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In this note, we study, formalize, and generalize the pure spinor superfield formalism from 
a rather nontraditional perspective. To set the stage, we review the notion of a multiplet 
for a general super Lie algebra, working in the context of the BV and BRST formalisms. 
Building on this, we explain how the pure spinor superfield formalism can be viewed as 
constructing a supermultiplet out of the input datum of an equivariant graded module over 
the ring of functions on the nilpotence variety. We use the homotopy transfer theorem 
and other computational techniques from homological algebra to relate these multiplets to 
more standard component-field formulations. Physical properties of the resulting multiplets 
can then be understood in terms of algebrogeometric properties of the nilpotence variety. 
We illustrate our discussion with many examples in various dimensions.
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1. Introduction

Speaking broadly, a classical field theory concerns itself with the study of the sheaf of solutions to particular partial 
differential equations on the spacetime manifold, or more properly on the site of manifolds equipped with appropriate 
structure. Over an open set U , one considers solutions to the equations of motion of the theory on U , considered up to 
gauge equivalence; since the equations of motion that are of physical interest tend to arise from variational principles, we 
will refer to it with the suggestive notation Crit(S)/G , where S refers to the action functional and G to the group of local 
gauge transformations.

In general, this sheaf has several properties: First and foremost, its sections over U can be thought of as a covariant 
version of the phase space associated to ∂U [17], and thus have the structure of a symplectic space. (We are passing over 
numerous technical subtleties in silence; in particular, degeneracies of various kinds can and do occur, notably in the theory 
of constrained systems. Such examples arise naturally in our context [15,50], though we do not treat degeneracies in any 
detail here.) As already indicated above, it may not consist just of the space of solutions to the equations of motion, but of 
its quotient by gauge equivalences. Lastly, since the degrees of freedom of many quantum field theories include fermions, it 
should most properly be understood as a (possibly singular, stacky, or infinite-dimensional) supermanifold or graded space.

In studying field theories, symmetries play a crucial role. Let g be a sheaf of Lie algebras. A classical theory has a 
symmetry by g when its sheaf of fields is equipped with a local action of the sheaf g by infinitesimal automorphisms. (We 
will make this more precise in §2 below.) Usually, g is either a constant or a locally free sheaf (though other examples are 
possible, notably in holomorphic field theories). In the former case, one refers to a “global” symmetry, and in the latter to 
a “local” symmetry. By Noether’s second theorem, local symmetries correspond to degeneracies in the variational problem 
of precisely the kind we ruled out above; as such, local symmetries are usually only relevant when gauged, and the terms 
“local symmetry” and “gauge symmetry” are often used interchangeably.1 Examples of symmetries abound; for example, 
any field theory on affine space should admit the Lie algebra of infinitesimal affine transformations (the “Poincaré algebra”) 
as a symmetry, reflecting the coordinate invariance (homogeneity and isotropy) of its dynamics.

Since fermions are typically present in the theory, Vect(Crit(S)/G ) is most naturally not a Lie algebra, but a graded or 
super Lie algebra. The most important examples of super Lie algebras extend the Poincaré symmetry by odd spacetime 
symmetries transforming in the spin representation of the Lorentz group; a field theory that admits an action of such an 
algebra is called supersymmetric. The problem of constructing supersymmetric field theories has a long history in physics, 
dating back to the first explorations of the subject in the seventies [26,27,54].

It is common wisdom in physics that representations of supersymmetry algebras in typical field theory models can be 
quite intricate. Often, the supersymmetry algebra closes only on-shell or up to gauge transformations. In other words, while 
a symmetry of the theory in the above sense can be defined, it does not arise in a straightforward manner from an action on 
the larger space of fields inside of which the equations of motion are solved. This leads, among other issues, to difficulties 
in quantizing the theory.

1 For a field theory whose physical fields are of the form Crit(S)/G as above, the Lie algebra of G is a locally free sheaf of Lie algebras that acts on the 
degenerate variational problem Crit(S).
2
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In typical field theory models the structure of supersymmetry transformations roughly falls into four distinct cases:

• There is a set of fields on which the supersymmetry algebra is represented on the nose. This is the case, for example, 
for the four-dimensional N = 1 chiral multiplet.

• The supersymmetry algebra is only represented after taking the quotient by the action of the gauge group. This happens, 
for example, for the four-dimensional vector multiplet.

• The supersymmetry algebra is represented only after imposing the equations of motion. Here, the six-dimensional 
hypermultiplet is an example.

• The supersymmetry algebra is represented only after taking the quotient by gauge transformation and imposing the 
equations of motion. This most general case appears in ten-dimensional super Yang–Mills theory, among other examples.

The first objective of this note is to formalize these considerations using the language of homotopical algebra; we work in 
the context of the BRST and BV formalisms, which seek to respectively replace the quotient by gauge symmetries and the 
imposition of equations of motion by appropriate derived analogues. In §2, we set up some necessary preliminaries for this 
context; in particular, we give a definition of a multiplet that is designed to capture all these different aspects of symmetry 
in our context.

Once this terminology is established, we turn our attention towards the construction of supermultiplets via the pure 
spinor superfield formalism; see [5], and especially the review [11] and references therein. Our perspective is somewhat 
nontraditional. In §3 we set up the formalism in a generalized setting (without restricting to supersymmetry algebras of 
physical interest), clarify its relation to various standard constructions in homological algebra, and give an explicit account 
of calculational techniques from commutative algebra.

In our interpretation, which builds on that in [23], the pure spinor superfield formalism constructs a supermultiplet out 
of the datum of an equivariant module over the ring of functions OY on the nilpotence variety Y of the relevant superal-
gebra. Speaking roughly, the output of the formalism is a rather large cochain complex that is automatically equipped with 
a strict action of the supersymmetry algebra—indeed, which is quasi-isomorphic to a standard component-field descrip-
tion of the multiplet in the BRST or BV formalism, but which is free over superspace rather than just over the spacetime 
manifold. We can then recover the usual component-field description by moving from this large resolution to a smaller, 
quasi-isomorphic cochain complex of vector bundles over spacetime, which is in a certain sense the “minimal” resolution of 
this kind. A particular filtration on the pure spinor cochain complex produces the component-field formulation in canonical 
fashion; the set of component fields is identified with the vector bundle associated to the representation of Lorentz and 
R-symmetry on the Koszul homology of the input module.

One can then transfer the various structures present on the large complex to the component fields, using the homotopy 
transfer theorem. As we will see, this procedure links the component field description of the multiplet closely to the minimal 
free resolution of the equivariant module over the ambient polynomial ring. In particular, we find that the non-derivative 
part of the supersymmetry transformations can be read off directly from the resolution differential. This provides a proof 
for a conjecture made by Berkovits in [6].

Given our presentation of the pure spinor superfield formalism, it is natural to ask questions how algebraic properties of 
OY -modules are related to physical properties of the resulting multiplet. In §4, we point out that the Gorenstein property 
ensures the existence of a pairing on the multiplet; this pairing, however, can admit various different physical interpre-
tations. We furthermore study dualizing modules and explain how the Cohen–Macaulay property is related to antifield 
multiplets.

Throughout the text we illustrate the procedure with examples in different dimensions and with various amounts of 
supersymmetry. In particular, we provide a detailed discussion of ten-dimensional super Yang–Mills theory showing how all 
the different structures present in the component field formulation arise via homotopy transfer.
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2. Preliminaries

2.1. Gradings and basic definitions

Throughout this paper, we work with objects (be they vector spaces, vector bundles, associative algebras, or Lie algebras) 
that are graded by Z ×Z/2Z. We will use the abbreviation “dgs,” for “differential graded super,” to refer to objects of this 
sort, at least for emphasis.
3
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Definition 2.1. A dgs vector space is a Z × Z/2Z-graded vector space E• , equipped with a square-zero differential d of 
bidegree (1, +). Equivalently, E• is a cochain complex in the category of super vector spaces. We can thus write E =
⊕k Ek[−k] where Ek is a super vector space which sits in Z-grading degree k which further decomposes as

Ek = Ek+ ⊕ �Ek−, (2.1)

where Ek+ sits in even Z/2Z parity and Ek− sits in odd Z/2Z parity. The differential is a collection of linear maps of the 
form d : Ek± → Ek+1± satisfying d ◦ d = 0.

The total parity |v| ∈Z/2Z of a homogeneous element v ∈ Ek± is defined by

|v| =
{

k mod 2, v ∈ Ek+;
k + 1 mod 2, v ∈ Ek−.

(2.2)

We remark that each of these gradings has a clear physical meaning: the integer grading corresponds to the ghost 
number or homological degree, whereas the Z/2Z grading corresponds to the intrinsic parity (fermion number modulo 
two). In some contexts, it will be useful for us to think about defining an integer-valued fermion number—in other words, 
lifting the Z/2Z grading to a second integer grading. This motivates the following definition:

Definition 2.2. A lift of a dgs vector space E• is a Z-grading

Ek =
⊕

i

Ek
i [0,−i] (2.3)

on each graded component of E• that lifts the intrinsic parity, such that the differential d has bidegree (1, 0). By [k, �] we 
mean a shift by k in the original Z grading and a shift by � in this new Z grading. In other words, there are isomorphisms 
of vector spaces

Ek+ =
⊕

i even

Ek
i , Ek− =

⊕
i odd

Ek
i . (2.4)

A lifted dgs vector space is thus a cochain complex in the category of graded vector spaces—in other words, a bigraded 
vector space with a differential of degree (1, 0).

Definition 2.3. A commutative dgs algebra, or cdgsa, is a dgs vector space A• equipped with a bilinear multiplication

m2 : A• ⊗ A• → A•. (2.5)

The multiplication is required to be a cochain map of bidegree (0, +); furthermore, it should be commutative with respect 
to the Koszul sign rule determined by the total parity. That is,

ab = (−1)|a||b|ba. (2.6)

We remark that a cdgsa is a commutative differential graded algebra in the category of super vector spaces. There is also an 
obvious notion of a lift of a cdgsa, such that a lifted cdgsa is a commutative differential graded algebra in the category of 
graded vector spaces. Finally, we can extend our definitions to encompass super A∞ algebras: a (lifted) super A∞ algebra 
A• is an A∞ algebra in the category of super (or graded) vector spaces. That is, it is a collection

A• =
⊕

k

Ak[−k] (2.7)

of super (or graded) vector spaces, equipped with maps mn of arity n and bidegree (2 − n, +) or (2 − n, 0) that satisfy the 
usual A∞ relations.

Example 2.4. Let V • be a dgs vector space. The polynomial algebra Sym(V •) is the free dgs-commutative algebra generated 
by V • . Concretely, it is the quotient

Sym(V •) = T (V •)/〈xy − (−1)|x||y| yx〉 (2.8)

of the tensor algebra by the ideal generated by all (anti)commutators of homogeneous elements, where (anti)commutativity 
is determined by the Koszul sign rule for the total parity.
4
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Of course, all of the notions we have introduced for associative algebras have parallels for Lie algebras, which we now 
quickly introduce. Let x1, . . . , xn be homogeneous elements of a dgs vector space V • , and σ ∈ Sn a permutation. Then the 
Koszul sign ε(x1, . . . , xn; σ) of the permutation is defined by the relation

x1 · · · xn = ε(x1, . . . , xn;σ)xσ (1) · · · xσ (n), (2.9)

in the algebra Sym(V •). Furthermore define χ(σ ) = (−1)sgn(σ )ε(x1, . . . , xn; σ).

Definition 2.5. Let g be a (lifted) dgs vector space. A (lifted) super L∞ algebra structure on g is a collection of multilinear 
maps

μk : g×k → g (2.10)

for k ≥ 1, of bidegree (2 − k, +) (or (2 − k, 0), respectively), such that the following two conditions hold:

(1) Graded skew symmetry. For all σ ∈ Sk , xi ∈ g one has

μk
(
xσ (1), . . . , xσ (k)

) = χ(σ )μk (x1, . . . , xk) . (2.11)

(2) Higher Jacobi identities. For all xi ∈ g one has∑
i+ j=k+1

∑
σ∈S(i;k)

(−1)i( j−1)χ(σ )μ j
(
μi

(
xσ (1), . . . , xσ (i)

)
, xσ (i+1), . . . , xσ (k)

) = 0 . (2.12)

Here S(i; k) ⊂ Sk denotes all permutations such that σ(1) ≤ · · · ≤ σ(i) and σ(i + 1) ≤ · · · ≤ σ(k). We remark that a (lifted) 
super L∞ algebra is just an L∞ algebra in super (respectively, in graded) vector spaces. We further remark that the datum 
of a (lifted) super L∞ algebra structure is equivalent to a square-zero derivation of bidegree (1, +) (or (1, 0) in the lifted 
case) on the free dgs commutative algebra Sym(g∨[−1]). This derivation dg defines the complex computing Lie algebra 
cohomology,

C•(g) := (
Sym(g∨[−1]) , dg

)
. (2.13)

The shift is with respect to the homological degree.

There are some special cases of this definition that we point out. When g is supported purely in even parity, we recover 
the ordinary notion of an L∞ algebra [29,42]. On the other hand, when g is supported in degree zero, we recover the notion 
of a super Lie algebra (or, in the lifted case, a graded Lie algebra). When μk = 0 for all k > 2, we obtain the notion of a dg 
super Lie algebra.

Example 2.6. Let V • be a (lifted) dgs vector space. Then End(V •) is a dg super Lie algebra; the bracket μ2 is given by the 
commutator

μ2(x, y) = [x, y] = xy − (−1)|x||y| yx (2.14)

whereas the differential arises via

dEnd(V •) = [d,−] . (2.15)

We remark that End(V •) is in fact naturally a dgs associative algebra; the dgs Lie structure is obtained by applying the 
usual forgetful functor.

Definition 2.7. A L∞ map between super L∞ algebras

� : g� h

is a map of graded super commutative algebras

�∗ : C•(h) → C•(g), (2.16)

that preserves the augmentation map to constants in degree zero.

Definition 2.8. Let g be a super L∞ algebra. An L∞ dgs module is a dgs vector space V • , together with an L∞ map

g� End(V •). (2.17)
5
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2.2. Homotopy transfer

We will repeatedly make use of the homotopy transfer theorem in various contexts. We refrain from giving a general 
review of homotopy algebraic structures here; the reader is referred to [42,53]. Nonetheless, we will quickly recall the 
general idea.

It is common knowledge that various mathematical objects—for example sheaves or modules—admit interesting “higher 
structures.” This might include higher sheaf cohomology groups, for example, or more generally other derived functors 
such as Ext and Tor. These higher structures originate, in some sense, from the “constraints” imposed on these objects: for 
example, the failure of a module to be free.

To compute higher derived functors, one technique is to replace the object one wants to study by a “resolution.” This is 
a cochain complex of simpler objects (for example, free modules) that is quasi-isomorphic to the complicated object one 
wants to study. In derived geometry, one views this cochain complex as a replacement of the underlying object.

Just as the equations defining a non-free module lead to higher structures and need to be resolved, many algebraic 
structures are defined by collections of structure morphisms that satisfy certain strict equations. (For example, one requires 
associativity in the form ((ab)c) = (a(bc)), or the Jacobi identity for a Lie bracket.) When such equations are imposed in 
a cochain complex, they do not play well with homotopy-theoretic operations or notions of equivalence such as quasi-
isomorphism. The remedy consists of “resolving” the equations that are imposed on the defining maps of the algebraic 
structure. In technical language, one resolves the operad defining the algebraic structure one is interested in by a free dg 
operad. (See [46] for discussion of this perspective.)

There is then a collection of general results, which state that a homotopy algebraic structure may be transferred along 
homotopy data between two quasi-isomorphic cochain complexes (for example, a deformation retract) by summing over 
all marked trees in a consistent fashion. Vertices are to be labeled with operations of the structure to be transferred, and 
internal edges with the homotopy. See [53] for more details.

The phenomenon of homotopy transfer is very broad, and encompasses many examples from throughout mathematics, 
both more and less familiar. We mention some examples:

• A cochain complex is defined by a grading, together with a single endomorphism D of degree +1, satisfying the equa-
tion D2 = 0. A cochain complex in cochain complexes is a bicomplex: we give a second grading on (C•, d), together 
with a square-zero cochain map D . Resolving the equation D2 = 0 gives rise to an operad known as the D∞ operad: it 
encodes a sequence of maps Di of bidegree (1 − i, i), which obey the relations

dDn + (−1)n Dnd =
∑

i+ j=n

(−1)i Di D j. (2.18)

Homotopy transfer of D to H•(C, d) generates a D∞ module structure whose constituent maps encode the higher 
differentials of the spectral sequence of the bicomplex. This will play a role for us in describing the relation of pure 
spinor superfields to their component-field descriptions; see §3.

• The operad governing associative algebras is resolved by the A∞ operad, which has operations {mn} of arity n and 
degree 2 − n for all n ≥ 1. Similarly, the operad governing Lie algebras is resolved by the L∞ operad, which has bracket 
operations μn of arity n and degree 2 − n for all n ≥ 1 as we reviewed explicitly above. Transferring the associative 
algebra structure on de Rham forms to cohomology produces an A∞ structure with vanishing m1 and m2 the ordinary 
cup product. Higher mn ’s correspond to the classical Massey product operations.

• In the BV formalism, a perturbative classical field theory is described by a cyclic local L∞ algebra whose differential 
encodes the linearized equations of motion and gauge invariances of the free theory. Homotopy transfer to the co-
homology of the differential is related to the interaction picture in quantum field theory; the diagrams that describe 
the transferred L∞ structure on on-shell states are precisely tree-level Feynman diagrams, where the homotopy is the 
Feynman propagator. The operations of the transferred L∞ structure correspond to tree-level amplitudes [35,45]. Ho-
motopy transfer of L∞ structures will be relevant for us when discussing interactions for pure spinor superfields and 
their relation to the component-field formalism; see §5 for an example.

• In the BV or BRST formalism, the symmetries of a field theory are encoded as L∞ module structures on the complex of 
fields. Moving to another quasi-isomorphic complex of fields (e.g. by integrating out an auxiliary field), one can obtain 
the new module structure via homotopy transfer. We will use this to derive the action of the supersymmetry algebra on 
the component fields in the pure spinor superfield formalism. An explicit account on the homotopy transfer for module 
structures is given in Appendix A.

2.3. Maurer–Cartan elements and nilpotence varieties

We recall that the Maurer–Cartan equation in an L∞ algebra g takes the form∑ 1

k!μk (x, . . . , x) = 0. (2.19)

k≥1

6
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Here x ∈ g is an element of degree one; each of the terms in the above equation thus carries degree two. We can 
clearly generalize this definition to super L∞ algebras by asking for Maurer–Cartan elements x of bidegree (1, +). It is 
straightforward to see that Maurer–Cartan elements of this form define deformations of the super L∞ algebra structure; 
nontrivial deformations are classified by Maurer–Cartan elements up to gauge equivalence. Nonetheless, we will write MC(g)

for the naive space of Maurer–Cartan elements; in other words, we do not pass to the space of gauge equivalence classes, 
preferring to think of MC(g) as a space equipped with a g0-action by vector fields.

Now, given any super L∞ algebra, we can forget the Z ×Z/2Z-grading down to a Z/2Z-grading by remembering only 
the total parity. This is enough information to define the appropriate Koszul signs, and μk is then simply a multilinear 
operation with appropriate symmetry properties and parity (−1)k . We will call the resulting object a Z/2Z-graded L∞
algebra. We can then ask about the space Y (g) of odd elements satisfying the Maurer–Cartan equation (2.19). Elements 
of this space will correspond to deformations of g as a Z/2Z-graded L∞ algebra and there will be an injective map 
MC(g) ↪→ Y (g). We call Y (g) the nilpotence variety of g; when g is a super Lie algebra, this agrees with the notion given 
in [23].

For the purposes of this paper, Y is an affine scheme; we take

Y = SpecOY , OY = R/I, (2.20)

where R = Sym(�g∨−) is a polynomial ring in commuting variables, and I is the ideal generated by the Maurer–Cartan 
equations (2.19). In this work we will only be concerned with the case where g is a super Lie algebra, thus I will be 
generated by quadratic equations and OY is a graded ring. Since we view Y as an affine scheme, we will move back and 
forth freely between discussing the geometry of Y and the graded ring OY ; hopefully, no confusion should arise. (Sometimes 
we may also consider the geometry of the projective scheme ProjOY ; in either case, the essential object is the graded ring 
OY .) The distinction between a variety and a scheme will, in fact, play an important role in applications; see §3.9.

2.4. Multiplets and local modules

In this section, we move towards the setting of field theory by introducing the new ingredient of locality.

2.4.1. Local modules
Let X be a manifold thought of as spacetime. There is an obvious notion of a dgs vector bundle: concretely, we mean a 

Z ×Z/2-graded vector bundle

E =
⊕

k

Ek[−k] =
⊕

k

(
Ek+ ⊕ �Ek−

)
[−k] (2.21)

equipped with a collection of differential operators D : Ek± → Ek+1± such that D ◦ D = 0. Here, Ek± = 
(X, Ek±) denotes the 
C∞ sections of Ek± .2

Suppose that g is a super L∞ algebra. We will define a local g-module to be a dgs vector bundle on X equipped with a 
sufficiently local homotopy action of g.

To give the precise definition we first need a small bit of background. Consider the Z × Z/2-graded vector space E =

(X, E). As explained in Example 2.6, the endomorphisms End(E) naturally form a dg super Lie algebra: the structure maps 
consist of the commutator and the differential [D, −]. Inside (End(E), [D, −]) there is a sub dg super Lie algebra consisting 
of all endomorphisms which are differential operators. We will denote it by (D(E), [D, −]).

Definition 2.9. A local (super L∞) g-module is a dgs vector bundle (E, D) equipped with a super L∞-map (see Definition 2.7):

ρ : g�
(
D(E) , [D,−]) . (2.22)

We will refer to the data of a local g-module by a triple (E, D, ρ).

The space of sections of any dgs vector bundle is a dgs vector space. The space of sections (over any open set) of a local 
g-module (E, D) is a dgs L∞ module for the super Lie algebra g, see Definition 2.8.

Concretely, the data of ρ consists is a collection maps

ρ( j) : g⊗ j −→ D(E)[1 − j], j ≥ 1 (2.23)

satisfying some compatibility relations, the lowest of which reads

[ρ(1)(x),ρ(1)(y)] − ρ(1)([x, y]) = [D,ρ(2)(x, y)] . (2.24)

2 This is close to, but differs from, the notion of a “flat superconnection”. For one, our operator D is required to be even.
7
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Note that if the left hand side were zero, then we would have a strict Lie algebra action. Thus, ρ(2) provides a homotopy 
correcting the failure of ρ(1) to be strict.

One way to unravel this definition is in terms of the cochain complex computing the Lie algebra cohomology of g. The 
map ρ is equivalent to an element

ρ =
∑

k

ρ(k) ∈ C•(g) ⊗D(E), ρ(k) ∈ Ck(g) ⊗D(E) (2.25)

of bidegree (1, +) which satisfies the Maurer–Cartan equation

dgρ + 1

2
[ρ,ρ] = 0 . (2.26)

Here dg denotes the Chevalley–Eilenberg differential of g and [·, ·] is the commutator of differential operators.
We observe that ρ determines a super L∞ structure on g ⊕ E in such a way that there is a short exact sequence of L∞

algebras

0 → E→ g⊕ E→ g→ 0 (2.27)

where E is thought of as an L∞ algebra with μk = 0 for k > 1.
Let us take some time to reflect on this definition from the physics point of view. It is well known that the supersym-

metry algebra is sometimes only realized on-shell or up to gauge transformations. This is precisely captured in the fact that 
we used a super L∞-map g �

(
D(E) , [D, −]) to define a multiplet instead of a super Lie map. The higher order terms ρ( j)

for j ≥ 2 precisely correspond to closure terms correcting ρ(1) by a gauge transformation or contributions proportional to 
an equation of motion.

This discussion explains how the supersymmetry algebra acts on the fields of the theory. The operators of the theory 
consist of functionals of the fields and are denoted by O(E). For any point x ∈ X , we can define the local operators via

Ox(E) = Sym•( J∞E|x)
∨ , (2.28)

where J∞E denotes the jet bundle of E . In other words, the local operators at x evaluate polynomials in the fields and 
derivatives of fields at x. Given a map

ρ : g�
(
D(E) , [D,−]) , (2.29)

the dual maps (ρ( j))∨ define an action on the linear local operators, which extends to O(E)x via the Leibniz rule. Fixing an 
element Q ∈ g we can define a map

δQ =
∑

j

ρ( j)(Q , . . . , Q )∨ :Ox(E) −→ Ox(E) , (2.30)

which defines the action of Q ∈ g on the operators of the theory.

2.4.2. Local algebras
For completeness let us briefly remark that there is a natural way to make the symmetry algebra g local as well. This is 

relevant if g encodes a gauge symmetry.

Definition 2.10. A local super L∞ algebra on a manifold X is a dgs vector bundle L → X , equipped with a collection of 
polydifferential operators

μk : (L)×k → L (2.31)

of bidegree (2 − k, +) that satisfy the relations of a super L∞ algebra structure. Here L = 
(X, L) are the smooth sections 
of L.

The definition of a local module structure generalizes in obvious fashion. We note that, given a super L∞ algebra g, the 
constant sheaf g is not an example of a local super L∞ algebra for d > 0, since it is not given as the smooth sections of any 
dgs vector bundle. However, we can remedy this by resolving the constant sheaf by the de Rham complex: 
•(X) ⊗ g is a 
local super L∞ algebra on X . (This example is relevant to Chern–Simons theory.)

Furthermore the above definition is important in the general context of the BV formalism: A perturbative classical field 
theory in the BV formalism will be equivalent to a local super L∞ algebra on X , equipped with a trace map of degree −3. 
We will further review this perspective in what follows.
8
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2.4.3. Multiplets
In the context of supersymmetry, we are interested in local modules that satisfy an additional compatibility condition. 

For now, let X = VR =Rd be a d-dimensional affine space and let V =Cd be its complexification.3 The Poincaré group is 
the group of affine transformations of this space; it is of the form

Aff(V ) = V � Spin(V ) . (2.32)

The complexified Lie algebra aff(V ) is

V � spin(V ) ∼= V � ∧2 V . (2.33)

A multiplet is a local module structure for a dgs L∞ algebra on an affine4 dgs vector bundle on Rd , where the g-action is 
required to be compatible with the action of the affine algebra in a certain sense. We make this precise with the following 
definition.

Definition 2.11. Let E be an affine dgs vector bundle on X = VR , and g a super L∞ algebra equipped with a map

φ : aff(V ) → g . (2.34)

A g-multiplet is a local g-module structure on E , such that the pullback of the module structure along φ agrees with the 
natural action on sections of the affine vector bundle. Concretely, this means that the following diagram commutes.

g D(E)

aff(V )

ρ(1)

φ (2.35)

We think of a multiplet as a derived replacement for the (not necessarily locally free) “supersymmetric sheaf” H•(E). 
Even though this sheaf could be regarded as the central object of study in physics, it is more natural from either the BRST/BV 
perspective or the perspective of derived geometry to just work at the cochain level. There is again a generalization of this 
definition to local super L∞ algebras, where the global affine algebra is replaced by a local L∞ algebra modeling local 
isometries. We do not pursue this further here.

We briefly note that this definition implies that the image of φ is represented strictly on the fields. Furthermore, since 
the natural action of the affine algebra is effective, the above definition requires implicitly that φ be injective. So multiplets 
naturally lead us to study superalgebras that contain the affine algebra as a subalgebra.

We take note of the following examples:

• Let h be a Lie algebra, and consider the product g = h ⊕ aff(V ), equipped with the obvious choice of φ. Then a g-
multiplet contains a collection of fields transforming in a local representation of h. Flavor symmetry multiplets are an 
example of this kind.

• Let conf(V ) be the Lie algebra of conformal vector fields on V . There is a canonical embedding of aff(V ) in conf(V ). 
Then a conf(V )-multiplet encodes the notion of a conformally invariant multiplet of fields.

• Let p be the super-Poincaré algebra. It contains aff(V ) as a subalgebra, and a p-multiplet recovers the usual notion of a 
supermultiplet.

Historically speaking, the construction of interesting multiplets for algebras that were not products was the motivation that 
led to the origin of supersymmetry; we return to this point (and construct examples of the relevant algebras of physical 
interest) below.

2.5. Further structures on multiplets

As we will see in the following sections, the pure spinor superfield formalism naturally produces multiplets for the 
supersymmetry algebra. Some extra data is required to produce a theory out of a multiplet; furthermore, depending on 
whether or not supersymmetry closes off-shell, the resulting theory may be a BRST or a BV theory, so that the additional 
data required may differ. There are also conditions on the additional data that ensure that the theory is nondegenerate in 
an appropriate sense. We set up some formalism for the required additional structure in this section.

3 For the pure spinor superfield formalism it will be useful for us to use complex Lie algebras.
4 A dgs vector bundle is called affine if the total space carries an action of the affine group such that the projection is equivariant with respect to the 

action of the affine group on Rd .
9
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2.5.1. BRST data
In the BRST formalism, a perturbative field theory is described by a local super L∞ algebra L equipped with a BRST 

action functional S , which is invariant for the L∞ structure. The L∞ structure describes the (higher) infinitesimal gauge 
transformations and the variation of the BRST action gives rise to the equations of motion.

Definition 2.12. A BRST datum on the g-multiplet (F , D, ρ) consists of

• a local super L∞ structure {μk} on L def= F [−1] such that μ1 = D , and whose associated Chevalley–Eilenberg differential 
we denote by Q BRST; and

• a local functional S0 ∈ Oloc(F ) of bidegree (0, +), called the “BRST action functional,” which is closed with respect 
to Q BRST.

This data should be such that all maps in the short exact sequence

0 → L → g⊕L → g→ 0 (2.36)

are L∞ maps, and S0 is invariant for the L∞ action ρ .

For physicist readers, the shift by one appearing in L = F [−1] may deserve some comment. Essentially, this arises from 
the fact that the ghosts for the theory (which are valued in the Lie algebra of the gauge group, and thus carry a Lie algebra 
structure) sit in homological degree −1. The observables of the theory, which are functions on compactly supported sections 
of F , are Lie algebra cochains of the local L∞ algebra L; the BRST differential on observables is the Chevalley–Eilenberg 
differential arising from the gauge algebra structure.

2.5.2. BV data
The (classical) Batalin–Vilkovisky (BV) [2–4] formalism is a generalization of the BRST formalism that encodes the 

equations of motion in a derived way. For a comprehensive review of the classical BV formalism we refer to [16] (see 
also [34,47]). We recall the general idea briefly.

Perturbatively, a BV theory is described by a local super L∞ algebra LBV equipped with an invariant, skew-symmetric, 
non-degenerate, local pairing of degree −3 (see the definition below). The space of “BV fields” is the space of sections of 
the bundle E = LBV[1] given by the shift in Z-degree of the L∞ algebra encoding the BV theory.

The degree-(−3) local pairing on LBV is equivalent to a local skew pairing of degree −1 on the space of BV fields 
E = LBV[1], which in turn can be thought of as a (−1)-shifted symplectic structure on the BV fields. As above, the shift is 
needed so that observables of the classical BV theory can be identified with the Lie algebra cochains of LBV. The (−1)-
shifted symplectic structure equips the observables with a degree-(+1) Poisson bracket, often called the antibracket. In turn, 
the degree-(+1) Chevalley–Eilenberg differential on observables that encodes the super L∞ algebra structure on LBV is a 
degree-(+1) Hamiltonian vector field, that can be encoded in the datum of a BV action functional SBV, so that

C•(LBV) = (
O(E) , {SBV,−}) . (2.37)

The zeroth cohomology of this cochain complex is the space of functions on the critical locus of the BRST action modulo 
gauge equivalence. The condition that {SBV, −} define a differential is equivalent to the “classical master equation”

{SBV, SBV} = 0 . (2.38)

Of course, proper care must be taken to make rigorous sense of the BV complex above. As we are working perturbatively, 
the space of BV fields will arise as the space of sections of some graded vector bundle on spacetime. Furthermore, the BV 
action will be given as the integral of a Lagrangian density of the fields. More details on the BV formalism can be found 
in [16].
10
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For any multiplet, we will define a notion of “BV datum,” which consists of the set of data necessary to construct a BV 
theory (a (−1)-shifted invariant symplectic pairing, with respect to which the homotopy g-action is defined by Hamiltonian 
vector fields, and a BV action functional that is compatible with the action of g). A BV theory will then consist of a multiplet 
equipped with a BV datum that satisfies an additional nondegeneracy condition.

Definition 2.13. A BV datum on a g-multiplet (E, D, ρ) consists of:

• a graded antisymmetric map

〈−,−〉loc : E ⊗ E −→ DensX (2.39)

of bidegree (−1, +), which is fiberwise non-degenerate; and
• a C•(g)-valued BV action

SBV,g =
∑

k

S(k)
BV,g ∈ C•(g) ⊗Oloc(E), S(k)

BV,g ∈ Ck(g) ⊗Oloc(E) (2.40)

of bidegree (0, +) of the form

S(0)
BV,g(�) =

∫
X

〈�, D�〉loc + IBV(�) (2.41)

where IBV(�) is a Lagrangian that is at least cubic in the fields and where

S(k)
BV,g(x1, . . . , xk;�) =

∫
X

〈�,ρ(k)(x1, . . . , xk)�〉loc (2.42)

such that

(i) 〈−, −〉loc is invariant for the L∞ action ρ;
(ii) the total action SBV,g satisfies the g-equivariant master equation

dgSBV,g + 1

2
{SBV,g, SBV,g} = 0. (2.43)

If D is elliptic, then S(0)
BV,g(�) is a g-equivariant perturbative BV theory in the sense of [16]; the total action SBV,g then 

endows S(0)
BV,g(�) with the structure of a g-equivariant theory. We will refer to a multiplet equipped with a BV datum for 

which D is elliptic as a g-equivariant BV theory.
To go from a multiplet with BRST datum to a multiplet with BV datum, one considers

LBV = L ⊕ L∨[−3] (2.44)

which is equipped with a canonical evaluation pairing of degree (−3). The BRST action deforms the obvious L∞ structure 
on the direct sum of L with L∨[−3], thus giving rise to an L∞ structure on LBV for which the evaluation pairing is invari-
ant (after an application of the homological perturbation lemma, which can be thought of as solving the classical master 
equation for S B V order by order).

We will say that a multiplet equipped with a BRST datum is a BRST theory when the corresponding BV datum itself 
defines a BV theory, meaning that the kinetic term in the BV action involves an elliptic operator.

Note that, in the way we have set things up, any multiplet can be equipped with a trivial BRST datum, whereas a BV 
datum may not always exist. In §4 we will see that some of the multiplets produced in the pure spinor formalism can be 
naturally equipped with nondegenerate BV data, while this is not possible for others. Of course, a degenerate BRST datum 
does not, in itself, define a BRST theory.

For a multiplet with BV datum (E, D, ρ, 〈., .〉), the inner product always allows us to write

E = F ⊕ F ∨[−1] , (2.45)

where F = ⊕k≤0 Ek
BV. This induces a splitting on the space of sections

E = F ⊕F![−1] . (2.46)

Note that this is a splitting on the level of super vector spaces.
11
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Definition 2.14. A BV multiplet (E, D, ρ) is off-shell if the above splitting exists on the level of g-modules. Then F is naturally 
a BRST multiplet, and (F ∨[−1], D|F! , ρ|F! ) is called the antifields multiplet for (F , D|F, ρ|F).

Intuitively, this definition means that it is possible to consider the g-action separately on the fields and antifields. Then, 
the equations of motions are not needed to close the algebra and the only corrections for the action come from gauge 
transformations.

3. The pure spinor superfield formalism

3.1. A universal construction

Let g be a super Lie algebra, and Y its nilpotence variety, viewed as an affine scheme as discussed above. Let M be any 
(dgs) g-module, and 
 any graded module for the graded ring OY . (We can equivalently view 
 as defining a sheaf on 
ProjOY .) Then there is a map

ρ : g→ End(M) (3.1)

defining the g-module structure, and an obvious map

m : g∨− → End(
) (3.2)

given by left multiplication (after recalling that g∨− includes into OY in weight one). If we consider the tensor product 
M ⊗ 
, the above two maps define a map

ρ · m : g− ⊗ g∨− → End(M ⊗ 
) (3.3)

as explained in the following diagram.

g− ⊗ g∨− End(M ⊗ 
)

End(M) ⊗ End(
)

End(M ⊗ 
) ⊗ End(M ⊗ 
)

ρ·m

ρ⊗m

· (3.4)

That is, we apply ρ ⊗ m, include the resulting element into End(M ⊗ 
) ⊗ End(M ⊗ 
) and finally multiply to obtain an 
endomorphism of M ⊗ 
.

The map ρ · m equips M ⊗ 
 with a canonical square-zero differential D, defined to be the image of the canonical 
element

1 ∈ g− ⊗ g∨− ∼= End(g−). (3.5)

The square of this differential sits in the defining ideal of OY , and thus is zero for any OY -module 
.

Remark 3.1. In the case that 
 = OY is the structure sheaf, we note that this construction is closely related to the following 
construction: As in derived geometry, we define the “classifying space” of a super L∞ algebra g to be the derived scheme 
Bg whose ring of functions consists of the Lie algebra cochains C•(g). Then a version of the associated bundle construction 
associates a sheaf on Bg to any g-module M; the global sections of this sheaf are C•(g; M). In the cases we are interested 
in, there is a close connection between OY and C•(g); see §6.3.

3.2. The case of interest: from sheaves to multiplets

We now consider a graded Lie algebras g which is concentrated in degrees 0, 1, and 2. In keeping with the above 
discussion, we regard this as a lifted super L∞ algebra that is concentrated in homological degree zero; as such, only the 
binary bracket operation can be nonvanishing for degree reasons.

Spelling this out, we have a decomposition

g= g0 ⊕ g1 ⊕ g2, (3.6)

where g0 is an ordinary Lie algebra which acts on g1 and g2, g2 is an abelian Lie algebra, and there is a g0-equivariant 
anticommutator map
12
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{·, ·} : g1 ⊗ g1 −→ g2. (3.7)

Note that there is a subalgebra g>0 which is an extension of g1 by g2.
The most important examples will be super-Poincaré algebras; we review how these are constructed in detail below, but 

just remark here that g2 consists of translations and g1 of supersymmetries in that case.
As we will see momentarily, g2 will play the role of the spacetime on which the multiplet is constructed. We note 

that much of the construction would go through if g were any nonnegatively graded Lie algebra. In such a case, however, 
the bosonic part of g>0 may not be abelian, and an interpretation of the construction in terms of multiplets on an affine 
supermanifold will not be immediate. As such, we do not study any examples of this sort here.

To be very explicit, if we choose a basis dα of g1 and a basis eμ of g2, we can express the anticommutator map in terms 
of structure constants 
μ

αβ

{dα,dβ} = 

μ
αβeμ . (3.8)

We denote by λ1, . . . , λn coordinates on g1 dual to the basis dα . Then the defining ideal I of the nilpotence variety is 
generated by the equations

I = (λα

μ
αβλβ). (3.9)

Its ring of functions is then the quotient ring

R/I =C[λ1, . . . , λn]/I. (3.10)

We emphasize again that, if I is a radical ideal, then R/I = O(Y ) coincides with the ring of functions on Y in the sense of 
classical algebraic geometry. However, this does not need to be the case.

We are interested in a particular example of the construction above, where M is taken to be the g-module consisting of 
smooth functions on g>0 (viewed as a supermanifold). Concretely,

M = C∞(g>0) = C∞(X) ⊗C ∧•(g∨
1 ) , (3.11)

where we already identified X = g2. There are now two commuting actions of g on M , on the left and the right; we denote 
these by

R, L : g−→ End(M). (3.12)

Now, for any graded R/I-module 
 that is equivariant for the g0-action, applying the construction above to M (with respect 
to the right action of g) produces a cochain complex

A•(
) = (
 ⊗C M, D). (3.13)

Explicitly, let xμ be linear coordinate functions on g2 and θα be (odd) linear coordinate functions on g1, dual to the basis 
(eμ, dα) above. Then the differential is given in coordinates by

D = λα R(dα) = λα

(
∂

∂θα
− 


μ
αβθβ ∂

∂xμ

)
, (3.14)

where the differential operators act in M = C∞(g>0) and λα acts on 
 via the OY -module structure. Checking that D
squares to zero explicitly is also straightforward:

D2 = λαλβ R(dα)R(dβ) = 1

2
λαλβ{R(dα), R(dβ)}

= 1

2
λαλβ R({dα,dβ}) = 1

2
λαλβ


μ
αβ R(eμ) = 0.

(3.15)

A•(
) naturally has the structure of a dgs vector space: we assign bidegree (1, −) to λα , (0, −) to θα , and (0, +) to 
xμ . Since g admits a natural lift, there is also a natural candidate for a lifted dgs vector space structure, in which λα

carries bidegree (1, −1), θα bidegree (0, −1), and xμ bidegree (0, −2). However, this lift only defines a sensible bigrading 
on polynomial functions on g2, rather than on all smooth functions. This bigrading is often referenced in the pure spinor 
superfield literature, often under the names “ghost number” and “dimension.” We will not need it in what follows, and will 
view A•(
) just as a dgs vector space. However, a filtration related to the dimension will play an important role for us.

From this discussion, it is clear that A•(
) can be viewed as the global sections of an affine dgs vector bundle E → X
over X = g2 with typical fiber

Ek
x
∼= ∧•g∨

1 ⊗C (
)k . (3.16)

This is the underlying vector bundle of the multiplet we aim to construct.
We note some properties of this construction below:
13
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(1) By construction, the left action of g>0 commutes with the differential D. As such, the left action defines a strict g>0-
module structure, which is equivariant with respect to Aut(g>0) and as such can be extended to a strict action of g.

(2) There is an obvious sense in which (a subgroup of) the even part of g consists of affine transformations acting on M . 
The g-action is compatible with this inclusion map, and thus makes A•(
) into a g-multiplet.

(3) In the definition given above, the notion of a multiplet was designed to capture the notion of a sheaf over spacetime 
admitting an action of supersymmetry. In physical terms, this sheaf could be thought of as either on-shell or off-
shell field configurations up to gauge equivalence. A multiplet, that is a cochain complex of vector bundles with a 
homotopy action of supersymmetry, can be thought of as a resolution of this sheaf. (This corresponds to studying off-
shell supersymmetric theories in the BRST formalism, and on-shell theories in the BV formalism.) The multiplet A•(
)

goes one step further: it resolves a supersymmetric sheaf not just freely over spacetime, but freely over superspace. The 
action of the supersymmetry algebra is thus just the obvious one on functions on superspace, which is both strict and 
geometric in nature.

(4) It is apparent that A•(OY ) has the structure of a commutative algebra, and therefore that the supersymmetric sheaf 
H•(A•(OY )) is also an A∞ algebra in a canonical way. A•(OY ) is a strict model of this A∞ structure.

(5) To sum up, we have constructed a canonical way of associating a multiplet to any equivariant sheaf on Y . Schematically, 
we depict the construction as an assignment

{Graded equivariant R/I-modules} Pure spinor formalism−−−−−−−−−−−−→ {g-Multiplets} . (3.17)

Better yet, A• defines a functor from the category of (chain complexes of) equivariant OY -modules to the category of 
dgs A•(OY )-modules.

In many examples, there is further structure available, and (
 ⊗ M, D) can be equipped with a collection of higher brack-
ets endowing it with the structure of an L∞ algebra. By homotopy transfer this yields an L∞-structure on the cohomology. 
In physically relevant examples, such L∞ structures precisely correspond to those appearing in the BV or BRST description 
of the underlying field theory.

To give one example, the ten-dimensional super Yang–Mills multiplet is constructed by considering A•(OY ) for the 
ten-dimensional N = 1 supersymmetry algebra. Since A•(OY ) is a commutative dgs algebra, we can tensor with any finite-
dimensional Lie algebra h. Then A•(OY ) ⊗ h is a dgs Lie algebra that freely resolves the L∞ structure of the BV description 
of interacting N = 1 super Yang–Mills theory. This description is well-known from work of Berkovits and Cederwall, but we 
review it in our language below in §5 and explicitly derive the standard structures using homotopy transfer.

The general construction we have outlined so far produces a “large” multiplet, which, as outlined above, can be thought 
of resolving a sheaf over spacetime with an action of supersymmetry. Of course we can just move to the cohomology of 
our multiplet to recover this sheaf; however, one might wonder whether and how a smaller multiplet resolving the same 
sheaf can be extracted. For example, is there any way of connecting a pure spinor multiplet to the typical component field 
multiplets, that is to a finite-rank resolution by vector bundles over spacetime? In fact, there is a general technique for 
producing “minimal” resolutions of this kind, which was discussed in [38,49]. We review it in our language below and give 
a proof that highlights the relation to standard constructions in algebraic geometry and homological algebra. After that, we 
will construct our first examples of physically relevant algebras and multiplets.

3.3. Filtrations and Koszul homology

The object A•(
) that we have constructed admits a natural filtration F • A•(
); understanding the spectral sequence 
associated to this filtration will allow us to relate the multiplets we are constructing to finite-rank vector bundles over the 
spacetime X . The filtration is associated to a second integer grading; we will find that, while not all of the structures we are 
interested in preserve this second grading, they do play nicely with the associated filtration. The filtration degree is defined 
by the assignments in the following table:

homological degree intrinsic parity filtered weight

x 0 + 0

λ 1 − 1

θ 0 − 1

(3.18)

(These conventions for the filtration follow those used in [51].)
Since C∞(X) plays no role in the filtration, we are exhibiting A•(
) as a filtered dgs vector bundle over X . Moreover, 

since the filtration plays well with the product structure on the algebra A•(OY ), it gives rise to the structure of a filtered 
commutative dgs algebra there. However, we observe that the tautological differential does not respect the integer grading 
by filtration weight. Recall that, in coordinates,

D =D0 +D1 = λα ∂

α
− λα


μ
αβθβ ∂

μ
. (3.19)
∂θ ∂x

14
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As the notation suggests, the differential is the sum of two terms, which have filtered weight zero and two respectively. The 
associated graded complex is thus equipped only with the differential D0, which is independent of smooth functions on X . 
We could then write the resulting complex in the following form:

Gr A•(
) =
(

C∞(X) ⊗C
(

 ⊗C C[θα]) ,D0 = λα ∂

∂θα

)
∼= C∞(X) ⊗C K •(
). (3.20)

Here we have defined the Koszul homology of any R-module in standard fashion:

K •(
) :=
(


 ⊗C C[θα] , D0 = λα ∂

∂θα

)
. (3.21)

The fact that 
 is an R/I-module is of course vitally important for our construction, but Koszul homology makes sense 
for any R-module. In the pure spinor superfield literature, the cohomology of Gr A• is often referred to as “zero mode 
cohomology” [11].

If we consider the spectral sequence associated to this filtration, we find that the E1 page is just given by

H•(Gr A•(
)) = C∞(X) ⊗C H•(K •(
)). (3.22)

Since 
 is a graded module, the Koszul homology of 
 is a finite-dimensional bigraded representation of the Lorentz group. 
As such, H•(Gr A•(
)) determines a vector bundle over X = g2 ∼=Rn with fibers

(E ′
x)

k ∼= H•(K •(
))(k) . (3.23)

We emphasize that the homological degree of E ′ is determined by the internal (weight) grading on 
, whereas the parity is 
determined by the homological degree in Koszul homology modulo two. D1 induces a new differential D′ acting on the sec-
tions of this vector bundle via homotopy transfer of D∞-algebras. In addition, the g-module structure transfers as well such 
that (E ′, D′, ρ ′) is again a multiplet. This multiplet precisely corresponds to the component field description of multiplets 
as they are known from the physics literature. The transferred differentials play the role of BRST or BV differentials.

Of course one could go on and consider the full cohomology of A•(
). If the transferred differential D′ on the component 
field level does not already vanish, then the resulting object will no longer be free over spacetime, i.e. it does not consist of 
vector bundles and thus does not fit our definition of a multiplet. It is, however, still a sheaf on spacetime which carries a 
g-action. Physically speaking this sheaf consists of the on-shell, gauge invariant states of the multiplet.

Let us summarize these relations by the following diagram.

(A•(
),D) Free over superspace

(H•(GrA•),D′) Free over spacetime

(H•(A•(
)),0) Not necessarily free

H T

H T

(3.24)

The compatibility of the differential with the filtration in fact arises from a compatibility of the left and right g-actions 
with the filtration, once g is filtered in an appropriate way. Using the standard definition of a complete filtered Lie alge-
bra [36,37], we can equip g with a filtered structure by setting

g= g(−1) ⊃ g(0) = g+. (3.25)

We observe that this filtration corresponds to the one we defined above, viewing the pure spinor superfield as constructed 
from functions on superspace together with the degree-zero Lie algebra cohomology of g>0 (see §6.3).

The associated graded super Lie algebra Gr(g) is then the extension of g0 by the abelian module consisting of g1 ⊕ g2; 
said differently, we set the bracket between odd elements to zero. It is immediate that there is a Gr(g)-module structure 
on Gr A•(
). We will be able to derive this module structure, which consists of “all supersymmetry transformations that are 
independent of spacetime derivatives,” efficiently in examples, using purely algebrogeometric information about 
.

3.4. Examples of interest: supersymmetry algebras

We are mostly interested in multiplets for supersymmetry algebras on an affine spacetime X = VR . Depending on the 
dimension, Spin(V ) will have either one or two spinor representations, which we note by S or S± respectively; furthermore, 
there will be an equivariant map 
 that witnesses V as a submodule of the tensor square of the spin representation.

We construct the space p1 by taking the tensor product of a spin representation with an auxiliary vector space U , which 
(depending on dimension) may or may not be equipped with either a symmetric or antisymmetric bilinear form. The bracket 
must be constructed from the pairing 
; if 
 pairs one spin representation with the other (in dimension 0 mod 4), we tensor 
15
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one spin representation with U and the other with U∨ . If 
 is a symmetric self-pairing (as in dimensions 1, 2, and 3 mod 8), 
U should have a symmetric bilinear form; similarly, if 
 is an antisymmetric self-pairing on a spin representation (as in 
dimensions 5, 6, and 7 mod 8), U must be a symplectic vector space. The “degree of extended supersymmetry,” denoted N, 
is the dimension of U as a multiple of the smallest possible dimension (two in the symplectic case and one otherwise). In 
cases where a self-pairing exists on chiral spin representations (dimension 2 and 6 mod 8), two independent choices of N
are possible, one for each chirality. By abuse of notation, we will also write 
 for the symmetric pairing on p1.

The supertranslation algebra t := p>0 is then an extension

0 → p2 → t → p1 → 0, (3.26)

where p1 and p2 are abelian graded Lie algebras and the bracket on t consists of the equivariant symmetric map 


constructed above. The full super-Poincaré algebra p adds in the automorphisms of t in degree zero; these consist 
of Lie(Spin(V )) = so(V ), together with the automorphisms of U that preserve the pairing if present: either gl(U ), so(U ), 
or sp(U ), depending on dimension. In physics, this additional automorphism is known as R-symmetry.

The nilpotence varieties of these algebras were studied systematically in [23]; most examples were already present in 
the previous pure spinor literature. It is worth commenting briefly on the connection to the classical notion of a “pure 
spinor” given by Cartan. Recall that the spin representation of Spin(VR) is constructed by choosing a maximal isotropic 
subspace L ⊂ VC . Then S = ∧•(L∨), and VC = L ⊕ L∨ acts via Clifford multiplication just by wedging and contracting. (In 
odd dimensions, VC = L ⊕ L∨ ⊕ (L⊥/L), and the single generator in L⊥/L acts diagonally by the parity operator.)

Given the construction of the brackets in p, it is clear that an element lying in ∧0(L∨) (tensored with any element of U ) 
is automatically square-zero, and that it will be a “minimal” or holomorphic supercharge (the image of [Q , −] is just L⊥). 
Considered as a projective variety, the space of such elements thus consists of the product of the projective space P (U )

and the space OGr(n, d) of isotropic subspaces L =Cn ⊂ VC =Cd . (Here n = �d/2�.) The latter is the space of Cartan pure 
spinors, the minimal nonzero Spin(d) orbit in the spin representation. However, we emphasize that the nilpotence variety in 
general contains many more strata, and may even include nonminimal orbits in the spin representation, quite independently 
of R-symmetry (as in eleven dimensions).

We will not construct all supersymmetry algebras in detail here (for discussion that uses similar style and notation, 
see [23]). We will just introduce examples as we need them, beginning with the four-dimensional N = 1 algebra in the next 
section.

3.5. Motivating example: the 4d chiral multiplet

As an explicit example, let us consider the N = 1 supersymmetry algebra in four dimensions. A related discussion of the 
chiral multiplet already appeared in [23].

Since the dimension is zero modulo four, U carries no pairing and can be taken to be one-dimensional. p1 is then 
S+ ⊕ S− , and the bracket is constructed using the isomorphism

S+ ⊗ S− ∼= V (3.27)

of Spin(4) representations. Because this is an isomorphism, the self-bracket of an element Q ∈ p1 is zero precisely when 
either Q ∈ S+ or Q ∈ S−; as such, Y consists of two coordinate planes of the form C2 ⊂ C4, intersecting at the origin. 
More precisely,

Y = S+ ∪{0} S−. (3.28)

We repeat the same computation in coordinates for emphasis. A general supercharge Q can be written in the form

Q = λα Q α + λ̄β̇ Q̄ β̇ . (3.29)

Accordingly, the equation {Q , Q } = 0 reduces to the four quadratic equations

λαλ̄β̇

μ

αβ̇
= 0 . (3.30)

With respect to the decomposition into S+ and S− , the 
-matrices are off-diagonal with blocks consisting of the Pauli-
matrices σμ . Multiplying matrices gives the four equations

λ1λ̄1 + λ2λ̄2 = 0

λ1λ̄1 − λ2λ̄2 = 0

λ1λ̄2 + λ2λ̄1 = 0

λ1λ̄2 − λ2λ̄1 = 0 .

(3.31)

Adding and subtracting these equations one finally finds
16
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Table 1
Representatives for the N = 1 chiral multiplet in 
four dimensions organized by θ -degree.

Field Representative in the D0-cohomology
φ φ

ψ ψθ

F F θ1θ2

λ1λ̄1 = λ2λ̄2 = λ1λ̄2 = λ2λ̄1 = 0 , (3.32)

which implies that λα or λ̄β̇ vanish and recovers our result from above.
To construct a multiplet, we have to choose an OY -module. One possible choice is 
 =C[λ̄α̇], which corresponds to the 

pushforward of the structure sheaf of S+ to Y along the inclusion map. We form the pure spinor complex:

(
A•(
) , D

) =
(

C∞(T ) ⊗C[λ̄α̇] , D = λ̄α̇
∂

∂θ̄α̇

− λ̄α̇θα

μ
αα̇∂μ

)
. (3.33)

As emphasized above, we can relate this multiplet to the component field formulation by computing the Koszul homology 
of 
. Using t1 = S+ ⊕ S− , we see that the relevant complex can be written as(

∧•S+ ⊗ ∧•S− ⊗C[λ̄α̇] , D0 = λ̄α̇
∂

∂θ̄α̇

)
. (3.34)

Here we introduced coordinates on S+ denoted by θα and on S− written as θ̄α̇ . Since θα does not occur in the differential 
D0, we find that the cohomology is a tensor product

∧• S+ ⊗ H•(∧•S− ⊗C[λ̄α̇]) . (3.35)

However, it is easy to see that the second factor is acyclic, i.e. H•(∧• S− ⊗ C[λα]) = C. Thus, reinstalling the spacetime 
dependence, the D0-cohomology reads

∧• S+ ⊗ C∞(V ) . (3.36)

We immediately see that we are dealing with two scalar fields in degrees 0 and 2 and a Weyl fermion in degree 1. This is 
precisely the field content of the chiral multiplet. In Table 1 we display the corresponding representatives and relate them 
to the component fields of the chiral multiplet.

It is clear that the differential D′
1 acts trivially on these component fields. Hence there are also no further terms induced 

by homotopy transfer. We thus obtain a multiplet consisting of the super vector bundle

E ′ = V × ∧•S+ , (3.37)

with differential D′ = 0.
As the differential D vanishes, this is one of the rare cases where the supersymmetry algebra acts strictly on the com-

ponent fields. Expanding Q = εα Q α and Q̄ = ε̄α̇ Q̄ α̇ we have

ρ(Q ) = εQ= εα ∂

∂θα
− i(εσμθ̄)∂μ

ρ(Q̄ ) = ε̄Q̄= ε̄α̇ ∂

∂θ̄ α̇
+ i(θσμε̄)∂μ .

(3.38)

The transferred action only has a ρ ′ (1) component, which is given explicitly by

ρ ′ (1)(Q ) = p ◦ ρ(Q ) ◦ i = εα ∂

∂θα

ρ ′ (1)(Q̄ ) = p ◦ ρ(Q̄ ) ◦ i = i(θσμε̄)∂μ .

(3.39)

Now we can apply these to the representatives to find

ρ ′ (1)(Q )(φ) = 0 ρ ′ (1)(Q̄ )(φ) = −iε̄ /∂φθ

ρ ′ (1)(Q )(ψθ) = εψ ρ ′ (1)(Q̄ )(θβψβ) = iε̄ /∂ψθ1θ2

ρ ′ (1)(Q )(F θ1θ2) = ε F θ ρ ′ (1)(Q̄ )(θ1θ2 F ) = 0 .

(3.40)

Writing these relations dually in terms of operators we obtain the usual supersymmetry transformation rules.

δφ = εψ

δψ = iε̄ /∂φ + ε F

δF = −iε̄ /∂ψ .

(3.41)
17



R. Eager, F. Hahner, I. Saberi et al. Journal of Geometry and Physics 180 (2022) 104626
3.6. Computational techniques: Koszul homology via free resolutions

In the above example, we were able to compute the cohomology by hand and even could write down explicit repre-
sentatives easily. In general, such computations are much more convoluted, and we will rely heavily on more advanced 
techniques. In this section, we show how the cohomology can be computed from the minimal free resolution of the mod-
ule 
 and the corresponding Hilbert series. This allows for a fairly direct identification of the ingredients of the multiplet. 
Further, using tools from the study of spectral sequences, we can write down explicit formulas for the representatives.

Let us fix a nilpotence variety Y and an R/I-module 
. To understand the component field description of the multi-
plet A•(
), we are interested in the Koszul homology of 
. The following proposition shows that we can understand this 
by considering a free minimal resolution of 
 as an R-module.

Proposition 3.2 ([38,49]). Let L• −→ 
 −→ 0 be the minimal free resolution of 
 in free R-modules. Then

H•(K •(
)) ∼= L• ⊗R C . (3.42)

Proof. We denote the differential on the minimal free resolution L• by dL . By definition we have

Hk(L•,dL) =
{


, if k = 0

0, else.
(3.43)

This implies that there is a quasi-isomorphism(∧•t∨1 ⊗ 
 , D0
) � (∧•t∨1 ⊗ L•,D0 + dL

)
. (3.44)

Thus we may as well compute the cohomology of the complex on the right. Since the differential decomposes into two 
pieces there, we can use a spectral sequence for this task. Therefore we start with(∧•t∨1 ⊗ L• , D0

)
. (3.45)

It is easy to see that

Hk (∧•t∨1 ⊗ R[−l] , D0
) =

{
C, if k = l

0, else.
(3.46)

This means that we obtain a copy of C for each generator of L• . In total we get

H• (∧•t∨1 ⊗ L• , D0
) = L• ⊗R C, (3.47)

where the R-module structure on C is obtained by applying the canonical augmentation (quotienting out the maximal 
ideal). The differential on the first page is just the morphism induced by dL . However, since L• is minimal, dL contains no 
constant terms and therefore induces the zero map on the first page, implying that the result is already exact. Thus we find 
that

H• (∧•t∨1 ⊗ 
 , D0
) ∼= L• ⊗R C, (3.48)

as claimed. �
The proposition reduces the task of computing Koszul homology to the task of finding a minimal (equivariant) free 

resolution of 
. This can easily be done with commutative algebra software such as Macaulay2 [28]. As a result one obtains 
the Betti numbers of the complex. This gives us information about the number of fields in our multiplet. To understand 
which fields are part of our multiplet we have to identify the cohomology not only as a vector space, but as a representation 
of the Lorentz and the R-symmetry group. This is accomplished by introducing additional gradings for the λi , which allows 
us to extract the relevant information from the Hilbert series. Let us quickly review the main ingredients.

Let 
 = ⊕
i≥0 
i be a graded R-module generated by finitely many elements in positive degree. The Hilbert series of 


is defined as the formal power series

HS
 =
∞∑

n=0

dim(
n) T n. (3.49)

Let R =C[λ] be the polynomial ring in a single variable λ. Since there is only a single monomial in each degree the Hilbert 
series takes the form
18
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HSR =
∞∑

n=0

T n = 1

1 − T
. (3.50)

As the dimension is multiplicative under the tensor product, the Hilbert series of a polynomial ring in n variables R =
C[λ1, . . . , λn] =C[λ1] ⊗ · · · ⊗C[λn] is just the product

HSR = 1

(1 − T )n
. (3.51)

Now suppose we perform a shift R(−d) with respect to the polynomial degree such that the constants are in degree d. We 
obtain for the Hilbert series

HSR(−d) =
∞∑

n=0

dim(R(−d)n) T n

=
∞∑

n=0

dim(Rn−d) T n

= T dHSR

= T d

(1 − T )n
.

(3.52)

Thus, considering a free R-module 
 generated by elements in degree d1, . . . , dk we find

HS
 = T d1 + · · · + T dk

(1 − T )n
. (3.53)

The Hilbert series is additive with respect to short exact sequences. This means given a sequence

0 −→ A −→ B −→ C −→ 0 , (3.54)

we find

HSB = HSA + HSC . (3.55)

If L• is a free resolution of 
, we have a sequence


 ←− L0 ←− L−1 ←− · · · ←− L−(k−1) ←− L−k −→ 0 . (3.56)

Then the additivity implies

HS
 =
k∑

j=1

(−1) j−1HSL− j . (3.57)

Using this together with (3.53), we can express the Hilbert series of 
 in terms of the degrees of the basis vectors of the 
free resolution

HS
 =
k∑

j=1

(−1) j−1 T d j
1 + · · · + T

d j
n j

(1 − T )n
. (3.58)

Coming back to our original question, we see that the Hilbert series of 
 as a R-module contains all the information about 
the degrees of a basis of the minimal free resolution, which in turn coincides with the cohomology. All we have to do is 
to store the information about the transformation behavior under Lorentz and R-symmetry in the grading. Therefore, we 
assign to λi the degree

deg(λi) = (1, wi
1, . . . , wi

l ) , (3.59)

where wi
1, . . . , w

i
l are the weights of the Lorentz and R-symmetry representation. The first entry 1 remembers the coho-

mological degree. The Hilbert series then becomes a polynomial in l + 1 variables T0, . . . , Tl . Equation (3.58) remains valid, 
but we have to replace T d j

i by products of T0, . . . , Tl where each factor is exponentiated with a separate degree. Initializing 
such a grading in Macaulay2 and computing the Hilbert series, we can read off the weights of a basis of the cohomology in 
each degree, allowing to identify the cohomology as a representation of Lorentz- and R-symmetry.
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Table 2
The bicomplex obtained by using a free resolution to compute 
Koszul homology.

.

.

.
.
.
.

.

.

.

L0 ⊗ ∧2t∨1 L−1 ⊗ ∧2t∨1 L−2 ⊗ ∧2t∨1 . . .

L0 ⊗ ∧1t∨1 L−1 ⊗ ∧1t∨1 L−2 ⊗ ∧1t∨1 . . .

L0 ⊗ ∧0t∨1 L−1 ⊗ ∧0t∨1 L−2 ⊗ ∧0t∨1 . . .

D0 D0 D0

D0

dL

D0

dL

D0

dL

D0

dL

D0

dL

D0

dL

dL dL dL

(3.61)

Examining the proof of Proposition 3.2 closely, we can deduce a procedure to write down explicit representatives for the 
cohomology classes. Recall that we used the quasi-isomorphism(∧•t∨1 ⊗ 
 , D0

) � (∧•t∨1 ⊗ L• , D0 + dL
)
. (3.60)

On the right side we have a double complex of the form shown in Table 2. There are two different spectral sequences 
computing the total cohomology: the horizontal sequence starting with the differential dL and the vertical sequence starting 
with D0. In the proof of Proposition 3.2 we have seen that the latter already gives the exact result for the zero mode 
cohomology on the first page. The computational procedure amounts to coming to a better understanding of this bicomplex.

It is a fact that any bicomplex can be understood (non-canonically) as the sum of different indecomposable pieces [52]. 
These pieces are squares

• •

• •
(3.62)

and stairs of different lengths

•
•

•
• •

•

• •
. . . (3.63)

Here, the bullet denotes the underlying field • = K . Crucially, the decomposition can be chosen such that all the arrows are 
just identity maps. The length of a stair is the number of bullets • occurring.

One can understand the behavior of spectral sequences by thinking about the ways that these indecomposable pieces 
contribute to cohomology. It is a matter of inspection to see that stairs of even length are acyclic at the E1 page of one 
of the two spectral sequences of the bicomplex, but contribute two generators to the E1 page of the other, that cannot 
be canceled by the differential on that page just for degree reasons. It is precisely the (vertically or horizontally oriented) 
stairs of length 2k that contribute to differentials on the Ek page of the corresponding spectral sequence. Stairs of odd 
length contribute to the total cohomology of the complex, but do so in a bidegree that depends on which spectral sequence 
is being considered. If we consider such a stair, we see that the cohomology with respect to the horizontal differential is 
concentrated at the upper end, while the cohomology with respect to the vertical differential lives at the lower end. They 
are thus responsible for the breaking of the bigrading to the single homological grading of the total complex.

Now note that the cohomology of our double complex (3.61) is concentrated in the bottom row L• ⊗ ∧0t∨1 (for the 
vertical differential D0) and on the left column L0 ⊗ ∧•t∨1 (for the horizontal differential dL ). This implies that we have odd 
stairs contributing to the cohomology in the following manner:

• . . .

• • . . .

• • • . . .

• • • • . . .

(3.64)
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Classes in the total cohomology can be represented by elements on either end of the stair. However, if we want to view 
the representatives as elements in ∧•t∨1 ⊗ 
, we have to apply the spectral sequence starting with dL , which amounts to 
choosing the representatives on the upper end ∧•t∨1 ⊗ L0 and then projecting onto the quotient. On the other hand, a basis 
of the vertical D0-cohomology is clearly provided by the standard basis ei ⊆ L−k ⊗ ∧0t∨1 = Rnk . In order to get the desired 
basis in ∧kt∨1 ⊗ L0 we have to walk up the corresponding stair. Since we are now working only with Koszul complexes of 
maximal ideals in polynomial rings, this can be done explicitly by defining a simple “inverse” or “adjoint” differential to D0

by the formula5

D
†
0 = θα ∂

∂λα
. (3.65)

Then our discussion implies the following lemma.

Lemma 3.3. Let π : L0 −→ 
 be the projection. The elements π((D
†
0dL)

kei) form a basis of the cohomology H• (∧•t∨1 ⊗ 

)

in θ -
degree k.

3.7. Homotopy transfer to component fields

The new differential acting on the component fields, as well as the action of the supersymmetry algebra and, if present, 
an L∞ structure are obtained from the respective structures via homotopy transfer. For this we need homotopy data

(Gr A•,D0) (H•(Gr A•), 0) .h
p

i
(3.66)

Using Lemma 3.3, we can define an inclusion map

i : H•(Gr A•) ↪→ (
A•,D0

)
(3.67)

by sending a cohomology class to this representative. This inclusion is a quasi-isomorphism. In addition, choosing a comple-
mentary subspace inside A gives the projection p. (We always work equivariantly with respect to Lorentz and R-symmetry.)

The differential. Recall that we decomposed the differential on A• as the sum of two pieces, of filtered weight zero and 
two, respectively:

D = λα ∂

∂θα
− λαθβ


μ
αβ

∂

∂xμ
= D0 +D1. (3.68)

We can thus view D1 as defining a deformation of the differential on Gr A• , which in turn equips H•(Gr A•) with a new 
differential D′ that is obtained by homotopy transfer of D∞ structure [21][44][43]. This uses the choice of a homotopy 
datum to write all of the higher differentials of a spectral sequence as terms in a single differential, acting on the E1 page, 
whose cohomology is E∞ . In formulas, we have

D′ =
∞∑

n=1

D′
n (3.69)

where the pieces are given by

D′
n = p ◦ (

(D1h)n−1D1
) ◦ i. (3.70)

(Note that, due to our conventions for the filtration, only differentials on even pages are non-trivial; the differential on 
page 2n is represented by D′

n above.) Furthermore, we can fix new homotopy data [43]

(A,D) (H•(A,D0) , D′) ,h′
p′

i′
(3.71)

where

5 Note that this differential is well defined on ∧•t∨1 ⊗ L• , since L• consists of free R-modules. In particular D†
0 will in general not descend to a well 

defined map on ∧•t∨1 ⊗ 
.
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i′ =
∞∑

n=0

i′n =
∞∑

n=0

(hD1)
n ◦ i

p′ =
∞∑

n=0

p′
n = p ◦

∞∑
n=0

(D1h)n

h′ =
∞∑

n=0

h′
n = h ◦

∞∑
n=0

(D1h)n .

(3.72)

We can use this homotopy data to transfer further structures, such as the action of the supersymmetry algebra or an L∞
structure, from A•(
) to the component field description. Note that, in terms of sum-over-trees formulas, homotopy transfer 
with respect to the new homotopy data from (3.71) is expressed in terms of (3.66) simply by allowing for unary vertices 
which are decorated by D1.

The supersymmetry action. The supersymmetry action is obtained by a homotopy transfer of L∞ module structure. As a 
result one obtains an map of super L∞ algebras

ρ ′ : p �
(
D(E ′) , [D′,−]), (3.73)

whose component maps can be obtained via sum over trees formulas. For example ρ ′ (2) is given by

ρ ′ (2)(x1, x2) = p′ ◦ (
ρ(x1) ◦ h′ ◦ ρ(x2) ± ρ(x2) ◦ h′ ◦ ρ(x1)

) ◦ i . (3.74)

Interestingly, there is a close link between the resolution differential and the action of the supersymmetry algebra. This 
connection was already conjectured in [6], where it was noticed that the non-derivative supersymmetry transformations 
and their closure terms appear in the resolution differential of eleven-dimensional supergravity. Using our knowledge on 
the representatives and the homotopy transfer description of the action of the supersymmetry transformations we can make 
this observation precise and also provide a proof.

For this note that the strict part of a non-derivative supersymmetry transformation acts by

Q0 := ρ∂x=0(Q ) = εα ∂

∂θα
. (3.75)

In addition it is easy to see that

{Q0,D
†
0} = εα ∂

∂λα
(3.76)

and obviously

[Q0,dL] = 0 . (3.77)

Now suppose Q0 acts on a representative in θ -degree k

ρ
′ (1)
∂x=0( f ) = p ◦Q0 ◦ i( f )

= p ◦Q0 ◦ π(D
†
0dL)

k( f ie(k)
i ) .

(3.78)

Here (e(k)
i ) denotes a basis of L−k ⊗R C and π : L0 −→ 
 the projection. Note that Q0 ◦ π = π ◦ Q0. In the following, we 

abbreviate the components of the resolution differential by dk := (dL)k . Now we can use the anticommutator relation (3.76)
to bring Q0 to the right. We find

ρ
′ (1)
∂x=0( f ) = p ◦ π

⎛
⎝ k∑

j=1

D
†
0d1 . . .D

†
0d j−1ε

∂

∂λ
d jD

†
0 . . .dk( f )

⎞
⎠ . (3.79)

Since we already know the explicit form of the representatives, we can carry out the projection to D0-cohomology directly. 
The only remaining term is the following.

ρ
′ (1)
∂x=0( f ) = π

(
(D

†
0dL)

k−1ε
∂

∂λ
dk( f ie(k)

i )

)
. (3.80)

Furthermore, only the part of (dL)k linear in λ can contribute in D0-cohomology. Then ε ∂
∂λ

simply replaces λ with ε in the 
dk . Let us denote the resulting map by dε and its components by (dε)

j . Then we find
k k i
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ρ
′ (1)
∂x=0( f ) = π

(
(D

†
0dL)

k−1(dε
k )

j
i e(k−1)

j f i
)

= π
(
(D

†
0dL)

k−1(e(k−1)
j )(dε

k )
j

i f i
) (3.81)

Identifying the representative in degree k − 1 and writing the transformation rule dually in terms of operators, we find

δg j = (dε
k )

j
i f i , (3.82)

where g j denotes the operator corresponding to the respective representative in θ degree k −1. This shows that linear parts 
in the resolution differential precisely correspond to the strict part of the non-derivative supersymmetry transformations.

This generalizes to the higher components of the supersymmetry action. For n ≥ 2, the non-derivative part of ρ(n) acts 
is given by

ρ ′ (n) = p ◦ (Q0 ◦ h ◦Q0)
n−1 ◦ i . (3.83)

For example one finds for ρ ′ (2)

ρ
′ (2)
∂x=0(Q , Q )( f ) = p ◦Q0 ◦ h ◦Q0 ◦ i( f )

= p ◦Q0 ◦ h ◦ π

⎛
⎝ k∑

j=1

D
†
0d1 . . .D

†
0d jε

∂

∂λ
d jD

†
0 . . .dk( f )

⎞
⎠ (3.84)

Now assuming that the homotopy h acts via h ◦ π = π ◦D†
0 we find using (D†

0)
2 = 0

ρ
′ (2)
∂x=0(Q , Q )( f ) = p ◦ π

(
Q0D

†
0ε

∂

∂λ
d1D

†
0 . . .dk( f )

)

= p ◦ π

(
ε

∂

∂λ
Q0D

†
0d1D

†
0 . . .dk( f )

)
,

(3.85)

where we used that ε ∂
∂λ

commutes with both D†
0 and Q0.

Now we can again use the anticommutator relation (3.76) to find

ρ
′ (2)
∂x=0(Q , Q )( f ) = p ◦ π

⎛
⎝ε

∂

∂λ

k∑
j=1

D
†
0d1 . . .D

†
0d jε

∂

∂λ
d jD

†
0 . . .dk( f )

⎞
⎠ . (3.86)

Carrying out the projection p on D0-cohomology, we see that only one term survives.

ρ
′ (2)
∂x=0(Q , Q )( f ) = π

(
(D

†
0d)k−1(e(k−1)

j )(dε2

k )
j

i f i
)

, (3.87)

where dε2

k denotes the quadratic part of the resolution differential with λ’s replaced by ε ’s. Written in terms of operators 
this gives a transformation rule

δg j = (dε2

k )
j

i f i . (3.88)

Using a similar calculation as above one sees that only the part of order n in the resolution differential contributes to a 
supersymmetry transformation and we obtain supersymmetry transformation rules of the form

δg j = (dεn

k )
j

i f i . (3.89)

Interestingly this provides a direct link between the polynomial degree of the terms in the resolution differential and the 
homotopy action of the supersymmetry algebra. That is, if the resolution differential is at most quadratic, then the L∞
module structure will contain at most ρ ′ (2) corrections.

L∞ structures. If (A, D) carries an L∞ structure with differential D, this structure can be transferred as well. For this one 
uses the usual sum over trees formulas. As we will see below, the transferred L∞ structure on the component fields can 
encode the structure of gauge transformations and in some cases also interactions. Note that the new L∞ structure has 
μ′ = D′ the transferred differential. We will see this explicitly in the case of ten-dimensional super Yang–Mills theory.
1
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3.8. An example of the technique: the 4d gauge multiplet

To illustrate these techniques, we are going to perform all the necessary calculations for the d = 4, N = 1 vector multiplet 
by hand. Let Y = Y (4; 1) be the nilpotence variety of the N = 1 super Poincaré algebra in four dimensions. We choose the 
structure sheaf OY as our equivariant module. Using Macaulay2 we can compute the minimal free resolution. Its Betti 
numbers can be summarized with the array

0 1 2 3
0 1 − − −
1 − 4 4 1

, (3.90)

where the horizontal axis denotes degree in θ and the vertical axis counts powers in λ.
To analyze the field content of the multiplet as representations of the Lorentz group, we assign gradings to the generators 

λ and λ̄, corresponding to their weights under

so(4) ∼= su(2) × su(2) . (3.91)

Concretely this means that we assign the grading

deg(λ1) = (1,1,0) deg(λ2) = (1,−1,0)

deg(λ̄1) = (1,0,1) deg(λ̄2) = (1,0,−1) .
(3.92)

Then we examine the numerator of the Hilbert series. We organize the terms by degree in the variable T0, which indicates 
the total degree in the complex. In degree 0 we simply obtain 1, which means the field in total degree 0 is a scalar. In 
degree 2 we find the term

−T 2
0 (T1T2 + T1T −1

2 + T −1
1 T2 + T −1

1 T2) . (3.93)

Reading off the highest weights we see that the corresponding representation of SU (2) × SU (2) is

[1,1] = [1,0] ⊗ [0,1] , (3.94)

which shows that the field in degree 2 is a vector. In degree 3 we obtain

T 3
0 (T1 + T −1

1 + T2 + T −2
2 ) . (3.95)

Correspondingly, the representation in degree 3 is a direct sum

[1,0] ⊕ [0,1] . (3.96)

Hence the field in degree 3 is a Dirac fermion. Finally the term of order 4 is just −T 4
0 indicating that the field in degree 4

is a scalar. This means that we recover the usual field content of the d = 4, N = 1 vector multiplet.
To find representatives with the procedure explained above, we need the differential on the free resolution. The minimal 

free resolution is of the form

R ⊗
(
C

(dL)1←−−− V
(dL)2←−−− S+ ⊕ S−

(dL)3←−−− C

)
. (3.97)

The differential can be described by the matrices

(dL)1 = (
λ1λ̄1 λ1λ̄2 λ2λ̄1 λ2λ̄2

)

(dL)2 =

⎛
⎜⎜⎝

0 −λ̄2 0 −λ2

0 λ̄1 λ2 0
−λ̄2 0 0 λ1

λ̄1 0 λ1 0

⎞
⎟⎟⎠

(dL)3 =

⎛
⎜⎜⎝

λ1
−λ2

−λ̄1

λ̄2

⎞
⎟⎟⎠ .

(3.98)

Choosing a basis eαα̇ of V and (sα, ̄sα̇) of S+ ⊕ S− , these maps can be conveniently packaged as follows.

(dL)1 : V −→ C , A �→ λαλ̄α̇ Aαα̇

(dL)2 : S+ ⊕ S− −→ V , (ψ, ψ̄) �→ (λαψ̄α̇ + ψαλ̄α̇)eαα̇

(d ) : C −→ S ⊕ S , D �→ (λαs − λ̄α̇ s̄ )D
(3.99)
L 3 + − α α̇
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Table 3
Representatives for the 4D N = 1 vector multiplet 
organized by θ -degree.

Field Representative in the D0-cohomology

c c

A (λσμθ̄ + θσμλ̄)Aμ

ψ ψαθ̄ α̇ (λα θ̄α̇ + θαλ̄α̇ )

ψ̄ ψ̄ α̇θα(λ̄α̇θα + θ̄α̇λα)

D (θ2λ̄θ̄ + θ̄2λθ)D

Note that we can apply the isomorphism S+ ⊗ S− ∼= V by a change of basis eμ = (σμ)αα̇eαα̇ . With this description, it is 
easy to identify representatives in D0-cohomology. For example, the vector is represented by

A
(dL)1�−−−→ (λσμλ̄)Aμ

D
†
0�−−→ (λσμθ̄ + λ̄σμθ)Aμ . (3.100)

For the fermions we find

ψ
(dL)2�−−−→ ψαλ̄α̇eαα̇

D
†
0�−−→ ψαθ̄ α̇eαα̇

(dL)1�−−−→ ψαθ̄ θ̇ λαλ̄α̇

D
†
0�−−→ ψαθ̄ α̇(λαθ̄α̇ + θαλ̄α̇) (3.101)

A similar calculation gives the complex conjugate representative for ψ̄ . Finally we can apply the procedure to the auxiliary 
field.

D
D

†
0◦(dL)3�−−−−−→ (θ s − θ̄ s̄)D

(dL)2�−−−→ (θαλ̄α̇ − λαθ̄ α̇)eαα̇ D
D

†
0�−−→ 2θαθ̄ α̇eαα̇ D

(dL)1�−−−→ 2(θλ)(θ̄ λ̄)D
D

†
0�−−→ 2(θ2λ̄θ̄ + θ̄2λθ)D

(3.102)

We can summarize these representatives in Table 3. Note that these representatives are not unique. Other choices are 
possible; for example one can simplify these representatives by eliminating terms in the image of D0. For instance the 
antisymmetric expression

λαθ̄α̇ − λ̄α̇θα (3.103)

is clearly in the image of D0. This implies that we could represent the vector equally well by λαθ̄α̇ . Similar observations 
also hold for the other fields.

Let us now study the structure of the multiplet defined by D0-cohomology.

The differential. By degree reasons, only the first order part D′
1 of the transferred differential D′ can act non-trivially on 

the component fields. Recall

D′
1 = p ◦D1 ◦ i , (3.104)

where

D1 = (λσμθ̄ + λ̄σμθ)∂μ . (3.105)

The only non-vanishing contribution arises by acting on the ghost. There we find

D1c = (λσμθ̄ + λ̄σμθ)∂μc . (3.106)

Identifying the representative of the gauge field, we see that the differential is simply the de Rham differential

c �→ dc . (3.107)

Written dually in terms of operators this gives the BRST differential

Q BRST Aμ = ∂μc . (3.108)

The following picture summarizes the complex on the component field level.


0(R4)


1(R4) 
(R4, S+ ⊕ S−) 
(R4,C) .

d

(3.109)
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The action of the supersymmetry algebra. As explained above, we can read off the non-derivative part of the supersymmetry 
transformations directly from the resolution differential. This gives transformation rules

δc = (εσμε̄)Aμ

δAμ = εσμψ̄ + ψσμε̄

δψ = εD

δψ̄ = −ε̄D

δD = 0 .

(3.110)

Note that there is one higher order component indicating that the action of the supersymmetry algebra is not strict. We 
will come back to this in a moment.

Now, let us investigate the contributions containing derivatives. By degree reasons there cannot appear any higher order 
contributions containing derivatives, such that we can focus on the strict part. The derivative part of ρ ′ (1) acts on the 
representatives by

Q1 = εσμθ̄∂μ + θσμε̄∂μ . (3.111)

For example we can act on the fermions to find

Q1(ψ) =(ε̄σμθ)∂μψαθ̄ α̇(λαθ̄α̇ + θαλ̄α̇)

=(ε̄β̇σ
μ

ββ̇
∂μψα)(λαθβ θ̄2 + θαθβ λ̄θ̄ ) .

(3.112)

Projecting to cohomology this equals

ε̄ /∂ψ(λθθ̄2 + θ2λ̄θ̄ ) , (3.113)

such that we can identify a transformation rule

δD = ε̄ /∂ψ . (3.114)

A similar calculation also holds for the complex conjugate ψ̄ , as well as for the gauge field and yield the usual supersym-
metry transformation rules.

This describes the entire L∞ module structure of the supersymmetry algebra on the four-dimensional, N = 1 vector 
multiplet. The ρ ′ (1) part resembles the well known supersymmetry transformations from standard physics textbooks. In 
addition there is one higher correction. Recall that we found a transformation rule

δc = (εσμε̄)Aμ . (3.115)

This corresponds to a map ρ ′ (2) given by

ρ ′ (2) : t⊗ t⊗ 
1 −→ 
0 (Q 1 ⊗ Q 2 ⊗ A) �→ ι{Q 1,Q 2} A . (3.116)

We can immediately check that ρ ′ (2) indeed defines a homotopy correcting for the failure of ρ ′ (1) to be strict. We clearly 
have

ρ ′ (1)(Q )(c) = ρ ′ (1)(Q̄ ) = 0 . (3.117)

However the anticommutator of Q and Q̄ gives a translation which acts via the Lie derivative

{Q , Q̄ }(c) = L{Q ,Q̄ }(c) . (3.118)

Thus, according to (2.24) we have to check

L{Q ,Q̄ }(c) = −[D,ρ ′ (2)(Q , Q̄ )](c) . (3.119)

Plugging in D = d we obtain

L{Q ,Q̄ }(c) = − (d ◦ ι{Q 1,Q 2} − ι{Q 1,Q 2} ◦ d)(c)

=(ι{Q 1,Q 2} ◦ d)(c) ,
(3.120)

where the first term vanishes by degree reasons. We immediately see that this is indeed satisfied due to Cartan’s magic 
formula. This discussion illustrates that the ρ ′ (2)-term indeed provides a homotopy for the failure of ρ ′ (1) to be strict. 
In terms of physics terminology, ρ ′ (2) is a closure term for the supersymmetry action, which closes only up to gauge 
transformations.
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L∞ structure. To treat the non-abelian vector multiplet we can tensor the entire construction with a Lie algebra h. We 
notice that OY is not only an OY -module, but in fact an algebra. Hence A•(OY ) carries an algebra structure such that the 
tensor product A•(OY ) ⊗ h comes equipped with an L∞-structure given by

μ1 = D⊗ idh μ2 = m2 ⊗ [−,−] . (3.121)

Here m2 denotes the multiplication in A•(OY ). Since the differential does not interfere with the Lie algebra at all, the 
component fields of the multiplet take values in H•(OY ) ⊗ h. This is just the field content of the abelian version only now 
taking values in the Lie algebra h. The transfer of the L∞ algebra structure to the component fields is very simple. The 
differential only acts on the ghost fields via the de Rham differential.

μ′
1 = d ⊗ idh : 
0 ⊗ h −→ 
1 ⊗ h . (3.122)

In addition to the differential, only two-ary brackets arise.

μ′
2 : 
0 ⊗ h× 
0 ⊗ h −→ 
0 ⊗ h μ′

2(c, c) = [c, c]
μ′

2 : 
0 ⊗ h× 
1 ⊗ h −→ 
1 ⊗ h μ′
2(c, A) = [c, A]

μ′
2 : 
0 ⊗ h× 
(X, S+ ⊕ S−) ⊗ h −→ 
(X, S+ ⊕ S−) ⊗ h μ′

2(c,ψ) = [c,ψ] .

(3.123)

We can also write these dually as a BRST operator.

Q BRSTc = −1

2
[c, c]

Q BRST A = dc + [A, c]
Q BRSTψ = [ψ, c]
Q BRST D = [D, c] .

(3.124)

Hence we recover the usual BRST complex of the d = 4, N = 1 gauge multiplet. To equip the multiplet with a BRST datum, 
we could write the usual component field action for the gauge multiplet. In the terminology of §2 this action then makes 
the multiplet a BRST theory.

3.9. Scheme-theoretic properties: three-dimensional N= 1 supersymmetry

In three dimensions we have the isomorphism Spin(3) ∼= SU (2). The vector representation V corresponds to the three-
dimensional representation of SU (2), while the spinor representation S is given by the two-dimensional representation. The 
anticommutator is provided by the isomorphism

Sym2(S) ∼= V . (3.125)

Therefore the nilpotence variety is simply a point

Y = {0} . (3.126)

Even though the nilpotence variety, regarded as a set, is just a point it still may carry an interesting structure as a scheme 
which allows for the construction of different multiplets. Expanding the equation {Q , Q } = 0 in coordinates (λ1, λ2) we 
obtain the equations

(λ1)2 = λ1λ2 = (λ2)2 = 0 . (3.127)

Clearly, the only solution to these equations is λ1 = λ2 = 0. However, as we announced earlier we view the Y as the affine 
scheme Y = Spec(OY ), where I is the ideal generated by the above elements. Then, by definition, the global sections of its 
sheaf of rings are OY = R/I . Note that R/I � C, which we would have used as a ring of functions when considering Y as 
an affine variety. As we will see momentarily, using R/I—or equivalently viewing Y as the scheme Spec(R/I)—allows us to 
construct different multiplets from R/I-modules, even though Y is just a point.

The gauge multiplet. First of all, we can consider R/I itself as an equivariant module. This gives rise to the gauge multiplet 
in three dimensions. The minimal free resolution has Betti numbers

0 1 2
0 1 − −
1 − 3 2

. (3.128)

In terms of representations, the free resolution takes the form
27



R. Eager, F. Hahner, I. Saberi et al. Journal of Geometry and Physics 180 (2022) 104626
R ⊗
(
C

(dL)1←−−− V
(dL)2←−−− S

)
(3.129)

with the differentials being described by

(dL)1 : V −→ C , A �→ (λσμλ)Aμ

(dL)2 : S −→ V , ψ �→ (λσμψ)eμ .
(3.130)

Thus, we find that the multiplet contains a one-form field together with its ghost as well as a fermion. The only differential 
acting on the component fields is the de Rham differential

c �→ dc (3.131)

which encodes the gauge invariance of the one-form. The non-derivative supersymmetry transformations can be read off 
from the resolution differential and take the usual form.

δc = (εσμε)Aμ

δAμ = εσμψ

δψ = 0 .

(3.132)

The free superfield. In addition, we can also consider C = R/(λ1, λ2) as an R/I-module. This yields the free superfield, 
whose Betti numbers are given by

0 1 2
0 1 2 1

. (3.133)

Indeed, the Koszul homology of this module is just an exterior algebra ∧• S , so that we recover the usual superspace 
description of the free superfield.

4. From multiplets to theories

In §2.5, we introduced the notions of BV and BRST data for multiplets. Under certain conditions on the module 
, the 
Koszul homology is naturally equipped with a perfect pairing that equips the corresponding multiplet with a BV datum. This 
provides an interesting link between the physics of supersymmetric multiplets and the algebraic geometry of OY -modules. 
In fact, the pure spinor formalism provides many such links between algebrogeometric properties of the module 
 and 
physical properties of the multiplet.

4.1. Commutative algebra and dualizing complexes

To approach this topic let us start with a short survey of the relevant notions from commutative algebra. To keep things 
simple we will work in a basic setting where R = C[λ1, . . . , λn] is the polynomial ring in n variables and the modules will 
be R/I-modules for some ideal I . The main sources for our discussion are [1,33].

Definition 4.1. A quotient ring R/I is called a complete intersection, if I can be generated by r = codim(R/I) = n − dim(R/I)
elements, i.e. I = ( f1, . . . , fr).

Intuitively this definition means that there are no non-trivial relations among the f i . Equivalently we can say that 
f1, . . . , fr forms a regular sequence on R . To be clear we recall the definition.

Definition 4.2. Let S be a commutative ring and M a S-module. A sequence (x1, . . . , xk) ⊂ S is called regular on M if xi is 
not a zero divisor in M/(x1, . . . , xi−1) for all i = 1, . . . , k.

One can define a notion of “size” for modules by asking for the maximal length of a regular sequence in M . The resulting 
number is called the depth of M .

Definition 4.3. The depth of a S-module M is the maximal length of a regular sequence in M and will be denoted by 
depth(M).

On general grounds one can show that for any module depth(M) ≤ dim(M). There is an important class of modules for 
which equality holds. These are called Cohen–Macaulay modules.
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Definition 4.4. A module M is called Cohen–Macaulay if depth(M) = dim(M).6

Let us now consider the case where M = R/I is a quotient of a polynomial ring. In this case we can apply the Auslander–
Buchsbaum formula

depth(R/I) + lR(R/I) = n , (4.1)

where lR(R/I) is the length7 of the minimal resolution L• of R/I by free R-modules. So we find that R/I is Cohen–Macaulay 
if and only if

lR(R/I) = n − dim(R/I) = codimR(R/I) . (4.2)

This means that we can identify Cohen–Macaulay rings conveniently by their minimal free resolutions: R/I is Cohen–
Macaulay if and only if the length equals the codimension.

For a quotient ring R/I we can define a dualizing complex by

ω•
R/I = RHom•

R(R/I, R) = HomR(L•, R). (4.3)

We note that the cohomology H•(RHom•
R(R/I, R)) ∼= Ext•R(R/I, R). If R/I is Cohen–Macaulay, this cohomology is concen-

trated in a single degree, namely − codim(R/I). Thus the dualizing complex is in fact quasi-isomorphic to a dualizing 
module (often also called the canonical module). If the canonical module is trivial (free of rank one), the scheme Spec(R/I)
can be thought of as a singular analog to a Calabi–Yau space. This property is called Gorenstein.

Definition 4.5. A quotient ring R/I is called Gorenstein if R/I is Cohen–Macaulay and the dualizing module Ext−(n−d)
R (R/I,

R) = R/I , where d = dim(R/I).8

Clearly, the Gorenstein property is stronger than the Cohen–Macaulay property. However, to be a complete intersection 
is an even stronger condition. We thus have the following chain of implications.

Complete intersection =⇒ Gorenstein =⇒ Cohen–Macaulay (4.4)

The key property of Gorenstein rings which is relevant for us is that their minimal free resolutions are self-dual: If R/I is 
Gorenstein and (L•, dL) is a minimal free resolution, then the dual complex ((L•)∨, (dL)

∨) is, by definition, a resolution of 
the dualizing module, which, by assumption, is again R/I . Thus (L•, dL) and ((L•)∨, (dL)

∨) are both minimal free resolutions 
for R/I and hence, due to the uniqueness of the minimal free resolution, they must be isomorphic.

In fact one can recognize Gorenstein rings conveniently by examining their minimal free resolution:

Proposition 4.6. R/I is a Gorenstein ring ⇐⇒ The length of the minimal free resolution L• of R/I is lR(R/I) = codimR(R/I) =: k
and L−k = R.

Note that this extends the above statement on the Cohen–Macaulay property. The self-duality of the minimal free reso-
lution induces isomorphisms L−i ∼= (L−(k−i))∨ and thus a non-degenerate pairing

L−i × L−(k−i) −→ R . (4.5)

Tensoring both sides with C we obtain a pairing

(L−i ⊗R C) × (L−(k−i) ⊗R C) −→ C . (4.6)

As we explained in §3.6, L• ⊗R C can be identified with Koszul homology and thus with the component fields of the 
multiplet. As such, if we feed a Gorenstein ring into the pure spinor superfield formalism, we can equip the component 
fields of the resulting multiplet with a local pairing (a density valued pairing on sections of a vector bundle on spacetime). 
The parity and homological degree will depend on the properties of the free resolution. These pairings are often of physical 
interest.

6 Here the correct notion of dimension is the Krull dimension.
7 The length of a free resolution L• = (L0 ← L−1 ← ·· · ← L−k ← 0) is k.
8 This is not the most general definition, but it suits our setting. In general a ring S is called Gorenstein, if S has finite injective dimension as an 

S-module. There is also a notion of Gorenstein modules in the literature, but we do not need this level of generality for our discussion.
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4.2. Supplemental structures on multiplets

In some cases these pairings can be used to equip multiplets obtained in the pure spinor superfield formalism with a BV 
datum. Here the prime example is ten-dimensional super Yang–Mills theory which we will discuss below. However, this is 
not the only relevant case. There are other examples of multiplets obtained from Gorenstein rings where the pairing does 
not give rise to a BV structure; nevertheless, the natural pairings may still be interesting.

As an easy example, let us once again come back to the chiral multiplet for N = 1 supersymmetry in four dimensions. 
Recall that we obtained the chiral multiplet from the module 
 = C[λ̄α̇] = C[λα, ̄λα̇]/(λα). This is obviously a complete 
intersection ring, and thus in particular Gorenstein. The minimal free resolution is of the form

R ←− R2 ←− R, (4.7)

and it is clear what the pairing looks like: L0 = R pairs with L−2 = R , while L−1 = R2 pairs with itself. Since this is a perfect 
pairing on Koszul homology, we obtain a local pairing on the component fields. Recall that the scalar field was represented 
simply by φ, the fermion by ψ = ψαθα and the auxiliary by F = Fθ1θ2. Thus we get a pairing which is simply induced by 
the algebra structure on ∧• S+ and the projection on the θ1θ2 component

〈a,b〉 = (ab)|θ1θ2 . (4.8)

This pairing gives rise to F-term Lagrangians for the chiral multiplet through the following local pairing on component fields

〈φ, F 〉loc = φF , 〈ψ,ψ〉loc = ψαψα . (4.9)

Similar pairings of course exist for other chiral multiplets with more supersymmetry. Furthermore, we could consider the 
free superfield; in general, this is constructed by taking 
 to be the structure sheaf of the cone point, which arises from the 
canonical augmentation of the graded ring R/I . In four dimensions, this module is just C = C[λα, ̄λα̇]/(λα, ̄λα̇). Then one 
gets a pairing which projects on the θ2θ̄2 component. In physics, this pairing gives rise to D-terms.

4.3. Constructing cotangent theories: six-dimensional N= (1, 0)

If a ring is not Gorenstein, there is no perfect pairing on Koszul homology, and the corresponding multiplet cannot 
obviously be equipped with a BV structure. (We note that this does not mean that such multiplets are never on-shell; in 
six-dimensional N = (2, 0) supersymmetry [15,50] and ten-dimensional type IIB supersymmetry [23], BV multiplets with 
degenerate pairings naturally arise. Details on the pairing are given in [50] at the level of the component fields; we do not 
study the cochain-level origin of such degenerate pairings here, but hope to return to this question in future work.)

For a Cohen–Macaulay module 
 giving rise to a multiplet (E, D, ρ), however, another interesting observation applies: 
We can consider the dualizing module ω
 in the pure spinor superfield formalism. If (L, dL) is the minimal free resolution 
of 
, then (L∨, (dL)

∨) is the corresponding minimal free resolution of ω
 . With the obvious pairing between L and L∨ we 
can equip the multiplet corresponding to the direct sum L ⊕ L∨[k] with a BV datum (for an appropriate shift k). In the 
terminology of Definition 2.14 the resulting BV multiplet is off-shell and ω
 gives rise to the antifield multiplet of (E, D, ρ).

On the other hand, if the input module is not Cohen–Macaulay, the cohomology of the dualizing complex will not be 
concentrated in a single degree, such that we cannot take a single dualizing module to produce an antifield multiplet. 
Rather, the antifield multiplet will be represented by a dg module. We will see this below in the case of four-dimensional 
minimal supersymmetry.

Let us now consider the example of six-dimensional N = (1, 0) supersymmetry. There is an accidental isomorphism 
Spin(6) ∼= SU (4), under which the spinor representation S+ is identified with the fundamental representation of SU (4) and 
S− = (S+)∨ with the antifundamental representation. The supertranslation algebra takes the form

t = V ⊕ �(S+ ⊗ U ) , (4.10)

where U = (C2, ω) is a symplectic vector space. The R-symmetry group is thus Sp(1) ∼= SU (2); corresponding indices will 
be denoted by i, j. There is an isomorphism

∧2 S+ ∼= V , (4.11)

which is used to express the bracket as

{−,−} = ∧ ⊗ ω . (4.12)

Since ∧ is an isomorphism, an element is square-zero precisely when it is of rank one as an element of S+ ⊗ U .
In a basis, the supertranslation algebra takes the form

{Q i
α, Q j } = 


μ
εi j Pμ . (4.13)
β αβ
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Using coordinates λα
i , the defining equations of the nilpotence variety Y (6; 1, 0) are given by the 2 × 2 minors of the matrix

(
λ1

1 λ2
1 λ3

1 λ4
1

λ1
2 λ2

2 λ3
2 λ4

2

)
, (4.14)

which cut out the space of rank-one matrices. As such Y is a determinantal variety. Taking its structure sheaf OY as the 
equivariant module in the pure spinor formalism, we recover the d = 6, N = (1, 0) gauge multiplet. The Betti numbers of 
the free resolution are displayed in the following Table 4.

Table 4
Betti numbers of the free res-
olution of OY .

0 1 2 3

0 1 − − −
1 − 6 8 3

Working equivariantly, one finds that these correspond to a one-form with zero-form gauge invariance, fermions in S+ ⊕ S− , 
and a triplet of scalars in the adjoint of the R-symmetry group SU (2). We immediately see that the Koszul homology 
corresponds to the field content of the BRST complex of the gauge multiplet. Since the length of the resolution equals 
the codimension, R/I is Cohen–Macaulay. This can also be seen as a consequence of the following result on determinantal 
varieties.

Lemma 4.7. Let R = C[(xij)] for i = 1 . . .n and j = 1 . . .m and I the ideal generated by the r × r minors of the matrix with entries 
xij . Then R/I is a Cohen–Macaulay ring. Further R/I is a Gorenstein ring if and only if m = n or r = 1.

As we are dealing with 4 × 2 matrices, R/I is not Gorenstein; hence, we cannot expect to equip the multiplet with 
a BV datum, but only with a BRST datum. However, R/I is Cohen–Macaulay, which means that the dualizing complex is 
represented by a single sheaf. Thus, we can produce the corresponding antifield multiplet from that sheaf by applying the 
pure spinor formalism. The dualizing module is

Ext−codim(Y )
R (R/I, R) = Ext−3

R (R/I, R) . (4.15)

Due to the Cohen–Macaulay property, this is the only non-vanishing Ext module. Its free resolution has the Betti table

0 1 2 3
−4 3 8 6 −
−3 − − − 1

. (4.16)

Forming the direct sum of the structure sheaf and the dualizing sheaf and shifting appropriately, we obtain a multiplet with 
the following Betti numbers (Table 5).

Table 5
Betti numbers of the BV multiplet.

0 1 2 3 4 5

0 1 − − − − −
1 − 6 8 3 − −
2 − − 3 8 6 −
3 − − − − − 1

This is the expected field content of the BV description for the six-dimensional gauge multiplet. The component multiplet 
can be equipped with a BV datum by writing the usual action as known from the component formalism. The resulting BV 
multiplet is off-shell; in fact, it is constructed as the cotangent theory of the corresponding BRST theory. The supersymmetry 
algebra closes without use of the equations of motion and the antifields can be separated from the fields. Doing this, one 
recovers the BRST multiplet in components.

One could also consider equipping the pure spinor superfield multiplet with a BRST datum. This was done in [12], 
where Cederwall considered a differential operator mapping pure spinor superfields for the structure sheaf to pure spinor 
superfields for the canonical module. This operator allows one to write a quadratic action functional for the structure sheaf 
multiplet, which defines a BRST datum for that multiplet.
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4.4. Failure to be Cohen–Macaulay: the example of four-dimensional N = 1

As we have seen above, the pure spinor superfield formalism applied to the structure sheaf of the d = 4, N = 1 nilpotence 
variety yields the BRST description of the gauge multiplet. The absence of antifields and BV differential is not particularly 
surprising: The failure of the supersymmetry action to be strict solely comes from gauge transformations; the equations 
of motions do not need to be imposed. Nevertheless one can ask if and how the corresponding antifield multiplet can be 
realized independently in the pure spinor superfield formalism. For this purpose, let us compute the dualizing complex of 
R/I . A model for the dualizing complex is given by

ω•
R/I = RHom•

R(R/I, R) = HomR(L•, R). (4.17)

To compute this complex explicitly, we can use the minimal free resolution L• → R/I from above. By definition, the differ-
ential of the dualizing complex is the dual map d∨

L of the resolution differential dL . In terms of matrices this means that d∨
L

is represented by the transposed matrices of (3.98). From these matrices, the cohomology can be computed explicitly. We 
find that

Hi(ω•
R/I ) =

⎧⎪⎨
⎪⎩

coker
(
(λ1,−λ2,−λ̄1, λ̄2)

) ∼= C, i = 3;
C[λ1, λ2] ⊕C[λ̄1, λ̄2], i = 2;
0, otherwise.

(4.18)

Note that the codimension of Y is two. If the dualizing complex were to resolve a single module, then H•(ωR/I ) should be 
concentrated in degree two. Instead, we find a copy of two disjoint C2’s; Y itself, of course, consists of two C2’s intersecting 
at the origin. This discrepancy is accounted for homologically by the presence of a single copy of the skyscraper sheaf 
(functions on 0 ∈ C2) in degree three. At the end of the day, this means that we cannot find a single (non-dg) dualizing 
module for R/I to feed into the pure spinor superfield formalism to obtain the antifield multiplet. This phenomenon will 
occur whenever R/I is not a Cohen–Macaulay ring.

4.5. A partial dictionary

In this section we summarize some features of the correspondence between algebrogeometric properties of OY -modules 
and physical features of the corresponding multiplets. This dictionary is of course by no means complete, but it should serve 
to provide a quick overview.

— 
 =O(S ′) for some hyperplane S ′ ⊆ Y .
S ′ is a complete intersection of linear equations. The resulting multiplet is an exterior algebra ∧• S ′ , concentrated 
in homological degree zero. No differentials are transferred to the component field level. The representation of the 
supersymmetry algebra is strict. Examples include chiral superfields (S ′ = S±), which always exist in dimension 0
(mod 4), and free superfields (S ′ = {0}), in any dimension and with any amount of supersymmetry. We emphasize that 
the free superfield always corresponds to the canonical augmentation of the graded ring R/I .

— 
 =OY is a complete intersection of quadratic equations.
The Koszul homology is an exterior algebra generated by the elements λγ μθ in homological degree one. The resulting 
multiplet can be identified with the de Rham complex 
•(Rd) on spacetime. The transferred differential acts as the 
de Rham differential on the component fields; as such, translations act homotopically trivially. Tensoring with a Lie 
(d − 3)-algebra, one obtains the BV complex of higher Chern–Simons theory. Odd elements in the supersymmetry 
algebra act by zero. Examples include the structure sheaves of the three-dimensional N = 8 and four-dimensional N = 4
supersymmetry algebras; see [8] and [13], respectively. This sheaf is used, together with another equivariant sheaf, in 
the construction of the pure spinor resolution of the Bagger–Lambert–Gustavsson model in [8].

— 
 =OY is a Gorenstein ring, but not a complete intersection.
The resulting component multiplet is equipped with a local pairing, inherited from the perfect pairing on Koszul ho-
mology. For appropriate values of the spacetime dimension and the codimension of Y , this local pairing defines an odd 
symplectic structure, which may be used to construct a BV datum on the multiplet. The underlying cochain complex 
always starts with


0 d−−→ 
1 −→ . . . ; (4.19)

as such, it always contains at least a one gauge field. By duality, the multiplet ends with the corresponding antifields,

· · · −→ 
d−1 d−−→ 
d. (4.20)

Examples include ten-dimensional super Yang–Mills theory and eleven-dimensional supergravity [9,10]; see also [22,51]
for treatments using a language close to this work.
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— 
 is Cohen–Macaulay, but not Gorenstein.
The resulting multiplet will not carry a pairing and thus cannot be equipped with a nondegenerate BV datum. We can 
interpret the multiplet as a BRST multiplet and obtain the corresponding antifield multiplet from the dualizing module. 
Here, the structure sheaf of six-dimensional N = (1, 0) supersymmetry is an example. To understand theories of physical 
interest, though, it may be necessary to consider degenerate pairings (six-dimensional N = (2, 0) supersymmetry and 
type IIB supergravity are examples).

— 
 is not Cohen–Macaulay.
The resulting multiplet usually looks like a BRST multiplet. However, there is really only a dualizing complex instead of 
a dualizing module. As such, we cannot obtain the antifield multiplet from a single (non-dg) OY -module via the pure 
spinor superfield formalism. An example is the gauge multiplet in four-dimensional N = 1 supersymmetry, as discussed 
above. It would be interesting to consider extending the formalism to dg sheaves on Y .

— 
 is a Golod ring.
A ring is Golod if and only if all Massey products on Koszul homology vanish [25]. Recall that, if 
 is assumed to be 
a ring, the tensor product A•(
) ⊗ h carries an L∞ structure. Transferring the L∞ structure to the component fields 
and then compactifying to a point yields an L∞ structure which is given by the A∞ structure on Koszul homology 
tensored with the Lie algebra h. The Golod property of 
 implies that this L∞ structure is strict. For example, the 
presence of the three-ary product in ten-dimensional super Yang–Mills theory, which after compactification to a point 
gives rise to a corresponding product in the IKKT matrix model [48], witnesses the fact that the ring of functions of the 
ten-dimensional N = 1 nilpotence variety is not Golod.

5. Ten-dimensional super Yang–Mills theory

In this section, let us give a detailed analysis of ten-dimensional super Yang–Mills theory in the pure spinor superfield 
formalism. This is the initial example which sparked interest in the formalism [5,15]. As we will see, the multiplet obtained 
from the structure sheaf OY can be naturally equipped with the full structure of a perturbative interacting BV theory within 
the pure spinor superfield formalism.

5.1. Field content and representatives

We will denote the two 16-dimensional spin representations of Spin(10) by S+ and S− . The vector representation is, as 
always, denoted by V . The defining ideal of the nilpotence variety simply reads

I = (λγ μλ) . (5.1)

One finds for the minimal free resolution of R/I the following Betti numbers (Table 6).

Table 6
Betti numbers for the ten-dimensional super 
Yang–Mills multiplet.

0 1 2 3 4 5

0 1 − − − − −
1 − 10 16 − − −
2 − − − 16 10 −
3 − − − − − 1

More concretely, the minimal free resolution of R/I in R-modules takes the form

L• = R ⊗
(
C

(dL)1←−−− V
(dL)2←−−− S+

(dL)3←−−− S−
(dL)4←−−− V

(dL)5←−−− C

)
. (5.2)

The resolution differential can be described explicitly. Let us choose a basis eμ of V and sα of S+ . The corresponding dual 
basis of (S+)∨ = S− is denoted by sα .

(dL)1 : V −→ C , A �→ (λγ μλ)Aμ

(dL)2 : S+ −→ V , χ �→ (λγ μχ)eμ

(dL)3 : S− −→ S+ , χ+ �→ (λγ μλ)(χ+γμs) − 2(χ+λ)(λs)
(dL)4 : V −→ S− , A+ �→ (λγ μs)A+

μ

(dL)4 : C −→ V , c+ �→ (λγ μλ)c+eμ

(5.3)

We can perform our procedure to find the representatives. For example, starting with the gauge field,

A
(dL)1�−−−→ (λγ μλ)Aμ

D
†
0�−−→ (λγ μθ)Aμ , (5.4)
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so that the elements (λγ μθ)Aμ represent the one-form in D0-cohomology. For the gaugino we obtain

χ
(dL)2�−−−→ (γ μλ)αχαeμ

D
†
0�−−→ (γ μθ)αχαeμ

(dL)1�−−−→ (λγμλ)(γ μθ)αχα
D

†
0�−−→ (λγμθ)(γ μθ)αχα . (5.5)

This means that the gaugino is represented by (λγμθ)(γ μθ)αχα in D0-cohomology. This procedure can also be applied to 
the antifields

χ+ (dL)3◦D†
0�−−−−−→ (λγ μθ)(χ+γμs)

(dL)2◦D†
0�−−−−−→ (λγ μθ)(γ νθ)α(γμχ+)αeν

(dL)1◦D†
0�−−−−−→ (λγ μθ)(λγ νθ)(γνθ)α(γμχ+)α

(5.6)

We can simplify the last term to find

(λγ μθ)(λγ νθ)(γνθ)α(γμχ+)α = (λγ μθ)(λγ νθ)(γμνθ)αχ+
α , (5.7)

where γμν = γ[μγν] denotes the antisymmetrized product of two gamma matrices. Similarly one can track down a repre-
sentative for the antifield of the one-form field. The result is

(λγ ρθ)(λγ νθ)(θγμνρθ)A+μ . (5.8)

Finally, the antighost can be represented by

(λγ μθ)(λγ νθ)(λγ ρθ)(θγμνρθ)c+ . (5.9)

These representatives were already listed in [55]. Let us summarize the results in the following Table 7.

Table 7
Representatives for the 10D N = 1 vector multiplet 
organized by θ -degree.

Field Representative in the D0-cohomology

c c

A (λγ μθ)Aμ

χ (λγμθ)(χγ μθ)

χ+ (λγ μθ)(λγ νθ)(γμνθχ+)

A+ (λγ ρθ)(λγ νθ)(θγμνρθ)A+μ

c+ (λγ μθ)(λγ νθ)(λγ ρθ)(θγμνρθ)c+

5.2. The differential

The first order part of the transferred differential is given by

D′
1 = p ◦ (λγ μθ)∂μ ◦ i . (5.10)

We immediately see that D′
1 acts on the ghost as the de Rham differential.

Furthermore, the differential, D′
1 acts on the gaugino as the Dirac operator,

χ �→ /∂χ (5.11)

encoding the field equation for the gaugino.
Interestingly, this multiplet contains a second order contribution to the differential arising from homotopy transfer. As 

we will see momentarily, this encodes the equation of motion for the gauge field. Recall that the second order contribution 
to the transferred differential D′ is given by

D′
2 = p ◦ (D1 ◦ h ◦D1) ◦ i . (5.12)

To apply D′
2 to the gauge field we need to know how the homotopy h acts on expressions of the form

(λγ μθ)(λγ νθ) . (5.13)

Note that the naive guess h ◦ π = π ◦D†
0 does not work in this case since

D
†
(λγ μθ)(λγ νθ) = 0 (5.14)
0
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by the symmetry of the bracket. However, the result is easily found by a representation theoretic argument. As h acts as a 
scalar, we are looking for a representative inside

∧2 V ⊂ ∧3 S+ ⊗ S+ . (5.15)

It is easy to check that there is only one such summand in the decomposition of the right hand-side into irreducibles. This 
representation is spanned by the elements

(λγ ρθ)(θγμνρθ) . (5.16)

We set,

h
(
(λγ μθ)(λγ νθ)

) = (λγ ρθ)(θγμνρθ) . (5.17)

Equipped with this knowledge we find

D′
2

(
(λγ μθ)Aμ

) =p
(
D1 ◦ h

(
(λγ μθ)(λγ νθ)(dA)μν

))
=p

(
(λγ σ θ)(λγρθ)(θγ μνρθ)∂σ (dA)μν

)
.

(5.18)

Projection to the cohomology gives

(λγνθ)(λγρθ)(θγ μνρθ)∂σ (dA)σμ (5.19)

This shows that the transferred differential D′
2 acts via

A �→ �d � dA . (5.20)

The differentials appearing in the multiplet can be summarized by the following diagram.


0(R10)


1(R10) 
(R10, S+)


(R10, S−) 
1(R10)


0(R10)

d

�d�d
/∂

�d�

(5.21)

5.3. The supersymmetry action

We can read off the non-derivative supersymmetry transformations directly from the resolution differential.

δc =(εγ με)Aμ

δAμ =εγμχ

δχ =(εγ με)χ+γμ − 2ε(χ+ε)

δχ+ =εγ μ A+
μ

δA+
μ =(εγμε)c+

δc+ =0

(5.22)

Note that there are two types of closure terms present. For the gauge field, there are again transformation witnessing that 
the supersymmetry algebra is represented only up to gauge transformations. We already encountered this type of transfor-
mation in our discussion of the four-dimensional gauge multiplet. In addition, there are now second order transformations 
for the gaugino, signaling that the supersymmetry algebra is represented only on-shell.
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5.4. The L∞ structure

We can define a dg Lie algebra structure by tensoring A•(OY ) with a Lie algebra h. Homotopy transfer gives rise to an 
L∞ structure on the component field multiplet. As we will see, this L∞ structure, together with the pairing, equips the 
ten-dimensional super Yang–Mills multiplet with the usual structure as an interacting BV theory.

The binary bracket μ′
2 is given by

μ′
2 =

i′

i′

p′ .

(5.23)

Expressing this in terms of the unprimed homotopy data, there will be obviously a diagram of the form

i

i

p .

(5.24)

As we already explored in the case of the four-dimensional N = 1 vector multiplet, this diagram encodes the structure of 
gauge transformations on the component fields. In particular it yields brackets

μ′
2 : 
0 × 
0 −→ 
0 μ′

2(c, c) = [c, c]
μ′

2 : 
0 × 
1 −→ 
1 μ′
2(c, A) = [c, A]

μ′
2 : 
0 × 
(X, S+) −→ 
(X, S+) μ′

2(c,ψ) = [c,ψ] .

(5.25)

Furthermore, considering degree bounds, we see that only two more diagrams can contribute, namely

i

i

p

h

and

i

i

p .h

(5.26)

Here we marked the unary vertices with a dot, signaling the application of D1.
From the first type of diagram we obtain

p
(
(λγ σ θ)h((λγ μθ)(λγ νθ))

) [Aσ , ∂μ Aν ] = p
(
(λγ σ θ)(λγρθ)(θγ μνρθ)

) [Aσ , ∂μ Aν ] (5.27)

Using the antisymmetry in μ and ν and projecting onto D0-cohomology this gives

(λγνθ)(λγρθ)(θγ μνρθ) [Aσ , (dA)μσ ] . (5.28)

The second diagram gives a contribution of the form

p
(
(λγ σ θ)∂σ h

(
(λγ μθ)(λγ νθ)

) [Aμ, Aν ]) = p
(
(λγ σ θ)(λγρθ)(θγ μνρθ)

)
∂σ [Aμ, Aν ] (5.29)

Projection to the cohomology gives

(λγνθ)(λγρθ)(θγ μνρθ) ∂σ [Aμ, Aσ ] . (5.30)

Together this gives a transferred binary product

μ′
2 : 
1 × 
1 −→ 
1 μ′

2(A, A)μ = [Aσ , (dA)μσ ] + ∂σ [Aμ, Aσ ] . (5.31)

By degree reasons, there are no D1 insertions allowed for μ′ . Hence the only contributing diagram is of the form
3
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μ′
3 =

i

i

i

p
h

(5.32)

This diagram gives a contribution of the form

p
(
(λγρθ)(θγ μνρθ)(λγ σ θ)[Aσ , [Aμ, Aν ]]) = (λγρθ)(λγνθ)(θγ μνρθ) [Aσ , [Aμ, Aσ ]] . (5.33)

This gives a product

μ′
3 : 
1 × 
1 × 
1 −→ 
1 μ′

3(A, A, A)μ = [Aσ , [Aμ, Aσ ]] . (5.34)

Thus, we see that the transferred L∞ structure equips the multiplet with the usual interactions as expected for ten-
dimensional super Yang–Mills theory.

5.5. The pairing

The ring R/I is Gorenstein, which implies that the minimal free resolution, and hence the component field formulation 
of the multiplet is equipped with a local (in the sense of Definition 2.13) pairing. At the level of Koszul homology, the 
pairing is induced by multiplication and projection to the subspace spanned by the top class

(λγ μθ)(λγ νθ)(λγ ρθ)(θγμνρθ) . (5.35)

This equips the component field multiplet with a BV structure.
We thus obtained the usual description of ten-dimensional super Yang–Mills theory as an interacting BV theory solely 

by homotopy transfer from the pure spinor superfield description.

6. A bestiary of multiplets from modules

In this final section we construct a variety of equivariant R/I-modules and examine the structure of the associated su-
persymmetric multiplets. We offer some observations connecting certain of these multiplets to constructions in the physics 
literature, along with some other speculations of various kinds.

6.1. Presentations of modules and shift symmetry

Any module 
 over any ring S can be described using a free presentation, that is an exact sequence

0 ←−− 
 ←−− F0
ϕ←−− F1 , (6.1)

where F0 and F1 are free S-modules. The module can then be identified as the cokernel of the map ϕ


 ∼= cokerϕ = F0/Im(ϕ) . (6.2)

As F0 and F1 are free, we can think of ϕ as a matrix with entries in S , these entries give the relations to obtain 
 as a 
quotient from F0. In fact a free presentation is just the start of a free resolution. By resolving kernels we can extend a free 
presentation to a free resolution

0 ←−− 
 ←−− F0
ϕ0←−− F1

ϕ1←−− F2
ϕ2←−− . . . . (6.3)

For R =C[λ1, . . . , λn] it is very easy to study such maps ϕ; these just correspond to matrices whose entries are polynomials 
in λ. The cokernels of such maps are then R-modules. For the pure spinor superfield formalism, it is crucial to use R/I-
modules as this ensures that the differential D squares to zero. Suppose we have an R-module defined by a free presentation

ϕ : Rn −→ Rk 
 = coker(ϕ) . (6.4)

The R-module 
 descends to a R/I-module if the image of ϕ contains Ik , that is if the following diagram commutes. 
Thus we can conveniently construct R/I-modules by studying suitable maps between free R-modules. If the map ϕ is also 
equivariant with respect to the action of the Lorentz group on R , then the resulting module is also equivariant. Hence, such 
equivariant maps between free R-modules precisely give rise to the desired input for the pure spinor superfield formalism. 
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In the physics literature this procedure was used to construct multiplets in the pure spinor superfield formalism under the 
name shift symmetry.9 See [9–11,14].

We can immediately give a free presentation for the quotient rings R/I which we previously considered. The map

ϕ : Rd −→ R, ϕ = (
λγ 0λ . . . λγ d−1λ

)
, (6.5)

realizes the free presentation coker(ϕ) = R/I .

6.2. Motivating example of a nontrivial sheaf: the six-dimensional hypermultiplet

As an example to demonstrate this technique, let us construct the six-dimensional hypermultiplet. We already con-
structed the six-dimensional vector multiplet from the structure sheaf of the nilpotence variety in §4.3. Recall that for 
six-dimensional N = (1, 0) supersymmetry, the odd part of the supertranslation algebra is

S+ ⊗ U , (6.6)

where S+ is the fundamental representation of su(4) and U ∼= C2 carries the fundamental representation of su(2). The 
polynomial ring R is nothing but the symmetric algebra on S+ ⊗ U and comes with the natural action of su(4) × su(2). 
There is a unique equivariant map

S+ ⊗ R −→ U ⊗ R (6.7)

which is linear in λ. Choosing a basis for U and S+ , this map is represented by

ϕ : S+ ⊗ R −→ U ⊗ R ϕ =
(

λ1
1 λ2

1 λ3
1 λ4

1
λ1

2 λ2
2 λ3

2 λ4
2

)
. (6.8)

It is easy to check that the image of ϕ indeed contains I2, thus we can consider 
 = coker(ϕ) as an equivariant R/I-module 
in the pure spinor superfield formalism.

We display the Betti numbers of the minimal free resolution in Table 8.

Table 8
Betti numbers for the six-
dimensional hypermultiplet.

0 1 2 3

0 2 4 − −
1 − − 4 2

The representations appearing in the minimal free resolution can be computed using Macaulay2 via the highest weight 
package. The minimal free resolution of 
 in R-modules takes the form

L• = R ⊗
(

U
ϕ←−− S+

ε←−− ∧3 S+
ϕT

←−− U ⊗ ∧4 S+
)

, (6.9)

and is a special case of the Buchsbaum–Rim complex [7] (see [24, Appendix A.2.6] for a textbook presentation and a 
description of the differential ε in terms of the 2 × 2 minors of ϕ).

Choosing a basis ei for U and sα a basis for S+ , we can write out the differentials in the complex as:

d1 : ∧1 S+ −→ U ψ �→ λα
i ψαei

d2 : ∧3 S+ −→ ∧1 S+ ψ+ �→ (λα
i λ

β

j ε
i j)ψ+

αβγ sγ
d3 : U ⊗ ∧4 S+ −→ ∧3 S+ φ+ �→ λi

αφ+
i sα.

(6.10)

In the last differential we identify sα with εαβγ δsβ ∧ sγ ∧ sδ along the isomorphism ∧3 S+ ∼= S− . The differential (λα
i λ

β

j ε
i j)

is the differential ε appearing in the Buchsbaum–Rim complex.
As expected, the hypermultiplet consists of two scalars that form a doublet under su(2) as well as fermions in S+ that 

are neutral under su(2) and their corresponding antifields. The two maps are expected to encode the respective equations of 

9 The name “shift symmetry” arises from writing out the equivalence relation (6.2) as

f0 ≈ f0 + ϕ( f1)

with explicit representatives f0 ∈ F0 and f1 ∈ F1.
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Table 9
Representatives for the hypermultiplet in six dimen-
sions organized by θ -degree.

Field Representative in the D0-cohomology

φ φi ei

ψ ψαθα
i ei

ψ+ λα
i θ

β

j θ
γ
k εi jψ+

αβγ el

φ+ λα
i θ

β

j ε i jθδ
l θ

γ
k εαβγ δφ

+kel

motions. We are thus dealing with an on-shell representation of the supersymmetry algebra. The multiplet can be equipped 
with a pairing which yields a BV structure.

We can use the zig-zag procedure to find representatives for the fields in the multiplet. These are expressed in terms of 
the basis ei of U (Table 9).

From the resolution differential, we can easily read off the non-derivative supersymmetry transformations.

δφi = εα
i ψα

δψα = ε
β

i ε
γ
j εi jψ+

αβγ

δψ+
α = ε i

αφ+
i

δφ+
i = 0

(6.11)

Again, we see the quadratic transformation involving the fermion and its antifield showing that the supersymmetry algebra 
only closes up to the equations of motion.

Consequently, the equations of motions are encoded in the transferred differential D′ . There is a first order term D′
1

acting on the fermion. Given the representatives, it is easy to see that D′
1 acts by the Dirac operator

ψ �→ /∂ψ . (6.12)

Further, there is a second order differential D′
2 induced via homotopy transfer which encodes the field equation of the 

scalar field and which acts via

D′
2 = p ◦ (D1 ◦ h ◦D1) ◦ i . (6.13)

Acting on the scalar, we find

D′
2φ = p

(
D1 h (λ

[i
[αθ

j]
β] ∂ [αβ] φiei)

)
. (6.14)

By degree reasons, applying the homotopy h to the element in the brackets yields an expression in θ2. On purely repre-
sentation theoretic grounds, we can see that there is a unique (up to a non-zero prefactor) expression which comes into 
question, namely

θ
(i
[αθ

j)
β] ∂ [αβ]φ(ie j) . (6.15)

As a check, we may apply the differential D0 to that representative. There we obtain

λ
(i
[αθ

j)
β] ∂ [αβ]φ(ie j) , (6.16)

which, at first sight, does not look like the original element we started with. However, recall that we are working in the 
module 
 which is the quotient R2/Im(ϕ). In particular this means that λiei = 0 and hence

0 = λiθ jeiφ j = λ[iθ j]e[iφ j] + λ(iθ j)e(iφ j) , (6.17)

such that we indeed get back our original expression (up to a non-zero prefactor). Moving on, we then easily find

D′
2φ = (λα

i θ
β

j ε i jθδ
l θ

γ
k εαβγ δ) ∂μ∂μφkel , (6.18)

such that the transferred differential indeed encodes the Laplace equation.
Summarizing, the multiplet has the following structure.


0 ⊗ U 
0 ⊗ S+


0 ⊗ S− 
0 ⊗ U

�d�d
/∂

(6.19)
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This multiplet was defined in Equation (3.2) of [12] using shift symmetry.

6.3. Lie algebra cohomology

Another natural source for equivariant modules are the Lie algebra cohomology groups of the super translation algebra 
t. This was already noted in [23]. Recall that the Chevalley–Eilenberg complex takes the form

C•(t) = (
Sym•(t∨[1]) , dC E

)
. (6.20)

The Chevalley–Eilenberg differential is induced by the dual of the bracket, which is extended to the whole algebra according 
to the Leibniz rule. For the supertranslation algebra, the Z × Z/2 grading of the Chevalley–Eilenberg complex lifts to a 
Z × Z grading by viewing the supertranslations as a graded Lie algebra as we have done above; recall that V = t+ then 
sits in degree two and S = t− in degree one. If we totalize this bigrading, generators in V ∨ sit in degree −1 and generators 
in S∨ in degree zero. We can thus identify Symq(S∨) = R =C[λα], and write

C−p(t) = ∧p(V ∨) ⊗ R. (6.21)

Denoting a basis on V ∨ by vμ , the Chevalley–Eilenberg differential acts on the generators by

dC E vμ = λα

μ
αβλβ

dC Eλα = 0 .
(6.22)

Now two observations turn out to be crucial. First, the zeroth Chevalley–Eilenberg cohomology is nothing else then the 
structure sheaf of the nilpotence variety

H0(C•(t)) = R/I = OY . (6.23)

Second, as the Chevalley–Eilenberg complex comes with the structure of a cdgsa, the cohomology is equipped with a 
multiplication which preserves the grading. Hence, all cohomology groups are H0(C•(t)) = R/I-modules and can thus be 
used as input data for the pure spinor superfield formalism.

The analysis of examples suggests some speculations about dualities between the multiplets associated to Chevalley–
Eilenberg cohomology groups in different degrees. For a start, it seems to be the case that the Chevalley–Eilenberg coho-
mology groups are concentrated in negative degrees up to n := dim(V ) − codim(Y ). In all examples we have checked there 
is an isomorphism

Ext−codim(Y )(R/I, R) ∼= H−n(C•(t)) . (6.24)

In addition, for the example of ten-dimensional N = 1 supersymmetry, we further observe dualities “up to a copy of the 
free superfield” for the multiplets associated to Hi(C•(t)) and H−n−i(C•(t)).

Three-dimensional N = 1. As a motivating example let us consider again N = 1 supersymmetry in three dimensions. Using 
Macaulay2 one can compute the Chevalley–Eilenberg cohomology. Only H0 and H−1 are non-vanishing. The zeroth cohomol-
ogy is R/I and thus gives rise to the gauge multiplet from §3.9. As the length of the minimal free resolution is two—which 
equals the codimension of Y —we immediately see that R/I is Cohen–Macaulay. The first cohomology group is represented 
as the cokernel of the map

ϕ : R3 −→ R2 ϕ =
(

λ1 0 λ2
0 λ2 λ1

)
(6.25)

The resulting multiplet is the antifield multiplet of the gauge multiplet; its Betti table is

0 1 2
0 2 3 −
1 − − 1

. (6.26)

Note that, as discussed in §4 we could have also obtained the antifield multiplet from Ext−2(R/I, R).

Four-dimensional N = 1. The Chevalley–Eilenberg cohomology is concentrated in degrees zero, minus one and, minus two. 
As the zeroth cohomology is just OY , the corresponding multiplet is the gauge multiplet. The first cohomology group yields 
a multiplet with the Betti numbers

0 1 2 3 4
0 4 7 −
1 − − 6 4 1

. (6.27)
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Decomposing the minimal free resolution equivariantly, we find

L• = R ⊗
(

S+ ⊕ S−
(dL)1←−−− ∧2 V ⊕C

(dL)2←−−− ∧3 V ⊕C2 (dL)3←−−− S+ ⊕ S−
(dL)4←−−− C

)
. (6.28)

Thus we see that this multiplet contains a two-form. It would be interesting to interpret this as a field-strength multiplet.
The second Chevalley–Eilenberg cohomology yields two copies of the chiral multiplet, corresponding to the Betti table

0 1 2
0 2 4 2

. (6.29)

Note that this precisely matches with Ext−2(R/I, R) as described in §4.4.

Ten-dimensional N = 1. Let us further study the multiplets associated to the ten-dimensional Chevalley–Eilenberg cohomol-
ogy of the ten-dimensional N = 1 supertranslation algebra. These cohomology groups were already computed equivariantly 
in [49]. The multiplet associated to the first Chevalley–Eilenberg cohomology has the following Betti numbers.

Table 10
Betti numbers for H−1(C•(t)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 16 45 − − − − − − − − − − − − − − −
1 − 16 250 720 1874 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

2 − − − − 16 10 − − − − − − − − − − −

We notice that the graded rank (with respect to the homological degree) of the associated vector bundle over spacetime—
which, in physical terms, corresponds to the number of degrees of freedom—is given by

− 16 − 45

+16+250+720+1874+4368+8008+11440+12870+11440+8008+4368+1820+560+120+16+1

− 16 − 10

= 65792 = (215 + 215) + (128 + 128) .

(6.30)

This precisely matches the number of degrees of freedom of the supercurrent multiplet constructed in [30]. Further, recall 
that the free superfield just corresponds to the exterior algebra ∧• S on 16 generators. Hence, its Betti numbers are precisely 
binomial coefficients 

(16
i

)
. We note that Table 10 contains precisely such coefficients, except for a missing 1 in degree (0, 1). 

However, we can add a trivial pair in degrees (0, 1) and (1, 0). Then we can subtract the respective Betti numbers of the 
free superfield to obtain the following Table 11.

Table 11
Subtracted Betti table.

0 1 2 3 4 5

0 16 45 + 1 − − − −
1 − − 130 160 154 −
2 − − − − 16 10

This is precisely the dual of the Betti table of H−4(C•(t)), which is displayed in Table 14. We remark that this “almost-
duality” phenomenon is closely analogous to the structure sheaf of 4d N = 1; it reflects the failure of the module to be 
Cohen–Macaulay. We further note that the fields in the first row are a spinor, a two-form, and a scalar; it is tempting to 
interpret this as a field-strength multiplet, containing the gaugino χ and the field strength F of the gauge field, and subject 
to certain constraints.

The multiplet associated to H−2(C•(t)) is the stress-energy tensor multiplet or supercurrent multiplet. Its Betti table is 
displayed in Table 12.

Table 12
Betti numbers for H−2(C•(t)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 120 720 2130 4512 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

1 − − − 136 160 45 − − − − − − − − −
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The supercurrent multiplet can be constructed as

Jμνρ = trχγμνρχ.

Here γ just represents the isomorphism ∧2(S+) ∼= ∧3(V ), and χ is the spinor superfield describing on-shell Yang-Mills the-
ory [31] that corresponds to H1(C•(t)). Alternatively it can be described as an abstract superfield satisfying the constraints 
[31]

Dα Jabc = (γ[a J 1
bc])α + (γ[ab J 1

c])α + (γ[abc] J 1)α

where the superfields J 1
bcα, J 1

cα , and J 1
α are three superfields in the representation [0, 1, 0, 1, 0], [1, 0, 0, 0, 1] and 

[0, 0, 0, 1, 0]. The total dimension of the constraints is 560 + 144 + 16 = 720. The leading component of Jabc is in the 
∧3 V representation [0, 0, 1, 0, 0] of dimension 120.

Again, introducing trivial pairs and subtracting precisely yields the dual of the Betti table of H−3(C•(t)), which we display 
in Table 13.

Table 13
Betti numbers for H−3(C•(t)).

0 1 2 3 4 5 6

0 45 160 136 − − − −
1 − − 144 310 160 − −
2 − − − − − 16 1

Table 14
Betti numbers for H−4(C•(t)).

0 1 2 3 4 5

0 10 16 − − − −
1 − 54 160 130 − −
2 − − − − 46 16

Finally, H−5(C•(t)) ∼= R/I again yields the vector multiplet. Note that Y is Gorenstein and of codimension five, such that 
Ext−5(R/I, R) ∼= R/I (Table 15).

Table 15
Betti numbers for H−5(C•(t)).

0 1 2 3 4 5

0 1 − − − − −
1 − 10 16 − − −
2 − − − 16 10 −
3 − − − − − 1

6.4. Six-dimensional multiplets from line bundles

Recall that the six-dimensional nilpotence variety can be identified with CP 1 ×CP 3 using the Segre embedding. Line 
bundles on CPn are classified by a single integer j ∈Z and are denoted by O( j). Using the projections

CP 1 ×CP 3 CP 3

CP 1

π3

π1 (6.31)

we can define a family of line bundles

O(i, j) := π∗
1O(i) ⊗ π∗

3O( j) (6.32)

on CP 1 ×CP 3. This family has been investigated in the physics literature [39].
Let us here list the corresponding multiplets for some integers i and j. Clearly O(0, 0) is just the structure sheaf of the 

nilpotence variety and hence the corresponding multiplet is the vector multiplet. O(1, 0) is the hypermultiplet, which we 
studied above. O(2, 0) is the antifield multiplet of the vector.
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For O(3, 0) a multiplet with the Betti numbers

0 1 2 3
0 4 12 12 4

(6.33)

arises. The minimal free resolution of the module in R-modules takes the form

L• = R ⊗
(
C4 (dL)1←−−− C3 ⊗ S+

(dL)2←−−− C2 ⊗ ∧2 S+
(dL)3←−−− C1 ⊗ ∧3 S+

)
. (6.34)

The multiplet for O(4, 0) is a building block in the construction of the “relaxed hypermultiplet” [32]. Its Betti numbers 
are given by

0 1 2 3 4
0 5 16 18 8 1

. (6.35)

The minimal free resolution of the module in R-modules takes the form

L• = R ⊗
(
C5 (dL)1←−−− C4 ⊗ S+

(dL)2←−−− C3 ⊗ ∧2 S+
(dL)3←−−− C2 ⊗ ∧3 S+

(dL)4←−−− C1 ⊗ ∧4 S+
)

. (6.36)

The minimal free resolutions are “twisted Lascoux” complexes which are described with their differentials in [20].10

6.5. Conormal modules

Denoting the defining ideal of the nilpotence variety by I , the conormal module is defined as the quotient I/I2 . This 
gives another interesting module to consider as an input for the pure spinor superfield formalism. The resulting multiplets 
seem to often correspond to supergravity theories. We demonstrate this in low dimensions.

Three-dimensional N = 1. The resulting multiplet has Betti numbers

0 1 2
2 3 2 −
3 − 5 4

. (6.37)

Investigating the Hilbert series, we find that all occurring representations are irreducible representations of the spin group 
Spin(3) ∼= SU (2). Thus the first line contains a vector and a spinor, while the second line can be identified with a symmetric 
traceless tensor and the four-dimensional part of the decomposition

S ⊗ V ∼= [1] ⊕ [3] . (6.38)

Four-dimensional N = 1. In four dimensions, the conormal module yields a multiplet with Betti numbers

0 1 2 3
2 4 4 1 −
3 − 9 12 4

. (6.39)

Investigating the Hilbert series, we find that the representations in the first line are a vector, a Dirac spinor, and a scalar. The 
nine-dimensional representation in the second line is a symmetric traceless tensor. The twelve dimensional representation 
has Dynkin labels [2, 1] ⊕ [1, 2]. Thus the multiplet consists of one spin-2, two spin- 3

2 , and a single spin-1 field. In terms of 
Dynkin labels, the multiplet takes the following form.

[1,1] [1,0] ⊕ [0,1] [0,0]

[2,2] [2,1] ⊕ [1,2] [1,1]
(6.40)

This matches the field content of the massive spin-two multiplet in four-dimensional N = 1 supersymmetry.

10 The bestiary of multiplets from Lascoux complexes was partly inspired by the bestiary of fauna depicted in the Lascaux cave and the work of Tristan 
Hübsch.
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Ten-dimensional N = 1. In this case, by a pleasing coincidence, the conormal module coincides with the module H−4(C•(t))
constructed above. The resolution was studied in [40, Corollary 4.4].

6.6. Dimensional reduction and restriction to strata; the 4d N= 2 tensor multiplet

There are interesting relations between the nilpotence varieties of supersymmetry algebras in different dimensions, for 
instance the nilpotence variety of a higher dimensional supersymmetry algebra may sit inside the nilpotence variety of 
a lower dimensional one. The resulting multiplets will then be related by dimensional reduction. We illustrate this by 
considering the relation between six-dimensional N = (1, 0) and four-dimensional N = 2 supersymmetry. Recall that we 
described the nilpotence variety for six-dimensional N = (1, 0) supersymmetry by the 2 × 2-minors of a 2 × 4-matrix with 
entries λα

i . As explained in [23] one obtains the nilpotence variety for four-dimensional N = 2 supersymmetry by replacing

λα
i −→ (λ

β

i , λ̄
β̇

i ) , (6.41)

and throwing away the two minors which do not mix the different chiralities. Hence there is an inclusion

i : Y (6;1,0) ↪→ Y (4;2) , (6.42)

whose image we denote by Y0. In fact the global structure of Y (4; 2) is easily described. It consists of three strata; in 
addition to Y0 there are two copies of (S± ⊗ U ) ∼=C4 corresponding to solutions where λ = 0 or λ̄ = 0 respectively:

Y (4;2) = Y0 ∪ Y1 ∪ Y2 ∼= Y (6;1,0) ∪ (S+ ⊗ U ) ∪ (S− ⊗ U ) . (6.43)

Pushing forward the structure sheaf OY (6;1,0) along i we thus obtain OY0 . As we already discussed at multiple occasions, 
the structure sheaf OY (6;1,0) produces the vector multiplet. Clearly, considering OY0 in the pure spinor superfield formalism 
gives a multiplet with the same Betti numbers; only the weights have to be adapted to four dimensions. Resolving OY0

equivariantly, we see that the six-dimensional vector splits up into a four-dimensional vector and two scalars. The fermion 
gives two Dirac fermions in four dimensions and the scalars remain scalars. Hence, the resulting multiplet is precisely the 
N = 2 vector multiplet in four-dimensions as one can obtain it from dimensional reduction. A similar phenomenon holds in 
general: given a multiplet in dimension d, we can push the corresponding sheaf forward along the dimensional reduction 
map to obtain the dimensionally reduced multiplet.

Interestingly, considering OY (4;2) as an input in the pure spinor superfield machinery gives a multiplet with Betti num-
bers

0 1 2 3 4
0 1 − − − −
1 − 4 − − −
2 − − 9 8 2

. (6.44)

Working equivariantly, the minimal free resolution gives

L• = R ⊗
(
C

(dL)1←−−− V
(dL)2←−−− ∧2 V ⊕C3 (dL)3←−−− (S+ ⊗ U ) ⊕ (S− ⊗ U )

(dL)4←−−− C2 ⊕C−2

)
, (6.45)

where C3 carries the adjoint representation of SU (2)R and has U (1)R -charge 0 while the two scalars in the top degree 
have U (1)R -charges +2 and −2 as indicated by the subscript. This is the field content of a tensor multiplet as described 
in [19,34].

Of course we can also restrict to the other strata. The minimal free resolutions are then exterior algebras ∧•(S± ⊗ U ), 
the resulting multiplets are thus chiral multiplets as described in [18].

6.7. Outro

There are, of course, many more constructions possible to obtain equivariant modules and all of these may be applied in 
the context of the pure spinor superfield formalism. For example it may be interesting to study tensor products, symmetric 
or exterior powers. Further, there are geometric constructions, such as tangent and cotangent sheaves, just to name a few. 
It would be particularly interesting to find physical interpretations for such constructions; one would also hope to better 
understand functorial properties and to develop the pure spinor formalism into an appropriate equivalence of categories,11

thus finally bringing order to the bestiary of supersymmetric multiplets.

11 We plan to return to such structural properties of pure spinor superfields in future work with C. Elliott.
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Appendix A. Homotopy transfer for L∞ modules

Let (L, μ̃k) be a (super) L∞ algebra and (V , dV , ρ( j)) an L∞ module for L. As was explained in [41], the L∞ module 
structure gives rise to an L∞-structure on L ⊕ V . Explicitly we can define (setting ρ(0) = dV )

μk((x1, v1), . . . , (xk, vk)) =
(
μ̃k(x1, . . . , xk),

k∑
i=1

±ρ(k−1)(x1, . . . , x̂i, . . . , xk)vi

)
. (A.1)

For example, if (L, [., .]) is a (super) Lie algebra and ρ is a strict action, we find

μ1((x, v)) = (0,dV v)

μ2((x1, v1), (x2, v2)) = ([x1, x2] , ρ(x1)v2 − ρ(x2)v1)
(A.2)

All higher order operations vanish. Now suppose we have homotopy data

(V ,dV ) (W ,dW )h
p

i
(A.3)

and want to transfer an L∞ module structure on V to a new L∞ module structure on W . The fact that these L∞ module 
structures can be thought of as L∞-structures on L ⊕ V and L ⊕ W suggests to extend the above homotopy data to

(L ⊕ V ,dV ) (L ⊕ W ,dW )id⊕h
id⊕p

id⊕i
(A.4)

and then to use the usual homotopy transfer for L∞-structures. Let us denote the transferred L∞-structure on L ⊕ W by 
μ′

k . We can read off the transferred module action ρ ′ (k) as follows. Let

π : L ⊕ V −→ V (A.5)

be the obvious projection. Then (A.1) implies

ρ ′ (k)(x1, . . . , xk)w = π
(
μ′

k+1((x1,0), . . . , (xk,0), (xk+1, w))
)

. (A.6)

As usual, the transferred L∞-structure μ′
k can be calculated by sum over trees formulas. Using this, one can also derive sum 

over tree formulas for the induced action ρ ′ . For our purposes we are only interested in the case where L = g is a (super) 
Lie algebra and ρ is a strict action. As explained above, this means that (g ⊕ V , μk) is a dg-Lie algebra. In this case the 
L∞-structure on g ⊕ W is computed by the sum over all rooted binary trees by decorating each leaf with the inclusion i, 
each internal line with the homotopy h, and the root by the projection p. A vertex means the application of the product 
μ2. In the case of the binary product one writes:

μ′
2 =

i

i

p .

(A.7)

In formulas this means

μ′
2 ((x1, w1), (x2, w2)) = ([x1, x2] , p(ρ(x1)i(w2) ± ρ(x2)i(w1))) . (A.8)

Accordingly we find for the L∞ module action ρ ′

ρ ′ (1) = p ◦ ρ ◦ i . (A.9)

In the case of μ′
3 we can write

μ′
3 =

i

i

i

p
h

±

i

i

i

ph ±

i

i

i

p .
h

(A.10)
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This gives for ρ ′ (2)

ρ ′ (2)(x1, x2) = p ◦ (ρ(x1)hρ(x2) ± ρ(x2)hρ(x1)) ◦ i . (A.11)

In this manner we can also obtain a general sum over trees representation for ρ ′ (k) in terms of ρ . Using equations (A.6)
and (A.1) we see that ρ ′ (k) can be obtained from binary rooted trees with k + 1 leaves by the following rules. Label the 
first k leaves by elements x1, . . . , xk and the last one by the inclusion i. Keep only those trees where there are no vertices 
connecting two elements of g. As usual, each internal line carries the homotopy h and the root is decorated by p. A vertex 
now means “apply ρ(xi)”. For example we can write for ρ ′ (2):

ρ ′ (2)(x1, x2) =

x1

x2

i

ph ±

x1

x2

i

p .
h

(A.12)

Clearly this recovers (A.11).
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[34] B. Jurčo, L. Raspollini, C. Sämann, M. Wolf, L∞ algebras of classical field theories and the Batalin–Vilkovisky formalism, Fortschr. Phys. 67 (2019) 

1900025, arXiv:1809 .09899 [hep -th].
[35] H. Kajiura, Noncommutative homotopy algebras associated with open strings, Rev. Math. Phys. (ISSN 1793-6659) 19 (2007) 1–99, https://doi .org /10 .

1142 /S0129055X07002912.
[36] S. Kobayashi, T. Nagano, On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964) 875–907.
46

http://refhub.elsevier.com/S0393-0440(22)00176-0/bibDACAE4924B5699E12993E18F3753B13Es1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib57B0429A210997C26A9D513BE736C328s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib9F4048BB22341BBB4A66D22B8647F57Es1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib160FC541FCDB0DEB7603FBFA1DA986BBs1
https://doi.org/10.1088/1126-6708/2001/09/016
https://doi.org/10.1088/1126-6708/2001/09/016
https://doi.org/10.1088/1126-6708/2002/09/051
https://doi.org/10.1088/1126-6708/2002/09/051
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib8A8E33B34CB881670EC2D514C245C11As1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib8A8E33B34CB881670EC2D514C245C11As1
https://doi.org/10.1088/1126-6708/2008/09/116
https://doi.org/10.1088/1126-6708/2008/09/116
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibAC5FDACEE7701EE582CCAD0E03F3CD0Ds1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibAC5FDACEE7701EE582CCAD0E03F3CD0Ds1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibD8AD2A836D698D3EF00E0D35FBD29020s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib7B096C7E5B7AE648E17C7677EF11F6E7s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibA788465D757472A91D43212D9BC8545As1
https://doi.org/10.1002/prop.201700082
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibBA89E2D07630AEFA5A340BEA353CF64Ds1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib5EE894AAB24CF2AFEA3194720294BB88s1
http://people.mpim-bonn.mpg.de/gwilliam
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibAD26B36ED4DAEC9B20EE600E0876F367s1
https://www.sciencedirect.com/science/article/pii/0550321380904496
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib2C4C8C781954A292478EE06DF8E92E5Cs1
https://doi.org/10.1112/S0010437X13007641
https://doi.org/10.1112/S0010437X13007641
https://doi.org/10.4171/JEMS/510
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibB465EB328FD473B38A051C89BDDF3E15s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib5343F615EE8AEA842A0C5220A4DF8D1Cs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibBD948C6A1F9378A85992F15794D6DC14s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibBD948C6A1F9378A85992F15794D6DC14s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib2A2B54D9C0CA986D5F40A4BBA4181E02s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib6186C3F3DFBCB2F910A59D4508426510s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib573EE90D66DB80528030E7A3AE62406Cs1
http://www.math.uiuc.edu/Macaulay2/
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib22FA3AF9F5A105520D20336D02260D0Es1
https://www.sciencedirect.com/science/article/pii/0370269382908450
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib6FD519853B3D11334DAD04D5BBAA8828s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib37ED373D26016B3209E4F539FAC35A06s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibCA25786E0D3AC6C2DFECA3F56CF3D823s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib05B5BD3854CFBF1E45998682843D72B4s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib05B5BD3854CFBF1E45998682843D72B4s1
https://doi.org/10.1142/S0129055X07002912
https://doi.org/10.1142/S0129055X07002912
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibAA2B36DABD254260F584015A9E0C5C98s1


R. Eager, F. Hahner, I. Saberi et al. Journal of Geometry and Physics 180 (2022) 104626
[37] R.M. Koch, On filtered Lie algebras, Indiana Univ. Math. J. 26 (1977) 115–124, ISSN 00222518, 19435258, http://www.jstor.org /stable /24891326.
[38] D. Krotov, A. Losev, Quantum field theory as effective BV theory from Chern-Simons, Nucl. Phys. B (ISSN 0550-3213) 806 (2009) 529–566, https://

doi .org /10 .1016 /j .nuclphysb .2008 .07.021.
[39] S.M. Kuzenko, J. Novak, S. Theisen, Non-conformal supercurrents in six dimensions, J. High Energy Phys. 02 (2018) 030, arXiv:1709 .09892 [hep -th].
[40] A.G. Kuznetsov, On linear sections of the spinor tenfold. I, Izv. Ross. Akad. Nauk, Ser. Mat. (ISSN 1607-0046) 82 (2018) 53–114, https://doi .org /10 .4213 /

im8756.
[41] T. Lada, L∞ algebra representations, Appl. Categ. Struct. 12 (2004) 29–34.
[42] T. Lada, M. Markl, Strongly homotopy Lie algebras, Commun. Algebra 23 (1995) 2147–2161.
[43] S.V. Lapin, Differential perturbations and D∞-differential modules, Sb. Math. 192 (2001).
[44] J.-L. Loday, B. Vallette, Algebraic Operads, vol. 346, Springer Science & Business Media, 2012.
[45] T. Macrelli, C. Samann, M. Wolf, Scattering amplitude recursion relations in Batalin-Vilkovisky-quantizable theories, Phys. Rev. D (ISSN 2470-0029) 100 

(2019), https://doi .org /10 .1103 /PhysRevD .100 .045017.
[46] M. Markl, Homotopy algebras via resolutions of operads, arXiv:math /9808101, 1998.
[47] P. Mnev, Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum field theory, arXiv:1707.08096 [math -ph], July 2017.
[48] M. Movshev, A. Schwarz, On maximally supersymmetric Yang-Mills theories, Nucl. Phys. B (ISSN 0550-3213) 681 (2004) 324–350, https://www.

sciencedirect .com /science /article /pii /S0550321303011106.
[49] M.V. Movshev, A. Schwarz, R. Xu, Homology of Lie algebra of supersymmetries and of super-Poincaré Lie algebra, Nucl. Phys. B 854 (2012) 483–503, 

arXiv:1106 .0335 [hep -th].
[50] I. Saberi, B.R. Williams, Constraints in the BV formalism: six-dimensional supersymmetry and its twists, arXiv:2009 .07116 [math -ph], 2020.
[51] I. Saberi, B.R. Williams, Twisting pure spinor superfields, with applications to supergravity, arXiv:2106 .15639 [math -ph], 2021.
[52] J. Stelzig, On the structure of double complexes, arXiv:1812 .00865 [math .RT], 2020.
[53] B. Vallette, Algebra + homotopy = operad, Symplectic Poisson Noncommut. Geom. 62 (2014) 229–290.
[54] D.V. Volkov, V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 367 (1972).
[55] R. Xu, A. Schwarz, M. Movshev, Integral invariants in flat superspace, Nucl. Phys. B 884 (2014) 2843, arXiv:1403 .1997 [hep -th].
47

http://www.jstor.org/stable/24891326
https://doi.org/10.1016/j.nuclphysb.2008.07.021
https://doi.org/10.1016/j.nuclphysb.2008.07.021
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibBF1D02B8D8DB39DD6A53FDF6A93B7D38s1
https://doi.org/10.4213/im8756
https://doi.org/10.4213/im8756
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib724D669444D7A3A36A20543BC093CD7Fs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibBF21849636854B854285D48C997534BBs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib58447C9DBF08C2EDDD7C6243A322EEEFs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib4DF1619B515AFBE5B535779FDC9B650Fs1
https://doi.org/10.1103/PhysRevD.100.045017
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibC176087CC12D7BA2BC1E36DC60AA5D6Bs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib73C7F83C875D9707CCD8BCF7FAF3F03As1
https://www.sciencedirect.com/science/article/pii/S0550321303011106
https://www.sciencedirect.com/science/article/pii/S0550321303011106
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib885DB195A56FE95EC5B38D4CCD089274s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib885DB195A56FE95EC5B38D4CCD089274s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibA814E4F05208ABB92492B663886A0975s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibEE29D25BBDF8254119FE760FC37063DDs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib258FC732CCABC9DF3D5FEFEFB05C7FC7s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bib74F39D5FBA9BFF4240B1F073B2CFD4DBs1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibE6AAD796295E5ACB8B96F5446A82D281s1
http://refhub.elsevier.com/S0393-0440(22)00176-0/bibBF95638D1984C78D906D244599843A5Ds1

	Perspectives on the pure spinor superfield formalism
	1 Introduction
	2 Preliminaries
	2.1 Gradings and basic definitions
	2.2 Homotopy transfer
	2.3 Maurer--Cartan elements and nilpotence varieties
	2.4 Multiplets and local modules
	2.4.1 Local modules
	2.4.2 Local algebras
	2.4.3 Multiplets

	2.5 Further structures on multiplets
	2.5.1 BRST data
	2.5.2 BV data


	3 The pure spinor superfield formalism
	3.1 A universal construction
	3.2 The case of interest: from sheaves to multiplets
	3.3 Filtrations and Koszul homology
	3.4 Examples of interest: supersymmetry algebras
	3.5 Motivating example: the 4d chiral multiplet
	3.6 Computational techniques: Koszul homology via free resolutions
	3.7 Homotopy transfer to component fields
	3.8 An example of the technique: the 4d gauge multiplet
	3.9 Scheme-theoretic properties: three-dimensional N=1 supersymmetry

	4 From multiplets to theories
	4.1 Commutative algebra and dualizing complexes
	4.2 Supplemental structures on multiplets
	4.3 Constructing cotangent theories: six-dimensional N=(1,0)
	4.4 Failure to be Cohen--Macaulay: the example of four-dimensional N=1
	4.5 A partial dictionary

	5 Ten-dimensional super Yang--Mills theory
	5.1 Field content and representatives
	5.2 The differential
	5.3 The supersymmetry action
	5.4 The L∞ structure
	5.5 The pairing

	6 A bestiary of multiplets from modules
	6.1 Presentations of modules and shift symmetry
	6.2 Motivating example of a nontrivial sheaf: the six-dimensional hypermultiplet
	6.3 Lie algebra cohomology
	6.4 Six-dimensional multiplets from line bundles
	6.5 Conormal modules
	6.6 Dimensional reduction and restriction to strata; the 4d N=2 tensor multiplet
	6.7 Outro

	Appendix A Homotopy transfer for L∞ modules
	References


