊗k ⊗ V⊗k

0
∧⊗F0−−−→ 0,∗(Cd),

where F0 : V⊗k
0 → C is a linear map and ∧ denotes the wedge product of forms.

The condition ηi I = 0 means that none of the Di ’s have any dz j -dependence. Using
this description we can exhibit the space of holomorphically translation functionals in
a more efficient way. To state the result, we introduce a new class of local functionals
(12) which only depend on differential operators Di built from ∂

∂z , which we denote by

O
hol,trans
loc (EV ). Like Oloc(EV )C

2d|d
, such operators form a subspace

O
hol,trans
loc (EV ) ⊂ Oloc(EV ).

In fact, there is a natural inclusion O
hol,trans
loc (EV ) ⊂ Oloc(EV )C

2d|d
which arises from

the fact that in the second space we allow for local functionals built from differential

operators in the collection
{

∂
∂zi

, ∂
∂zi

, ηi

}
, whereas in the first space we only allow those

built from ∂
∂zi

.

Lemma 2.29. Let (V, (−,−)V , Qhol) be a free holomorphically translation invariant
theory on C

d and denote EV = 0,∗(X, V ). Then, the natural inclusion
(
O
hol,trans
loc (EV ), ∂ + Qhol

)
↪→
(
Oloc(EV )C

2d|d
, ∂ + Qhol

)

is a quasi-isomorphism.

Proof. We consider a spectral sequence in which we first take the cohomology with
respect to ∂ . At the E1-page, the isomorphism in cohomology follows from the quasi-
isomorphism of dg Lie algebras C

d ↪→ (C2d|d , ∂). ��
This description of holomorphically translation invariant local functionals allows us

to give a convenient description of deformations of holomorphically translation invariant
theories. Suppose (V, Qhol, (−,−)V , I ) be the data of an interacting holomorphically
translation invariant theory on C

d . We have already encountered the space of local
functionals Oloc(EV ) and the deformation complex of the interacting BV theory is

DefEV =
(
Oloc(EV ), ∂ + Qhol + {I,−}

)
.
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We’d like to characterize deformations that preserve holomorphically translation invari-
ance.

Recall that in the holomorphic case there is the holomorphic jet bundle J holV . The
fiber at zero of this jet bundle may be identified as J hol0 V = V0[[z1, . . . , zd ]] where the
zi ’s denote the formal jet coordinate.

Corollary 2.30. Suppose that Qhol = 0. Then, there is a quasi-isomorphism

(
DefEV

)C2d|d � C · dd z ⊗L

C[∂z1 ,...,∂zd ] Ored(V0[[z1, . . . , zd ]])[d].

Equipped with differential {I hol,−}where I hol only depends on holomorphic differential
operators. Here, ∂zi = ∂

∂zi
and C · dd z denotes the trivial right C[∂zi ]-module.

The local functional I defining the classical holomorphic theory endows J holV [−1]
the structure of a L∞ algebra in DCd -modules. Repackaging the statement using Lie
algebraic data we can rewrite the equivalence in the lemma as

(
DefEV

)C2d|d � C · dd z ⊗L

C[∂z1 ,...,∂zd ] C
∗
Lie,red (V0[[z]][−1])) [d].

Proof. By Lemma 2.29 we have an expression for the holomorphically translation local
functionals

(
DefEV

)C2d|d =
(
C · dd z ⊗U (C2d|d ) Ored(J0EV )[d], ∂ + {I,−}

)
.

SinceOred(J0EV ) is flat as aU (C2d|d)-module, it follows that we can replace the tensor
product by the derived tensor product ⊗L up to quasi-isomorphism so that

(
DefEV

)C2d|d �
(
C · dd z ⊗L

U (C2d|d )
Ored(J0EV )[d], ∂ + {I,−}

)
.

Consider the complex
(
Ored(J0EV ), ∂ + {I,−}). This complex is graded by symmetric

degree, and the associated spectral sequence has first page the associated graded of
Ored(J0EV ) equipped with the ∂ differential. Moreover, at the E1-page, we have the
quasi-isomorphism

(
O(J0EV ), ∂

) = (Ored(V0[[zi , zi ]][dzi ]), ∂
) � Ored(V0[[zi ]]).

Finally, we have already remarked that there is a quasi-isomorphism of algebras
U (C2d|d) � U (Cd) where the right-hand site is generated by the constant holomorphic
vector fields. The proof of the claim follows. ��

The holomorphic BF system, as in Example 2.22, on X = C
d is an example of

a holomorphically translation invariant theory. So is the topological BF system, as in
Example 2.23.

Example 2.31. Holomorphic superpotential. This is a different flavor of a holomorphi-
cally translation invariant theory involving the βγ system and is largely motivated by
physics. Consider the βγ system on C

d with values in V . In addition, let W ∈ C[V ] be
a polynomial on the vector space V . Then, W extends in a natural way to a Dolbeault
valued functional on 0,∗(Cd) ⊗ V . One defines the local functional

IW (β, γ ) =
∫

Cd
dd z W (γ ).
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It is immediate to see that IW is holomorpically translation invariant. On the other hand,
it is not, in general, a degree zero functional. Hence, it does not define a classical theory
in the usual sense. It does, however, define a slightly weaker classical theory that is only
Z/2 graded rather than the usual Z grading we are accustomed to.

We don’t develop the formal definition here, but IW defines a holomorpically transla-
tion invariant Z/2-graded BV theory. When d = 2, the βγ system arises as the minimal
twist of the freeN = 1 chiral supermultiplet onR

4. In the presence of the interaction IW ,
the theory is equal to the minimal twist of theN = 1 chiral multiplet with holomorphic
superpotential given by W .3

3. One-Loop Regularization for Theories on C
d

In Wilsonian’s approach to quantum field theory, constructing the path integral involves
exhibiting a family of theories parametrized by some scale L > 0, that we take for
illustration to be in units of length. The main idea is that the theory at scale L describes
all interactions happening at length scales smaller than or equal to L . To obtain the
full perturbative QFT, one takes the limit L → ∞, where all quantum interactions are
included. In practice, one has a good handle on the theory between some finite scales
ε < L , and to obtain the theory at scale L one must make sense of the ε → 0 limit.
Generally speaking, the naive limit is ill-defined; this is the part of the strategy for
constructing a QFT where renormalization comes in.

In this section we consider the renormalization of holomorphic field theories on C
d ,

for general d ≥ 1. We start with a classical holomorphic theory on C
d and study its

one-loop homotopy renormalization group flow from some finite scale ε to scale L . This
is where the theory is completely well-defined. Explicitly, this flow manifests as a sum
over weights of graphs; that is,Feynman diagrams. In terms of diagrams, we consider the
sum over graphs of genus at most one where at each vertex we place the holomorphic
interaction defining the classical theory. The edges of the graphs are labeled by the
propagator, which, for us, is an effective replacement for the Green’s function of the ∂

operator defining the kinetic piece of the holomorphic field theory.
To obtain a quantization of a classical theory one must make sense of the ε → 0 limit

of this construction. In general, this involves introducing a family of counterterms. The
presence of counterterms can be an often undesirable, but necessary part of constructing
a quantum field theory. On one hand, logarithmic counterterms encode the β-function
of an interacting field theory, which is a sensitive invariant and is important quantity
to experimentally measure quantities in QFT. Roughly, this quantity measures how
couplings run with renormalization group flow. Counterterms can also be extremely
unwieldy. For instance, some theories of gravity require the introduction of infinitely
many such counterterms [tHV74]. In this paper, we show how holomorphic theories on
flat space are as well-behaved as possible when it comes to renormalization.

Our main result in this section is the following (which we state more carefully in
Theorem 3.4 below):

Theorem 3.1. For a holomorphic theory onC
d , there exists a one-loop (pre)quantization

where the naive ε → 0 limit exists and no counterterms are required.

Remark 3.2. Already, in [Li] Li has proved a stronger version of Theorem 3.1 when
the complex dimension is d = 1. His result holds to all orders in �, and applies it to

3 In super language, the superpotential term is usually written as
∫
d2θ

∫
d4xW (�), where � is the chiral

superfield.
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give an elegant interpretation of the quantum master equation for chiral conformal field
theories on (flat) Riemann surfaces using vertex algebras. Although we do not make any
statements in this thesis past one-loop quantizations, the higher loop behavior remains
a rich and subtle problem that we hope to return to.

As a peculiar corollary of our main result, and our work in developing the one-loop
β-function for QFT in the BV formalism [EWY18], we have the following.

Corollary 3.3. The one-loop β-function of a holomorphic theory on C
d is identically

zero.

This corollary has “no-go” style consequences for twists of supersymmetric field
theories. As we have already mentioned, often times a supersymmetric field theory on
R
2d admits a holomorphic twistwhere half of the translations are left Q-exact. This result

implies that the β-function is not protected under such holomorphic twists. For instance,
N = 1 supersymmetric Yang–Mills on R

4 admits a holomorphic twist to holomorphic
BF theory. While Yang–Mills has a non-trivial β-function, our results show that the
β-function for holomorphic BF theory is zero.

The proof of the main result will be involve explicit evaluations and estimates of
weights of Feynman diagrams. Before proceeding with the core analysis, we set up the
problem using our notation and conventions used above.

Suppose (V, Qhol, (−,−)V ) prescribes the data of a free holomorphic theory on C
d .

This means that V is a holomorphic bundle on C
d , Qhol : Vhol → Vhol is a holomorphic

differential operator, and (−,−)V is a (shifted) KCd -valued pairing on V . We assume,
in addition, that Qhol is translation invariant. Concretely, this means that

Qhol ∈ C

[
∂

∂z1
, . . . ,

∂

∂zd

]
.

The complex of fields, in the BV formalism, are given by the following deformed
Dolbeault complex

EV =
(
0,∗(Cd , V ), ∂ + Qhol

)
.

Wewill fix a trivialization for the holomorphic vector bundle V = C
d ×V0, where V0 is

the fiber over 0 ∈ C
d . This leads to an identification 0,∗(Cd , V ) = 0,∗(Cd) ⊗C V0.

Further, we write the (−1)-shifted symplectic structure defining the classical BV theory
in the form

ωV (α ⊗ v, β ⊗ w) = (v,w)V0

∫
dd z(α ∧ β)

where (−,−)V0 is a degree (d−1)-shifted pairing on the finite dimensional vector space
V0.

A holomorphic interacting theory is prescribed by a holomorphic Lagrangian I hol ∈
O
hol,+
loc (V ), seeDefinition 2.18. Aswe have seen in Sect. 2.3 any holomorphic Lagrangian

determines a local functional on its Dolbeualt complex via integration I = ∫
X I0,∗

.

Here, as above, the notation I0,∗
denotes the canonical extension of I hol to theDolbeualt

complex for V . Using the trivialization V = C
d × V0 and for the translation invariant

holomorphic top forms by C · dd z, we can express the local functional as

Ik(α) =
∫

I holk (α) =
∫

Dk,1(φk,1(α)) · · · Dk,k(φk,k(α))dd z

where each Di, j is a holomorphic differential operator Di, j ∈ C

[
∂

∂zi

]
, and φi, j ∈ V∨

0 .
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3.1. Homotopy RG flow. As we’ve already mentioned, the main goal of this section is
to show that for holomorphic theories on C

d the one-loop renormalization group flow
produces a prequantization modulo �

2. We follow the terminology of [Cos11] and use
prequantization to refer to an effective family of functionals satisfying renormalization
group flow but not necessarily the quantum master equation. We will see consequences
of our result for solving the quantum master equation modulo �

2 in the next section.
The building block in Costello’s approach to renormalization is an effective family

of functionals {I [L]} parametrized by a length scale L > 0. For each L > 0 the
functional I [L] ∈ O(E)[[�]] must satisfy various conditions, which are carefully stated
in Definition 8.2.9.1 of [CG]. We will recall some key aspects that will be useful for our
purposes. The main condition is a compatibility between the functionals I [L] as one
changes the length scale; this is referred to as homotopy renormalization group (RG)
flow. The flow from scale L > 0 to L ′ > 0 is encoded by an invertible linear map

W (PL<L ′ ,−) : O+(E)[[�]] → O+(E)[[�]]
defined as a sum over weights of graphs W (PL<L ′ , I ) = ∑

� W�(PL<L ′ , I ). Here, �

denotes a graph, and the weight W� is defined as follows. One labels the vertices of
valence k by the kth homogenous component of the functional I . The edges of the graph
are labeled by the propagator PL<L ′ . The total weight is given by iterative contractions of
the homogenous components of the interaction with the propagator. For a more precise
definition see Chapter 2 of [Cos11].

The family of functionals {I [L]} defining a quantization must satisfy the RG flow
equation

I [L ′] = W (PL<L ′ , I [L])
for all L < L ′. Given a classical interaction I ∈ Oloc(E), there is a natural way to attempt
construct an effective family of functionals satisfying the RG flow equations. Indeed,
it follows from elementary properties of the homotopy RG flow operator W (PL<L ′ ,−)

that if the functional

I [L] “ = ” W (P0<L , I )

were to be well-defined for each L > 0, then the RG flow equations would automat-
ically be satisfied for the collection {I [L]}. The problem is that this naive guess is
ill-defined due to the distributional nature of the propagator P0<L . The approach of
Costello is to introduce a small parameter ε > 0 and to consider the limit of the func-
tionalsW (Pε<L , I ) as ε → 0. For most theories, this ε → 0 limit is ill-defined, but there
always exist ε-dependent counterterms ICT (ε) rendering the existence of the ε → 0
limit of W (Pε<L , I − I CT (ε)).

Our main goal in this section amounts to showing that the naive ε → 0 limit exists
without the necessity to introduce counterterms. This is a salient feature of holomorphic
theories on C

d that we will take advantage of to characterize anomalies, for instance.
We will only consider quantizations defined modulo �

2. In this case, the homotopy
RG flow takes the explicit form:

W (PV
ε<L , I ) =

∑

�

�
g(�)

|Aut(�)|W�(PV
ε<L , I ).

The sum is over graphs of genus ≤ 1 and W� is the weight associated to the graph �.
We can now state the main result of this section.
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Theorem 3.4. Let E be a holomorphic theory onC
d with classical interaction I cl . Then,

there exists a one-loop prequantization {I [L] | L > 0} of I cl involving no counterterms.
That is, the ε → 0 limit of

W (Pε<L , I ) mod �
2 ∈ O(E)[[�]]/�

2

exisits. Moreover, if I is holomorphically translation invariant we can pick the family
{I [L]} to be holomorphically translation invariant as well.

3.2. Holomorphic gauge fixing. The next component of a prequantization is the choice
of a gauge fixing condition. From a physics point of view the choice of a gauge fixing
condition is common place when computing quantities in QFT. Mathematically, it is
equivalent to choosing an isotropic subspace of the space of fields which is necessary to
define the path integral in the BV formalism. In our philosophy of QFT, all theories are
really defined over the space (or simplicial set) of gauge fixing conditions. The theory
does not depend on a gauge fixing condition in the sense that a path in the space of gauge
fixing conditions leads to a homotopy between the associated theories. See Chapter 5 of
[Cos11] for a thorough formulation of this.

In our approach, a gauge fixing condition appears through the choice gauge fixing
operator is a square-zero operator on fields

QGF : EV → EV [−1],
of cohomological degree −1 such that [Q, QGF ] is a generalized Laplacian on E where
Q is the linearized BRST operator. For a complete definition see Section 8.2.1 of [CG].

For holomorphic theories there is a convenient choice for a gauge fixing operator. To
construct it we fix the standard flat metric on C

d . Doing this, we let ∂
∗
be the adjoint of

the operator ∂ . Using the coordinates on (z1, . . . , zd) ∈ C
d we can write this operator

as

∂
∗ =

d∑

i=1

∂

∂(dzi )

∂

∂zi
.

The operator ∂
∂(dzi )

is the contraction with the anti-holomorphic vector field ∂
∂zi

. The

operator ∂
∗
extends to the complex of fields via the formula

QGF = ∂
∗ ⊗ idV : 0,∗(X, V ) → 0,∗−1(X, V ),

Lemma 3.5. The operator QGF = ∂
∗ ⊗ idV is a gauge fixing operator for the free

theory (EV , ∂ + Q, ωV ).

Proof. Clearly, QGF is square zero since (∂
∗
)2 = 0. Since Qhol is a translation invariant

holomorphic differential operator we have

[∂ + Qhol, QGF ] = [∂, ∂
∗] ⊗ idV .

The operator [∂, ∂
∗] is the Dolbeault Laplacian �∂ on C

d , which in coordinates is

�∂ = −
d∑

i=1

∂

∂zi

∂

∂zi
.
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In particular, the operator [∂, ∂
∗] ⊗ idV is a generalized Laplacian.

Finally, we must show that QGF is (graded) self-adjoint for the shifted symplectic
pairing ωV . This follows from the fact about Dolbeualt forms onC

d . If α, β ∈ 
0,∗
c (Cd)

then
∫

Cd
(∂

∗
α) ∧ β ∧ dd z = ±

∫

Cd
α ∧ (∂

∗
β) ∧ dd z.

��
Remark 3.6. One may ask what happens if we choose a different metric on C

d to define
the gauge fixing operator. For every choice of a Hermitian metric h on C

d we obtain
an operator ∂

∗
h and hence a gauge fixing condition. In fact, this defines a family of

theories defined over the space of all Hermitian metrics. Since this space is affine, hence
connected, we can always choose a path to the standard metric to any other one, thus
resulting in a homotopy equivalence between quantizations defined by the standard
metric and the fixed one. The subtlety here is that the quantization provided by an
arbitrary Hermitian metric may not be as simple as the one for the flat metric. In fact,
there may be one-loop divergences. Nevertheless, the homotopical framework for QFT
developed in [Cos11] implies that the quantizations associated to two differentHermitian
metrics will be equivalent.

3.3. The propagator on C
d . The gauge fixing operator determines a generalized Lapla-

cian, which for us is essentially the ordinary Dolbeault Laplacian on C
d . Our regulariza-

tion scheme utilizes the heat kernel associated to the Laplacian, for which we recall the
explicit form below. By definition, the scale L > 0 heat kernel is a symmetric element
KV

L ∈ EV (Cd) ⊗ EV (Cd) that satisfies

ωV (KL , ϕ) = e−L[Q,QGF ]ϕ

for any field ϕ ∈ EV . Thus, it is an integral kernel for the operator e−L[Q,QGF ]. For a
more detailed definition of how heat kernels are used to defined a quantum field theory
in the BV formalism, see Section 8.2.3 in [CG]. In this section we deduce the explicit
form of the heat kernel for our holomorphic theory on C

d .
The tensor square of EV (Cd) decomposes as

EV (Cd) ⊗ EV (Cd) =
(
0,∗(Cd) ⊗ 0,∗(Cd)

)
⊗ (V0 ⊗ V0). (13)

We will decompose the heat kernel accordingly.
Pick a basis {ei } of V0 and let

CV0 =
∑

i, j

ωi j (ei ⊗ e j ) ∈ V0 ⊗ V0

be the quadratic Casimir. Here, (ωi j ) is the inverse matrix to the pairing (−,−)V0 .
Due to the nature of our symplectic pairing, we see that the heat kernel splits with

respect to the decomposition in Eq. (13) as

KV
L (z, w) = Kan

L (z, w) · CV0 .
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The analytic part Kan
L is independent of V and equal to the heat kernel for Dolbeault

Laplacian �∂ acting on Dolbeault forms on C
d .

We can further split this analytic heat kernel as the heat kernel for the ordinary
Laplacian acting on functions. Indeed, for L > 0 the analytic heat kernel Kan

L is equal
to

Kan
L (z, w) = kanL (z, w)

d∏

i=1

(dzi − dwi ) ∈ 0,∗(Cd) ⊗ 0,∗(Cd)

∼= 0,∗(Cd × C
d) ∼= C∞(Cd × C

d)[dz, dw]
where kanL (z, w) ∈ C∞(Cd×C

d) is the heat kernel for the Laplacian acting on functions.
It is normalized by the rule

(e−L�∂ f )(z) =
∫

w∈Cd
d2dw kanL (z, w) f (w)

where f ∈ C∞(Cd). Explicitly, kanL is given by

kanL (z, w) = 1

(2π i L)d
e−|z−w|2/4L .

The propagator for the holomorphic theoryEV is defined using the heat kernels above
by the equation

PV
ε<L(z, w) =

∫ L

t=ε

dt (QGF ⊗ 1)KV
L (z, w).

Since the element CV0 is independent of the coordinate on C
d , the propagator also

decomposes as

PV
ε<L(z, w) = Pan

ε<L(z, w) · CV0

where

Pan
ε<L(z, w) =

∫ L

t=ε

dt (∂
∗ ⊗ 1)KV

L (z, w)

=
∫ L

t=ε

dt
1

(2π i t)d

d∑

j=1

(−1) j−1
(
z j − w j

4t

)
e−|z−w|2/4t

d∏

i �= j

(dzi − dwi ).

The propagator Pε<L is an effective replacement for the Green’s function for ∂ on
C
d . In the limit as ε → 0 and L → ∞, this propagator reduces to the Green’s function

for the Dobleault operator on C
d . We can see this simplification explicitly.

First, we recall the form of the Green’s function. Introduce the δ-distribution δ� along
the diagonal in C

d × C
d . In formulas

δ� : 0,∗
c (Cd) × 0,∗

c → C , (α, β) →
∫

�⊂Cd×Cd
dd z ∧ α ∧ β.
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The Green’s function for ∂ is given in terms of the Bochner–Martinelli kernel. To define

it, first consider the smooth form onC
d ×C

d away from the diagonalωBM ∈ 
0,∗

(Cd
z ×

C
d
w \ �) given by

ωBM (z, w) = (d − 1)!
(2π i)d

1

|z − w|2d
d∑

i=1

(−1)i−1(zi − wi )
∏

j �=i

(dz j − dw j ).

Since ∂ωBM (z, w) = 0 away from the diagonal, we see that ∂ωBM extends to a dis-
tribution form on C

d × C
d . Indeed, this distribution solves Green’s equation for the

∂-operator

∂ωBM ∧ dd z = δ�.

For more details on the above kernel and its relation to higher residues, see Chapter
3 of [GH94] for instance. For now, we have the immediate calculation.

Lemma 3.7. The ε → 0, L → ∞ distributional limit of the propagator Pε<L(z, w)

exists. Moreover, as distributions

lim
ε→0

lim
L→∞ Pε<L(z, w) = ωBM (z, w).

Proof. Note that

Pε<L(z, w) =
∫ L

t=ε

dte−|z−w|2/4t 1

(2π i t)d

d∑

j=1

(−1) j−1 z j − w j

4t

∏

i �= j

(dzi − dwi )

= 1

(2π i)d
1

|z − w|2d
∑

j

(−1) j−1(z j − w j )

×
∏

i �= j

(dzi − dwi )

∫ |z−w|2/ε

u=|z−w|2/L
duud−1e−u .

In the second line we have made the substitution u = |z − w|2/4t . Integration over u
produces the desired result. ��

3.4. Trees. We now turn to studying the one-loop effective action for the holomorphic
theory on C

d . For the genus zero graphs, or trees, we do not have any analytic diffi-
culties to worry about. The propagator PV

ε<L is smooth so long as ε, L > 0 but when
ε → 0 it inherits a singularity along the diagonal z = w. This is what contributes
to the divergences in the naive definition of RG flow W (P0<L ,−). But, if � is a tree
the weight W�(PV

0<L , I ) only involves multiplication of distributions with transverse
singular support, so is well-defined. Thus we have observed the following.

Lemma 3.8. If � is a tree then limε→0 W�(Pε<L , I ) exists.

The only possible divergences in the ε → 0 limit, then, must come from graphs of
genus one, which we now direct our attention to.
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3.5. A simplification for one-loop weights. Every graph of genus one is a wheel with
some trees protruding from the external edges of the tree. Thus,we canwrite theweight of
a genus one graph as a product of weights associated to trees times the weight associated
to a wheel. We have just observed that the weights associated to trees are automatically
convergent in the ε → 0 limit, thus it suffices to focus on genus one graphs that are
purely wheels with some number of external edges.

The definition of the weight of the wheel involves placing the propagator at each
internal edge and the interaction I at each vertex. The weights are evaluated by placing
compactly supported fields ϕ ∈ EV,c = 

0,∗
c (Cd , V ) at each of the external edges. We

will make two simplifications:

(1) the only ε dependence appears in the analytic part of the propagator Pan
ε<L , so we can

forget about the combinatorial factor CV0 and assume all external edges are labeled
by compactly supported Dolbeault forms in 

0,∗
c (Cd);

(2) each vertex labeled by I is a sum of interactions of the form
∫

Cd
D1(ϕ) · · · Dk(ϕ)dd z

where Di is a holomorphic differential operator (only involves ∂
∂zi

-derivatives). Some
of the differential operators will hit the compactly supported Dolbeault forms placed
on the external edges of the graph. The remaining operators will hit the internal edges
labeled by the propagators. Since a holomorphic differential operator preserves the
space of compactly supported Dolbeault forms that is independent of ε, we replace
each input by an arbitrary compactly supported Dolbeault form.

Thus, for the ε → 0 behavior it suffices to look at weights of wheels with arbitrary
compactly supported functions as inputs where each of the internal edges are labeled by
some translation invariant holomorphic differential operator

D =
∑

n1,...nd

∂n1

∂zn11
· · · ∂nd

∂zndd

applied to the propagator Pan
ε<L . This motivates the following definition.

Definition 3.9. Let ε, L > 0. In addition, fix the following data.

(a) An integer k ≥ 1 that will be the number of vertices of the graph.
(a) For each α = 1, . . . , k a sequence of integers

�nα = (nα
1 , . . . , nα

d ).

We denote by (�n) = (n j
i ) the corresponding d × k matrix of integers.

The analytic weight associated to the pair (k, (�n)) is the smooth distribution

Wk,(n)
ε<L : C∞

c ((Cd)k) → C,

that sends a smooth compactly supported function � ∈ C∞
c ((Cd)k) = C∞

c (Cdk) to

Wk,(n)
ε<L (�) =

∫

(z1,...,zk )∈(Cd )k

k∏

α=1

dd zα�(z1, . . . , zk)
k∏

α=1

(
∂

∂zα

)�nα

Pan
ε<L(zα, zα+1).

(14)
In the above expression, we use the convention that zk+1 = z1.
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The coordinate on (Cd)k is given by {zαi } where α = 1, . . . , k and i = 1, . . . , d. For
each α, {zα1 , . . . , zαd } is the coordinate for the space C

d sitting at the vertex labeled by
α. We have also used the shorthand notation

(
∂

∂zα

)�nα

= ∂n
α
1

∂zα1
· · · ∂n

α
d

∂zαd
.

Wewill refer to the collection of data (k, (�n)) in the definition aswheel data. Themoti-
vation for this is that theweightWk,(n)

ε<L is the analytic part of the full weightW�(PV
ε<L , I )

where � is a wheel with k vertices.
We have reduced the proof of Proposition 3.4 to showing that the ε → 0 limit of the

analytic weight Wk,(�n)
ε<L (�) exists for any choice of wheel data (k, (�n)). To do this, there

are two steps. First, we show a vanishing result that says when k ≤ d the weights vanish
for purely algebraic reasons. The second part is the most technical aspect of the chapter
where we show that for k > d the weights have nice asymptotic behavior as a function
of ε.

Lemma 3.10. Let (k, (�n)) be a pair of wheel data. If the number of vertices k satisfies
k ≤ d then

Wk,(n)
ε<L = 0

as a distribution on C
dk for any ε, L > 0.

The proof of this lemma is essentially identical to the proof of the Claim on page 73
of [CLa], in the context of BCOV theory on odd dimensional Calabi–Yau manifolds.
The upshot is that the method of proof works for general holomorphic theories on C

d

which we consider here.

Proof. In the integral expression for the weight (14) there is the following factor involv-
ing the product over the edges of the propagators:

k∏

α=1

(
∂

∂zα

)�nα

Pan
ε<L(zα, zα). (15)

We will show that this expression is identically zero. To simplify the expression we first
make the following change of coordinates on C

dk :

wα = zα+1 − zα, 1 ≤ α < k (16)

wk = zk . (17)

Introduce the following operators

ηα =
d∑

i=1

wα
i

∂

∂(dwα
i )

acting on differential forms on C
dk . The operator ηα lowers the anti-holomorphic Dol-

buealt type by one: η : (p, q) → (p, q − 1). Equivalently, ηα is contraction with the
anti-holomorphic Euler vector field wα

i ∂/∂wα
i .
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Once we do this, we see that the expression (15) can be written as

((
k−1∑

α=1

ηα

)
d∏

i=1

(
k−1∑

α=1

dwα
i

))
k−1∏

α=1

(

ηα
d∏

i=1

dwα
i

)

.

Note that only the variables wα
i for i = 1, . . . , d and α = 1, . . . , k − 1 appear. Thus

we can consider it as a form on C
d(k−1). As such a form it is of Dolbeault type (0, (d −

1) + (k − 1)(d − 1)) = (0, (d − 1)k). If k < d then clearly (d − 1)k > d(k − 1) so the
form has greater degree than the dimension of the manifold and hence it vanishes.

The case left to consider is when k = d. In this case, the expression in (15) can be
written as ((

d−1∑

α=1

ηα

)
d∏

i=1

(
d−1∑

α=1

dwα
i

))
d−1∏

α=1

(

ηα
d∏

i=1

dwα
i

)

. (18)

Again, since only the variables wα
i for i = 1, . . . , d and α = 1, . . . , d − 1 appear,

we can view this as a differential form on C
d(d−1). Furthermore, it is a form of type

(0, d(d − 1)). For any vector field X on C
d(d−1) the interior derivative iX is a graded

derivation. Suppose ω1, ω2 are two (0, ∗) forms on C
d(d−1) such that the sum of their

degrees is equal to d2. Then, ω1ιXω2 is a top form for any vector field on C
d(d−1). Since

ω1ω2 = 0 for form type reasons, we conclude that ω1ιXω2 = ±(iXω1)ω2 with sign
depending on the dimension d. Applied to the vector field z1i ∂/∂w1

i in (18) we see that
the expression can be written (up to a sign) as

η1

(
d−1∑

α=1

ηα
d∏

i=1

(
d−1∑

α=1

dwα
i

))(
d∏

i=1

dw1
i

)
d−1∏

α=2

(

ηα
d∏

i=1

dwα
i

)

.

Repeating this, for α = 2, . . . , k − 1 we can write this expression (up to a sign) as

(

ηk−1 · · · η2η1
k−1∑

α=1

ηα
d∏

i=1

(
k−1∑

α=1

dwα
i

))
k−1∏

α=1

d∏

i=1

dwα
i

The expression inside the parentheses is zero since each term in the sum over α involves
a term like ηβηβ = 0. This completes the proof for k = d. ��

We nowmove on to the analytic part of the argument, where we show that for wheels
with sufficiently large number of incoming edges, the analytic weight vanishes in the
limit ε → 0. We point out that the method of proof of this lemma is nearly the same
as the proof of Lemma 7.2.1 in [CLa] in the context of BCOV theory on the flat odd
Calabi–Yau manifold C

d , d odd. We show here that the argument works in general for
any holomorphic theory on flat space.

Lemma 3.11. Let (k, (�n)) be a pair of wheel data such that k > d. Then the ε → 0
limit of the analytic weight

lim
ε→0

Wk,(n)
ε<L

exists as a distribution on C
dk .
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Proof. We will bound the absolute value of the weight in Equation (14) and show that it
has a well-defined ε → 0 limit. First, consider the change of coordinates as in Equations
(16),(17). For any compactly supported function � we see that Wk,(n)

ε<L (�) has the form

∫

wk∈Cd
ddwk

∫

(w1,...,wk−1)∈(Cd )k−1

(
k−1∏

α=1

ddwα

)

�(w1, . . . , wk)

(
k−1∏

α=1

(
∂

∂wα

)�nα

Pan
ε<L(wα)

)

×
k−1∑

α=1

(
∂

∂wα

)�nk
Pan

ε<L

(
k−1∑

α=1

wα

)

. (19)

For α = 1, . . . , k − 1 the notation Pan
ε<L(wα) makes sense since Pan

ε<L(zα, zα+1) is only
a function of wα = zα+1 − zα . Similarly Pan

ε<L(zk+1, z1) is a function of

zk − z1 =
k−1∑

α=1

wα.

Expanding out the propagators the weight takes the form

∫

wk∈Cd
d2dwk

∫

(w1,...,wk−1)∈(Cd )k−1

(
k−1∏

α=1

d2dwα

)

�(w1, . . . , wk)

∫

(t1,...,tk )∈[ε,L]k

k∏

α=1

dtα
(4π tα)d

×
d∑

i1,...,ik−1=1

εi1··· ,ik

(
w1
i1

4t1

(w1)n
1

4t |n1|

)

· · ·
(

wk−1
ik−1

4tk−1

(wk−1)n
k−1

4t |nk−1|

)

⎛

⎜
⎝

k−1∑

α=1

wα
ik

4tk
· 1

t |nk |

(
k−1∑

α=1

wα

)nk
⎞

⎟
⎠

× exp

⎛

⎝−
k−1∑

α=1

|wα|2
4tα

− 1

4tk

∣
∣∣∣∣

k−1∑

α=1

wα

∣
∣∣∣∣

2⎞

⎠ .

The notation used above warrants some explanation. Recall, for each α the vector of
integers is defined as nα = (nα

1 , . . . , nα
d ). We use the notation

(wα)n
α = w

nα
1

1 · · · wnα
d

d .

Furthermore, |nα| = nα
1 +· · ·+nα

d . Each factor of the form
wα
iα
tα

comes from the application

of the operator ∂
∂zi

in ∂
∗
applied to the propagator. The factor (wα)n

α

t |nα | comes fromapplying
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the operator
(

∂
∂w

)nα

to the propagator. Note that ∂
∗
commutes with any translation

invariant holomorphic differential operator, so it doesn’t matter which order we do this.
To bound this integral we will recognize each of the factors

wα
iα

4tα

(wα)n
α

4t |nα |

as coming from the application of a certain holomorphic differential operator to the
exponential in the last line. We will then integrate by parts to obtain a simple Gaussian
integral which will give us the necessary bounds in the t-variables. Let us denote this
Gaussian factor by

E(w, t) := exp

⎛

⎝−
k−1∑

α=1

|wα|2
4tα

− 1

4tk

∣∣∣∣∣

k−1∑

α=1

wα

∣∣∣∣∣

2⎞

⎠ .

For each α, iα introduce the t = (t1, . . . , tk)-dependent holomorphic differential
operator

Dα,iα (t) :=
⎛

⎝ ∂

∂wα
iα

−
k−1∑

β=1

tβ
t1 + · · · + tk

∂

∂w
β
iα

⎞

⎠
d∏

j=1

⎛

⎝ ∂

∂wα
j

−
k−1∑

β=1

tβ
t1 + · · · + tk

∂

∂w
β
j

⎞

⎠

nα
j

.

Remark 3.12. This operator, and method to bound the integral, has appeared in the proof
of Lemma 7.3.1 of [CLa] and is motivated by a trick the author has learned from Si Li,
first executed in [Li12] in the context of 2-dimensional chiral theories on elliptic curves.
We propose that this method be referred to as “Si’s trick” for reducing the divergence
of Feynman integrals of this type. We have further generalized this method in [GW] to
a wider class of quantum field theories.

The following lemma is an immediate calculation

Lemma 3.13. One has

Dα,iα E(w, t) = wα
iα

4tα

(wα)n
α

t |nα | E(w, t).

Note that all of the Dα,iα operators mutually commute. Thus, we can integrate by
parts iteratively to obtain the following expression for the weight:

±
∫

wk∈Cd
d2dwk

∫

(w1,...,wk−1)∈(Cd )k−1

(
k−1∏

α=1

d2dwα

)∫

(t1,...,tk )∈[ε,L]k

k∏

α=1

dtα
(4π tα)d

×
⎛

⎝
∑

i1,...,ik

εi1··· ,id D1,i1 · · · Dk−1,ik−1

k−1∑

α=1

Dα,ik�(w1, . . . , wk)

⎞

⎠

× exp

⎛

⎝−
k−1∑

α=1

|wα|2
tα

− 1

tk

∣∣∣∣∣

k−1∑

α=1

wα

∣∣∣∣∣

2⎞

⎠ .
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Since the operators Di, j are uniformlybounded in the variables t1, . . . , tk , the absolute
value of the weight is bounded by

|Wk,(n)
ε<L (�)| ≤ C

∫

wk∈Cd
d2dwk

∫

(w1,...,wk−1

k−1∏

α=1

d2dwα�(w1, . . . , wk−1, wk)

×
∫

(t1,...,tk )∈[ε,L]k
dt1 . . . dtk

1

(4π)dk

1

td1 · · · tdk
× E(w, t) (20)

where � is some compactly supported functnio on C
dk that is independent of t .

To compute the right hand side we will perform a Gaussian integration with respect
to the variables (w1, . . . , wk−1). To this end, notice that the exponential can be written
as

E(w, t) = exp

(
−1

4
Mαβ(wα,wβ)

)

where (Mαβ) is the (k − 1) × (k − 1) matrix given by

⎛

⎜⎜⎜
⎜
⎝

a1 b b · · · b
b a2 b · · · b
b b a3 · · · b
...

...
...

. . .
...

b b b · · · ak−1

⎞

⎟⎟⎟
⎟
⎠

where aα = t−1
α + t−1

k and b = t−1
k . The pairing (wα,wβ) is the usual Hermitian pairing

on C
d , (wα,wβ) =∑i w

α
i w

β
i . After some straightforward linear algebra we find that

det(Mαβ)−1 = t1 · · · tk
t1 + · · · + tk

.

We now perform a Wick expansion for the Gaussian integral in the variables
(w1, . . . , wk−1). For a reference similar to the notation used here see the Appendix
of our work in [EWY18]. The inequality in (20) becomes

|Wk,(n)
ε<L (�)| ≤ C ′

∫

wk∈Cd
d2dwk�(0, . . . , 0, wk)

∫

(t1,...,tk )∈[ε,L]k
dt1 . . . dtk

1

(4π)dk

1

(t1 · · · tk)d
(

t1 · · · tk
t1 + · · · + tk

)d

+ O(ε) (21)

= C ′
∫

wk∈Cd
d2dwk�(0, . . . , 0, wk)

∫

(t1,...,tk )∈[ε,L]k
dt1 . . . dtk

1

(4π)dk

1

(t1 + · · · + tk)d
+ O(ε). (22)

The first term in the Wick expansion is written out explicitly. The O(ε) refers to higher
terms in the Wick expansion, which one can show all have order ε, so disappear in the
ε → 0 limit. The expression �(0, . . . , 0, wk) means that we have evaluate the function
�(w1, . . . , wk) at w1 = . . . = wk−1 = 0 leaving it as a function only of wk . In the
original coordinates this is equivalent to setting z1 = . . . = zk−1 = zk .
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Our goal is to show that ε → 0 limit of the right-hand side exists. The only ε

dependence on the right hand side of (21) is in the integral over the regulation parameters
t1, . . . , tk . Thus, it suffices to show that the ε → 0 limit of

∫

(t1,...,tk )∈[ε,L]k
dt1 . . . dtk

(t1 + · · · + tk)d

exists. By the AM/GM inequality we have (t1+ · · ·+ tk)d ≥ (t1 · · · td)d/k . So, the integral
is bounded by

∫

(t1,...,tk )∈[ε,L]k
dt1 . . . dtk

(t1 + · · · + tk)d
≤
∫

(t1,...,tk )∈[ε,L]k
dt1 . . . dtk

(t1 · · · tk)d/k

= 1

(1 − d/k)k

(
ε1−d/k − L1−d/k

)k
.

By assumption, d < k, so the right hand side has a well-defined ε → 0 limit. This
concludes the proof. ��

4. Chiral Anomalies in Arbitrary Dimensions

Renormalization is an important step in constructing a quantum field theory. In the con-
text of gauge theory, however, a consistent quantization requires that this renormalization
behaves appropriately with respect to gauge symmetries present in the classical theory.
This formalism for studying quantizations of gauge theories is due to Batalin–Vilkovisky
[BV81], and has been made mathematically rigorous in the work of Costello [Cos11].
The precise consistency of gauge symmetry with renormalization is encoded by the
quantum master equation. Heuristically, one can think of the quantum master equation
as a closedness condition on the path integral measure defined by the quantum action
functional.

The key idea is the following: once a classical theory has been renormalized, so
that we have a �-linear effective family of functionals {I [L]} whose � = 0 limit is
the classical action, the next step to constructing a quantization is to solve the quantum
master equation (QME) for each functional I [L]. (In fact, once theQMEholds at a single
positive length L > 0 it holds for every other length by RG flow.) Often, the QME is not
satisfied by the functional I [L], but there exists a “correction" to I [L] that does satisfy
the QME. On the other hand, there may be unavoidable obstructions to solving this
quantum master equation. These are known as anomalies in the physics literature. Since
our method for solving the QME is deformation-theoretic in nature, these anomalies
appear as cohomology classes in the cochain complex of local functionals.

In general, it is difficult to characterize such anomalies, but in the case of holomorphic
theories on C

d our result of one-loop finiteness from the previous section makes this
problem much more tractable. Indeed, since there are no counterterms required, we can
plug in the RG flow of the classical action functional and study the quantum master
equation directly. As is usual in perturbation theory, one works order by order in � to
construct a quantization. However, in this section we continue to work linearly in �,
which is to say we study solutions to the quantum master equation modulo �

2.
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4.1. The quantummaster equation. In theBV formalism, as developed in [Cos11,CG17,
CG], one has the following definition of a quantum field theory.

Definition 4.1. A quantum field theory in the BV formalism consists of a free BV theory
(E, Q, ω) and an effective family of functionals

{I [L]}L∈(0,∞) ⊂ O+
P,sm(E)[[�]]

that satisfy:

(a) the exact renormalization group (RG) flow equation

I [L ′] = W (PL<L ′ , I [L]);
(b) the scale L quantum master equation (QME) at every length scale L:

(Q + ��L)eI [L]/� = 0.

(c) as L → 0, the functional S[L] has an asymptotic expansion that is local.

The first part of the definition, namely RG flow, was the phenomena we studied in
the previous section. We turn our attention to part two of the definition of a QFT. The
regularized quantum master equation at scale L can equivalently be written as

QI [L] + ��L I [L] + 1

2
{I [L], I [L]}L = 0;

Combined with part (c), the � → 0, L → 0 limit of the above equation is precisely the
classical master equation for the local functional limL→0 I [L] mod �. A quantization
of a classical functional I ∈ Oloc(E) is a quantization {I [L]} as above whose � → 0
limit agrees with I .

In general, not every classical interaction admits a quantization. The obstruction to
satisfying the quantum master equation order by order in � is given by the following
inductive definition.

Definition 4.2. Suppose I [L] ∈ O(E)[[�]]/�
n+1 solves the QME modulo �

n . The scale
L obstruction to solving the QME modulo �

n is

�(n)[L] = �
−n
(
QI [L] + ��L I [L] + 1

2
{I [L], I [L]}L

)
∈ O(E).

Equivalently, we can write the obstruction as �(n)[L] = �
−n+1e−I [L]/�(Q +

��L)eI [L]/�.
As a consequence of part (c) in the definition of a QFT above, the L → 0 limit of

the obstruction is defined and determines a cohomological degree +1 local functional

�(n) = lim
L→0

�(n)[L] ∈ Oloc(E).

Moreover, �(n) is closed for the differential Q + {I,−}, where I = limL→0 I [L]
mod � ∈ Oloc(E).

In the remainder of this section we return to the holomorphic setting. Fix a clas-
sical holomorphic theory (V, Qhol, (−,−)V , I hol) on C

d . As usual, denote by EV =
(0,∗(Cd , V ), ∂ + Qhol) the linearized BRST complex of fields and I = ∫

I0,∗
the

classical interaction. Let I [L] = limε→0 W (Pε<L , I ) mod �
2 be the one-loop renor-

malization group flow using the propagator defined in Sect. 3.
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4.2. The QME for holomorphic theories. The main result of this section is a character-
ization of the one-loop obstruction for holomorphic theories. Before jumping into the
calculation, we state the following lemma, which is a simplification of the QME given
our assumptions. Note that we only study one-loop effects here.

The core idea of this lemma has appeared in the Appendix of [LL16], where they
study the one-loop anomaly for a general perturbative field theory (with counterterms
potentially present). We repeat the result here since the statement and proof simplifies
in the context of holomorphic field theory.

Lemma 4.3. Let �[L] = �(1)[L] be the one-loop obstruction to the QME at scale L.
Then, one has

��[L] = Qhol I [L] + 1

2
lim
ε→0

e−I/�e�∂Pε<L

(
{I, I }εeI/�

)
mod �

2. (23)

Proof. We write the obstruction as �[L] = e−I [L]/�(Q + ��L)eI [L]/�. Notice that for-
mally the one loop RGflow can equivalently bewritten as eI [L]/� = limε→0 e

�∂Pε<L eI/�

mod �
2.

Applying the operator Q + ��L to both sides, we obtain

(Q + ��L)eI [L]/� = lim
ε→0

(Q + ��L)
(
e�∂Pε<L eI/�

)
.

The operator Q satisfies [Q, ∂Pε<L ] = �L − �ε . So, acting on functionals one has
(Q + ��L)e�∂Pε<L = e�∂Pε<L (Q + ��ε). The above then simplifies to

lim
ε→0

(Q + ��L)
(
e�∂Pε<L eI/�

)
= lim

ε→0
e�∂Pε<L (Q + ��ε)e

I/�.

Since �ε is a BV operator with respect to the bracket {−,−}ε , we can rewrite the
right-hand side as

1

�
lim
ε→0

e�Pε<L (QI + ��ε I +
1

2
{I, I }ε)eI/�.

For every ε > 0 we have �ε I = 0. This is because I is a local functional and �ε

involves contraction with a factor of
∏

(dzi − dwi ) which vanishes along the diagonal.
Moreover, since I comes from a holomorphic Lagrangian we have ∂ I = 0.

Thus, the only terms remaining inside the parantheses in the above expression are
Qhol I + 1

2 {I, I }ε . We conclude that the obstruction �[L] can be expressed as

�[L] = 1

�
lim
ε→0

e−I/�e�∂Pε<L

(
Qhol I +

1

2
{I, I }εeI/�

)
mod �

2

= 1

�
Qhol I [L] + 1

2�
lim
ε→0

e−I/�e�∂Pε<L

(
{I, I }εeI/�

)
mod �

2

as desired. In the second line, we have again used the fact that the operators Qhol and
∂Pε<L commute. ��

As we saw above, the anomaly �[L] has a well-defined L → 0 limit as a local
functional and it is closed for the classical differential. Before stating the result, we need
a modification of the definition of the weight of a given Feynman diagram. If � is a
graph with a distinguished edge e, letW�,e(Pε<L , Kε, I ) denote the weight of the graph
as defined before, except with one minor difference. Instead of placing Pε<L at each
internal edge, we place Kε at the edge labeled e and Pε<L on the remaining edges. The
main result of this section is the following.
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· · ·

K ...P

· · ·
P

P

Fig. 1. The second term in Equation (24) representing the holomorphic anomaly

Proposition 4.4. The obstruction � = limL→0 �[L] ∈ Oloc(EV ) to satisfying the one-
loop quantum master equation is given by the expression

�� = Qhol lim
L→0

I [L] + 1

2
lim
L→0

lim
ε→0

∑

�∈Wheeld+1,e

W�(Pε<L , Kε, I ) (24)

where the sum is over all wheels with (d + 1)-vertices and distinguished edges thereof.
In particular, when Qhol = 0 (so that the first term vanishes), the anomaly is expressed
as the sum over wheels with exacty (d + 1)-vertices, see Fig. 1.

Remark 4.5. This result, and Lemma 4.6 below, can be seen as generalizations of results
that have appeared in the work [CLa], specifically Lemma 7.2.7 and its proof, where the
one-loop anomaly present in holomorphic Chern–Simons on the flat odd Calabi–Yau
manifold C

d is computed. The method of our proof is similar to the method employed
there.

This obstruction determines an element in the cohomology of the local deformation
complex

[�] ∈ H1
(
Oloc(EV ), ∂ + Qhol + {I,−}

)
.

This is a complete characterization of the cohomological obstruction to satisfying the
quantum master equation for the classical theory I . If we chose any other quantization
of {I ′[L]} of I , say coming from a different gauge fixing condition, we obtain class
cohomologous to this [�] = [�′].
Proof of Proposition 4.4. Like the proof of the non-existence of counterterms for holo-
morphic theories, the proof of this result will be the consequence of an explicit calcula-
tions and bounds of certain Feynman diagrams.

Note that the first term, involving Qhol, is the L → 0 limit of the right-hand side of
Equation (23). Thus, it suffices to focus on the second term.

We express the quantity

lim
ε→0

e−I/�e�∂Pε<L

(
{I, I }εeI/�

)
mod �

2 (25)

as a sum over graphs. By assumption, we are only looking at graphs of genus one which
look like wheels with possible trees attach. Graphically, the quantity {I, I }ε is the graph
of two vertices with a separating edge labeled by the heat kernel Kε . Thus, all weights
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appearing in the expansion of (25) attach the propagator Pε<L to all edges besides a
single distinguished edge e, which is labeled by Kε . Thus, as a over a sum of graphs,
we see that the following two types of weights occur in the expansion of (25).

(a) the distinguished edge e is separating;
(b) the distinguished edge e is not separating, and so appears as the internal edge of the

wheel portion of the graph.

The classical master equation implies that the ε → 0, L → 0 limit of weights of
Type (a) go to zero. Thus, we must only consider the weights of Type (b).

The result will follow from two steps. These should seem familiar from the proof of
the main result about the existence of no counterterms.

(1) If � is a wheel with k < d + 1 vertices, then W�(Pε<L , Kε, I ) = 0 identically.
(2) If � is a wheel with k > d + 1 vertices, then limε→0 W�(Pε<L , Kε, I ) = 0.

The proof of both of these facts is only dependent on the analytic part of the weights.
Thus, it suffices to make the same reduction as we did in the previous section. To extract
that analytic part of the graph we proceed as in Definition 3.9. If (k, (�n)) is a pair of
wheel data (recall k labels the number of vertices and �n labels the derivatives at each
vertex) define the smooth distribution

W̃ k,(n)
ε<L : C∞

c ((Cd)k) → C,

that sends a smooth compactly supported function � ∈ C∞
c ((Cd)k) = C∞

c (Cdk) to

W̃ k,(n)
ε<L (�) =

∫

(z1,...,zk )∈(Cd )k

k∏

α=1

dd zα�(z1, . . . , zα)

(
∂

∂zk

)�nk
Kε(z

1, zk)

k−1∏

α=1

(
∂

∂zα

)�nα

Pan
ε<L(zα, zα+1). (26)

Item (1) follows from the following observation.

Lemma 4.6. Let (k, (�n)) be a pair of wheel data. If the number of vertices k satisfies
k ≤ d then

W̃ k,(n)
ε<L = 0

as a distribution on C
dk for any ε, L > 0.

Proof. In fact, the integrand of (26) is identically zero provided k ≤ d by a simple
observation of the differential form type. Consider the factor in the integrand of W̃ k,(n)

ε<L
given by

(
∂

∂zk

)�nk
Kε(z

1, zk)
k−1∏

α=1

(
∂

∂zα

)�nα

Pan
ε<L(zα, zα+1).

Making the usual change of coordinates wα = zα+1 − zα and wk = zk we see that this
factor is proportional to the following constant coefficient differential form

(
d∏

i=1

(
k−1∑

α=1

dwα
i

))
k−1∏

α=1

(

ηα
d∏

i=1

dwα
i

)

.
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Note that this differential form only involves the coordinates (wα
i ) for α = 1, . . . , k−1.

Thus, we may consider it as a Dolbeualt form on C
d(k−1). As such, it is of the type

(0, d+(k−1)(d−1)) = (0, (d−k+1)+d(k−1)). Clearly, (d−k+1)+d(k−1) > d(k−1)
provided k ≤ d. Thus, the weight is identically zero provided k ≤ d, as desired. ��

Item (2) follows from the following technical lemma that the analytic weight associ-
ated to the wheels of valency k > d + 1 vanish in the limit ε → 0.

Lemma 4.7. Let (k, (�n)) be a pair of wheel data such that k > d + 1. Then the ε → 0
limit of the analytic weight

lim
ε→0

W̃ k,(n)
ε<L = 0

is identically zero as a distribution on C
dk .

Proof. The proof is very similar to the argument we gave in the proof of Lemma 3.11,
so we will be a bit more concise. First, we make the familiar change of coordinates as in
Equations (16),(17). Using the explicit form the heat kernel and propagator we see that
for any � ∈ C∞

c (Cdk) the weight is

W̃ k,(n)
ε<L (�) =

∫

wk∈Cd
d2dwk

∫

(w1,...,wk−1)∈(Cd )k−1

(
k−1∏

α=1

d2dwα

)

�(w1, . . . , wk)

×
∫

(t1,...,tk )∈[ε,L]k−1

1

(4πε)d

k−1∏

α=1

dtα
(4π tα)d

×
d∑

i1,...,ik−1=1

εi1,...,id

(
w1
i1

t1

(w1)n
1

4t |n1|

)

· · ·
(

wk−1
ik−1

4tk−1

(wk−1)n
k−1

4t |nk−1|

)

⎛

⎜
⎝

1

4t |nk |

(
k−1∑

α=1

wα

)nk
⎞

⎟
⎠

× exp

⎛

⎝−
k−1∑

α=1

|wα|2
4tα

− 1

4ε

∣∣
∣∣∣

k−1∑

α=1

wα

∣∣
∣∣∣

2⎞

⎠ .

We will integrate by parts to eliminate the factors of wα
i .

For each 1 ≤ α < k and iα , define the ε and t = (t1, . . . , tk−1)-dependent holomor-
phic differential operator

Dα,iα (t) :=
⎛

⎝ ∂

∂wα
iα

−
k−1∑

β=1

tβ
t1 + · · · + tk−1 + ε

∂

∂w
β
iα

⎞

⎠

d∏

j=1

⎛

⎝ ∂

∂wα
j

−
k−1∑

β=1

tβ
t1 + · · · + tk−1 + ε

∂

∂w
β
j

⎞

⎠

nα
j

.
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And the ε, t-dependent holomorphic differential operator

Dk(t) =
d∏

j=1

⎛

⎝ ∂

∂wk
j

−
k−1∑

β=1

tβ
t1 + · · · + tk−1 + ε

∂

∂w
β
j

⎞

⎠

nkj

.

Byacompletely analogous versionofLemma theoperators above allowus to integrate
by parts and express the weight in the form

W̃ k,(n)
ε<L (�) = ±

∫

wk∈Cd
d2dwk

∫

(w1,...,wk−1)∈(Cd )k−1

(
k−1∏

α=1

d2dwα

)

×
∫

(t1,...,tk−1)∈[ε,L]k−1

1

(4πε)d

k−1∏

α=1

dtα
(4π tα)d

×
⎛

⎝
∑

i1,...,ik−1

εi1··· ,id D1,i1(t) · · · Dk−1,ik−1(t)Dk(t)�(w1, . . . , wk)

⎞

⎠

× exp

⎛

⎝−
k−1∑

α=1

|wα|2
4tα

− 1

4ε

∣
∣∣∣∣

k−1∑

α=1

wα

∣
∣∣∣∣

2⎞

⎠ .

Observe that the operators Dα,iα (t), Dk(t) are uniformly bounded in t . Thus, there exists
a constant C = C(�) > 0 depending only on the function � such that we can bound
the weight as

|W̃ k,(n)
ε<L (�)| ≤ C

∫

(w1,...,wk−1

k−1∏

α=1

d2dwα

∫

(t1,...,tk−1)∈[ε,L]k−1
dt1 . . . dtk

1

εd td1 · · · tdk−1

× exp

⎛

⎝−
k−1∑

α=1

|wα|2
4tα

− 1

4ε

∣∣
∣∣∣

k−1∑

α=1

wα

∣∣
∣∣∣

2⎞

⎠ .

(27)
Thus, to show that the limit limL→0 limε→0 W̃

k,(n)
ε<L (�) = 0 it suffices to show that the

limit of the right-hand side vanishes.
The Gaussian integral over the variables wα

i contributes the following factor

∫

(w1,...,wk−1

k−1∏

α=1

d2dwα exp

⎛

⎝−
k−1∑

α=1

|wα|2
4tα

− 1

4ε

∣
∣∣∣
∣

k−1∑

α=1

wα

∣
∣∣∣
∣

2⎞

⎠ = C ′
(

εt1 · · · tk−1

ε + t1 + · · · + tk−1

)d
.

Where C ′ involves factors of 2 and π . Plugging this back in to the right-hand side of
(27) we see that

|W̃ k,(n)
ε<L (�)| ≤ CC ′

∫

[ε,L]k−1

dt1 · · · dtk−1

(ε + t1 + · · · + tk−1)d
≤ CC ′

k−1∏

α=1

∫ L

tα=ε

dtαt
−d/(k−1)
α .

In the second inequality we have used the fact that ε > 0 and the AM-GM inequality. It
is immediate to see that the ε → 0 limit of the above exists provided k > d + 1, which
is the situation we are in, and that the L → 0 limit vanishes. ��

This completes the proof of Proposition 4.4 ��
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4.2.1. Relation to the ABJ anomaly The lemma we have just proved implies that for
holomorphic theories on C

d the anomaly is given by evaluating a collection of wheel
diagrams with exactly d + 1 vertices. This expression for the obstruction fits into a
generic class of of one-loop anomalies from gauge theory called the Adler–Bell–Jackiw
(ABJ) anomaly [Adl69,BJ69]. This anomaly is most commonly associated with four
dimensional gauge theory.

We recall the basic setup for the ABJ anomaly. Consider a free Dirac fermion � on
R
4 coupled to a background gauge field A ∈ 1(R4) ⊗ g. For this to make sense, � is

taken to be in valued in a representation V of the Lie algebra g so we may think of it
as an element � ∈ S(R4) ⊗ V . Here, S(R4) is the space of sections of the full spinor
bundle on R

4. The action functional is

S(A, �) =
∫

〈�, /∂ A�〉V

where /∂ A = /∂ + [A,−] is the A-coupled Dirac operator. We are implicitly using the
canonical spin invariant symplectic pairing S ⊗ S → 4(R4) = C∞(R4)d4x and a
g-invariant pairing 〈−,−〉V : V ⊗ V → C, to obtain a local functional.

For any smooth map α : R
4 → g, the infinitesimal transformation� → � +ε[α,�]

(where ε is an even parameter of square zero) is a classical symmetry of S(A, �).
Quantum mechanically, there is a one-loop anomaly which measures the failure of the
path integral to be invariant with respect to this symmetry. It is a well-known calculation,
see for instance [FS04], that this anomaly is measured by the following local functional

∫
TrV (αFAFA) . (28)

The trace is taken in the representation V . The fundamental calculation is the infamous
“triangle diagram”, where two vertices are labeled by the gauge field and the third by α.
In practice, physicists express the anomaly as a failure for the Noether current associated
to the symmetry α to be divergenceless.

There is the following holomorphic version of this anomaly. Again, let V be a g
representation. Consider the following action functional on C

2:

S(A, β, γ ) =
∫

〈β, ∂ Aγ 〉V

where γ : C
2 → V , β ∈ 2,1(C2, V ), and A ∈ 0,1(C2, g). Since A is a (0, 1) form

it defines a deformation of the trivial holomorphic G-bundle. Although we have not
put this theory in the BV formalism, there is a natural way to do so. The infinitesimal
symmetry we contemplate is of the form γ → γ + ε[α, γ ] where α : C

2 → g. We
study the anomaly to quantizing this symmetry to one-loop. Following the result for the
anomaly given in the previous section, one sees that it is computed by a wheel with three
vertices. For type reasons, one vertex is labeled α and the other two are labeled by the
gauge fields A.

∫
TrV (α∂A∂A).

This is the holomorphic version of ABJ anomaly (28). Note that there are no terms
of order A3 or above. In fact, the functional

∫
Tr(αFAFA) is cohomologous to the

expression above in the local deformation complex.
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Remark 4.8. We have already shown how familiar topological theories can be cast in a
holomorphic language. For instance, topological BF theory is a holomorphic deforma-
tion of holomorphic BF theory. It is a peculiar consequence of the above result that such
topological theories also admit a simple regularization procedure. Without much more
difficulty, one can extend this to certain topological theories to odd dimensional mani-
folds of the form X × S, where X is a complex manifold and S is a real one-dimensional
manifold. We consider the theory as a product of a holomorphic theory on X and a
one-dimensional topological theory on S. This can be further extended to transversely
holomorphic foliations [Bru96,Ghy96], which wewill study in a future publication. Fur-
ther, often topological BF theory further deforms to Yang–Mills. It would be interesting
to apply our analysis above to such gauge theories.
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Appendix A: Some Functional Analysis

Homological algebra plays a paramount role in our approach to quantum field theory.
We immediately run into a subtle issue, which is that the underlying graded spaces of
the complexes of fields we are interested in are infinite dimensional, so care must be
taken when defining constructions such as duals and homomorphism spaces. A common
approach to dealingwith issues of infinite dimensional linear algebra is to consider vector
spaces equipped with a topology. A problem with this is that the category of topological
vector spaces is not an abelian category, so doing any homological algebra in this naive
category is utterly hopeless. It is therefore advantageous to enlarge this to the category
of differentiable vector spaces. The details of this setup are carried out in the Appendix
of [CG17], but we will recall some key points for completeness of exposition. In this
appendix we also set up our notation for duals and function spaces.

Let Mfld be the site of smooth manifolds. The covers defining the Grothendieck
topology are given by surjective local diffeomorphisms. There is a natural sheaf of
algebras on this site given by smooth functions C∞ : M → C∞(M).

For any p the assignment p : M → p(M) defines a C∞-module. Similarly, if F
is any C∞-module we have the C∞-module of p-forms with values on F defined by the
assignment

1(F) : M ∈ Mfld → p(M, F) = p(M) ⊗C∞(M) F(M).

Definition A.1. A differentiable vector space is a C∞-module equipped with a map of
sheaves on Mfld

∇ : F → 1(F)
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such that for each M , ∇(M) defines a flat connection on the C∞(M)-module F(M).
A map of differentiable vector spaces is one of C∞-modules that intertwines the flat
connections. This defines a category that we denote DVS.

Our favorite example of differentiable vector spaces are imported directly fromgeometry.

Example A.2. Suppose E is a vector bundle on a manifold X . Let E(X) denote the space
of smooth global sections. LetC∞(M,E(X)) be the space of sections of the bundleπ∗

X E
on M× X where πX : M× X → X is projection. The assignment M → C∞(M,E(X))

is a C∞-module with flat connection, so defines a differentiable vector space. Similarly,
the space of compactly supported sections Ec(X) is a DVS.

Many familiar categories of topological vector spaces embed inside the category
of differentiable vector spaces. Consider the category of locally convex topological
vector spaces LCTVS. If V is such a vector space, there is a notion of a smooth map
f : U ⊂ R

n → V . One can show, Proposition B.3.0.6 of [CG17], that this defines
a functor dif t : LCTVS → DVS sending V to the C∞-module M → C∞(M, V ).
If BVS ⊂ LCTVS is the subcategory with the same objects but whose morphisms
are bounded linear maps, this functor restricts to embed BVS as a full subcategory
BVS ⊂ DVS.

There is a notion of completeness that is useful when discussing tensor products.
A topological vector space V ∈ BVS is complete if every smooth map c : R → V
has an anti-derivative [KM97]. There is a full subcategory CVS ⊂ BVS of complete
topological vector spaces. The most familiar example of a complete topological vector
space will be the smooth sections E(X) of a vector bundle E → X .

We let Ch(DVS) denote the category of cochain complexes in differentiable vector
spaces (we will refer to objects as differentiable vector spaces). It is enriched over the
category of differential graded vector spaces in the usual way. We say that a map of
differentiable cochain complexes f : V → W is a quasi-isomorphism if and only if for
each M the map f : C∞(M, V ) → C∞(M,W ) is a quasi-isomorphism.

Theorem A.3 (Appendix B [CG17]). The full subcategory difc : CVS ⊂ DVS is closed
under limits, countable coproducts, and sequential colimits of closed embeddings. Fur-
thermore, CVS has the structure of a symmetric monoidal category with respect to the
completed tensor product ⊗̂β .

Wewill not define the tensor product ⊗̂βhere, but refer the reader the cited reference for
a complete exposition. We will recall its key properties below. Often times we will write
⊗ for ⊗̂β where there is no potential conflict of notation. The fundamental property of
the tensor product that we use is the following. Suppose that E, F are vector bundles
on manifolds X,Y respectively. Then, E(X),F(Y ) lie in CVS, so it makes sense to take
their tensor product using ⊗̂β . There is an isomorphism

E(X)⊗̂βF(Y ) ∼= �(X × Y, E � F) (29)

where E � F denotes the external product of bundles, and � is smooth sections.
If E is a vector bundle on a manifold X , then the spaces E(X),Ec(X) both lie in the
subcategory CVS ⊂ DVS. The differentiable structure arises from the natural topologies
on the spaces of sections.
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We will denote by E(X) (Ec(X)) the space of (compactly supported) distributional
sections. It is useful to bear in mind the following inclusions

Ec(X)

Ec(X) E(X)

E(X) .

When X is compact the bottom left and top right arrows are equalities.
Denote by E∨ the dual vector bundle whose fiber over x ∈ X is the linear dual of Ex .

Let E ! denote the vector bundle E∨ ⊗DensX , where DensX is the bundle of densities. In
the case X is oriented, DensX is isomorphic to the top wedge power of T ∗X . Let E!(X)

denote the space of sections of E !. The natural pairing

Ec(X) ⊗ E!(X) → C

that pairs sections of E with the evaluation pairing and integrates the resulting compactly
supported top form exhibits Ec(X) as the continuous dual to E!(X). Likewise, Ec(X) is

the continuous dual to E
!
(X). In this way, the topological vector spaces E(X) and Ec(X)

obtain a natural differentiable structure.
If V is any differentiable vector space thenwe define the space of linear functionals on

V to be the space of maps V ∗ = HomDVS(V, R). Since DVS is enriched over itself this
is again a differentiable vector space. Similarly, we can define the polynomial functions
of homogeneous degree n to be the space

Symn(V ∗) = Hommulti
DVS (V × · · · × V, R)Sn

where the hom-space denotes multi-linear maps, and we have taken Sn-coinvariants on
the right-hand side. The algebra of functions on V is defined by

O(V ) =
∏

n

Symn(V ∗).

As an application of Equation (29) we have the following identification.

Lemma A.4. Let E be a vector bundle on X. Then, there is an isomorphism

O(E(X)) ∼=
∏

n

Dc(X
n, (E !)�n)Sn

where Dc(Xn, (E !)�n) is the space of compactly supported distributional sections of
the vector bundle (E !)�n. Again, we take Sn-coinvariants on the right hand side.
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