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ABSTRACT. We develop an algebraic structure modeling local operators
in a three-dimensional quantum field theory which is partially holomor-
phic and partially topological. The geometric space organizing our al-
gebraic structure is called the raviolo (or bubble) and replaces the punc-
tured disk underlying vertex algebras; we refer to this structure as a ravi-
olo vertex algebra. The raviolo has appeared in many contexts related
to three-dimensional supersymmetric gauge theory, especially in work
on the affine Grassmannian. We prove a number of structure theorems
for raviolo vertex algebras and provide simple examples that share many
similarities with their vertex algebra counterparts.
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Our goal is to develop the algebraic structure underpinning the local ob-
servables of a particular class of three-dimensional quantum field theories
that has received considerable attention in recent years, particularly in the
context of supersymmetric gauge theory. It is well-known that the local ob-
servables of a two-dimensional chiral conformal field theory organize into
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the structure of a vertex algebra. Since its inception, the theory of vertex al-
gebras has led to remarkable interactions between physics and mathemat-
ics of which quantum field theory and representation theory have signifi-
cantly profited and we are optimistic that an analogous role will be played
by this higher dimensional version of a vertex algebra.

In two dimensions, a chiral conformal field theory is one which depends
on the complex structure of the underlying surface. The sort of three-
dimensional theories whose local operators we aim to model depend on
the data of a particular complex foliation which equips the three-manifold
with local coordinates of the form (z, t) where z is a holomorphic coordi-
nate and t is a real smooth coordinate. Such a foliation is called a transverse
holomorphic foliation (THF) [DK79, Raw79, Asu10]; we recall its precise def-
inition in the main text below.

Typical examples of three-manifolds equipped a THF include products
Σ× S where Σ is a Riemann surface and S is a real one-dimensional mani-
fold. More generally, however, THFs are not necessarily split in this form.
The geometric incarnation of the central algebraic object in this note is
an example of a three-manifold which is equipped with such a non-split
THF structure. Simply, it is the THF structure on punctured affine space
C× R− {0} inherited from the tautological one on C× R. Of course, this
punctured affine space is homotopically equivalent to the two-sphere S2

but geometrically the data of the foliation allows us to consider an analog
of the algebra of ‘holomorphic’ functions on this space–these are functions
which are constant along the leaves of the foliation.

Holomorphic functions on the punctured affine line C× = C − {0}, or
more precisely functions on the formal disk D×, conveniently organize the
modes of a vertex algebra. There is a formal version of the THF structure
on punctured affine space C× R− {0} which we will refer to as the formal
raviolo and denote it Rav. As a non-separated scheme this is given by glu-
ing two formal disks over a shared punctured disk Rav = D ∪D× D. The
space C× plays a fundamental role in two-dimensional chiral conformal
field theory since it is the configuration space of two points in C, modulo
overall translations, therefore two-point correlation functions, which con-
trol the operator product expansions (OPEs) in a vertex algebra, belong to
holomorphic functions on C×. Analogously, in a three-dimensional theory
which is holomorphic-topological, functions which are constant along the
leaves of the THF on C× R− {0} control the raviolo analog of the OPE.

An important subtlety here is that the formal raviolo is not an affine
scheme, therefore instead of considering just the algebra of functions on
Rav we consider the derived sections of its structure sheaf. In Section 1 we
construct an explicit ‘de Rham’ model for this dg algebra using the THF
structure on punctured affine space. This model is similar to the one used
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in [FHK19] for the derived global sections of the higher dimensional formal
punctured disk motivated by the Jouanolou torsor. A potential drawback
of our approach is that in the bulk of the paper we work at the level of co-
homology of the raviolo rather than at the cochain level; indeed a raviolo
field is an operator-valued function parameterized by the cohomology of
the formal raviolo. We expect that a careful analysis of the cochain level
version of our algebraic structures could lead to a refinement of our con-
structions.

From this point, our definition of a raviolo vertex algebra is parallel to that
of an ordinary vertex algebra with the role of the formal disk being replaced
by the formal raviolo Rav. In Section 2 we give the definition of a raviolo
vertex algebra. Most importantly, we develop the notion of mutual locality
between two raviolo fields in terms of distributional calculus on two formal
ravioli.

In Section 3 we discuss basic properties of raviolo vertex algebras. The
first main result (Theorem 3.3.1) of this section is a formulation of asso-
ciativity for raviolo vertex algebras and the corresponding OPE. Physi-
cally, this OPE encapsulates information about the actual operator prod-
uct of the holomorphic-topological QFT, which is necessarily regular, as
well as the possibly singular operator products of holomorphic-topological
descendants. The second main result (Theorem 3.5.5) in this section is an
equivalence between raviolo vertex algebras and one-shifted Poisson ver-
tex algebras [OY20, CDG23], or Gerstenhaber vertex algebras [Bou22]. The
work [OY20] propose one-shifted Possion vertex algebras as a model for
the algebra of local operators in twisted three-dimensional supersymmetric
quantum field theories, see also [Zen23]. The chiral algebraic analog of this
structure appeared in [Tam02] under the name pro-c-Gerstenhaber algebra.
In that context, it is argued in loc. cit. that this algebraic structure is present
in the derived center of a chiral algebra (whose cohomology controls defor-
mations of the chiral algebra); we expect an analogous statement to hold for
vertex algebras. In the context of three-dimensional quantum field theory,
it is expected that the derived center of a boundary vertex algebra should
be related to local operators in the three-dimensional bulk [CDG23], see
also [Zen23]. It is satisfying that our bottom-up approach to holomorphic-
topological theories fits this expectation and agrees with established pre-
scriptions for describing observables in such theories.

The local operators of an n-dimensional topological field theory always
form an algebra over the operad of little disks in Rn. In [CG17] it is shown
how special algebras over a holomorphic analog of the operad of little disks
in C can be used to recover vertex algebras. Such algebras can be con-
structed from translation invariant factorization algebras on C for which
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the infinitesimal translation ∂/∂z act (homotopically) trivially. We antici-
pate a similar result for ravioli vertex algebras: there is a colored operad of
disks in R× C which can be enriched to the THF setting. Furthermore, we
expect that translation invariant factorization algebras on R× C for which
both ∂/∂t and ∂/∂z act (homotopically) trivially give rise to raviolo vertex
algebras. The interpretation of raviolo vertex algebras in terms of factor-
ization algebras points towards a global theory, such as a raviolo version of
conformal blocks which should exist on general THF three-manifolds.

With the goal of constructing examples, in Section 4 we state and prove
a reconstruction theorem for raviolo vertex algebras (Proposition 4.0.1).
This is directly analogous to the one for vertex algebras (see, for exam-
ple, [FBZ04]). Using this we provide a handful of universal examples of
raviolo vertex algebras stressing parallels with the usual free field, affine
Kac–Moody, Heisenberg, and Virasoro vertex algebras. Section 4 ends with
a discussion of a class of deformations relevant to three-dimensional gauge
theory, for example leading to the raviolo analog of BRST reduction of a
vertex algebra.

Finally, in Section 5 we initiate the study of modules for raviolo vertex
algebras. For raviolo vertex algebras induced from Lie algebras, such as
the raviolo analogs of free field, Heisenberg, affine Kac–Moody, and the
Virasoro algebras, we relate raviolo vertex algebra modules with smooth
modules for the associated Lie algebra. We end by considering Fock mod-
ules for the raviolo Heisenberg algebra and use these to construct a lattice-
type raviolo vertex algebra which models non-perturbative local operators
in twisted three-dimensional N = 2 abelian Yang–Mills theory. In [Zen23]
motivated by a bulk/boundary (3d/2d) correspondence, many other non-
perturbative examples of shifted Poisson vertex algebras were considered,
and it would be very interesting to understand these within the context of
raviolo vertex algebras.

Acknowledgements. We thank Owen Gwilliam, Zhengping Gui, Surya
Raghavendran, and Keyou Zeng for conversation and inspiration of all
kinds related to the formation and development of the ideas in this paper.
We are especially grateful to Surya Raghavendran for his collaboration on
work pertaining to symmetry enhancement for twists of three-dimensional
supersymmetric gauge theories which partly inspired this project.

1. THE RAVIOLO

In this section we construct a model of the formal raviolo (sometimes re-
ferred to as the bubble, see [Kam22, Section 7]). Algebro-geometrically, the
formal raviolo is given as the scheme theoretic intersection of two formal
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disks relative to a formal punctured disk

(1.0.1) Rav = D ∪D× D.

Topologically, the formal bubble is equivalent to the two-sphere, but scheme
theoretically it differs from CP1. Indeed, the raviolo is non-separated, but
it can be thought of as an infinitesimal version of CP1 where the transition
function identifies z1 = z2 rather than z1 = z−1

2 .

The raviolo Rav shares a close relationship to the affine Grassmannian.
If G is a Lie group then the moduli of G-bundles on Rav is equivalent to the
space of pairs of G-bundles P, P′ on the formal disk which are isomorphic
when restricted to the formal punctured disk. The affine Grassmannian
GrG is naturally a Map(D, G)-torsor over BunG(Rav).

The raviolo is not affine in the usual sense, indeed H1(D ∪D× D,O) 6= 0,
but it is affine in a derived sense. In analogy with the formal punctured
disk D× = Spec C((z)) the formal raviolo is the spectrum of a certain com-
mutative dg algebra A = (A•, d′). We construct a model for this dg algebra
using the geometric perspective of THF structures.

1.1. Transverse holomorphic foliations. A transversely holomorphic fo-
liation (THF) on a smooth manifold M is a smooth foliation F of even
codimension whose leaf space is equipped with the structure of a complex
manifold [DK79, Asu10, Raw79]. In other words, there exists a foliation at-
las whose transition functions are biholomorphisms. In this paper we will
only be concerned with three-manifolds M so that the leaf space of F is sim-
ply a Riemann surface. The product Σ× S, where Σ is a complex manifold
and S is a smooth manifold is equipped with a natural foliation of this type.
In this case, F is the restriction of the tangent bundle of S along the obvi-
ous projection. Locally, any THF three-manifold is split of the form C× R,
whose coordinates we will denote by (z, t) where z is a holomorphic coor-
dinate along C and t is a real smooth coordinate so that locally the tangent
space to F is spanned by ∂/∂t.

Let Q be the (real) quotient bundle TM/TF. Since F is a THF, the bundle
Q admits an almost complex structure so that the complexification admits
a canonical decomposition

(1.1.1) Q⊗ C = Q1,0 ⊕Q0,1

which satisfies Q1,0 = Q0,1. Locally, Q1,0 is spanned by ∂/∂z and Q0,1 by
∂/∂z. The canonical projection onto Q1,0 determines a subbundle of the
complexified tangent bundle

(1.1.2) VF
def
= ker(TC

M → Q1,0).
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Conversely, if V ⊂ TM ⊗ C is an involutive complex subbundle such that
TM ⊗ C = V ⊕ V then M admits a THF with Q1,0 = V/(V ∩ V) [DK79].
Locally, V is spanned by ∂/∂z, ∂/∂t.

In the context of foliations, the natural replacement for the notion of a
holomorphic function defined on an open set U is a function which is con-
stant along the leaves of the foliation. In the notation above, this is a func-
tion f ∈ C∞(U) such that LX f = 0 for all X ∈ Γ(U, VF). We denote the
algebra of such functions OF(U); note that the assignment U 7→ OF(U)
defines a sheaf on M.

Given any foliation, there is a cohomology theory associated to it. In
terms of de Rham cohomology, this is built from the so-called F-basic de
Rham forms. An explicit model for THF structures is as follows. For each
p, q denote by A(p);q smooth sections of the bundle ∧p(Q1,0)∨ ⊗∧qV∨F . The
derivative along the leaves of the foliation defined by V defines a map

d′ : A(p);q → A(p);q+1.

By integrability one has d′ ◦ d′ = 0 and so d′ equips A(p);• = ⊕qA
(p);q[−q]

with the structure of a cochain complex for each p. Notice that A(p);• is
concentrated in degrees 0, 1, and 2 for all p. The obvious exterior product
A(p);q ×A(r);s → A(p+r);q+s further endows(

A(•);•, d′
)
=
(
⊕pA

(p);•[−p], d′
)

with the structure of a bigraded commutative dg algebra. In particular
(A(0);•, d′) is a commutative dg algebra with wedge product being the mul-
tiplication.

In degree zero A(0);0 consists just of smooth (complex valued) functions.
Locally, a section of A(0);1 is of the form

fz(z, t)dz + ft(z, t)dt

where fz, ft are smooth functions. Similarly, a section of A(0);2 is of the form
fzt(z, t)dzdt. The differential d′ acting on a function f is

d′ f =
∂ f
∂z

dz +
∂ f
∂t

dt.

Thus locally d′ is simply a sum of the Dolbeault operator ∂ on C and the de
Rham operator d on R. Similar local formulae hold for A(p);•.

The Dolbeault–de Rham cohomology of M with coefficients in ∧pQ∨ is

H(p);•
d′ (M)

def
= H•

(
A(p);•(M), d′

)
.

We refer to (A(p);•(M), d′) as the Dolbeault–de Rham complex of ∧pQ∨.
We will mostly be concerned with the case p = 0. In this case, H(0);•

d′ (M)
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can naturally be identified with the algebra OF(M) of functions which are
constant along the leaves of the foliation. In fact, it is shown in [Raw79]
that A(0);• is a de Rham-type model for the sheaf cohomology of OF in the
sense that there is an isomorphism

(1.1.3) H•(M,OF) ' H(0);•
d′ (M)

where on the left hand side we mean sheaf cohomology. A similar result
holds for A(p);• where the sheaf on the left hand side is replaced by the
sheaf of VF-constant sections of ∧p(Q1,0)∨.

As a split example consider the case M = Σ× S where Σ is a Riemann
surface and S is a one-manifold. Then there is an isomorphism of cochain
complexes (

A(p);•(M), d′
)
'
(

Ωp,•(Σ)⊗̂Ω•(S) , ∂⊗ 1 + 1⊗ d
)

where Ωp,• is the Dolbeault complex and Ω• is the de Rham complex. It
follows that in cohomology one has an isomorphism

(1.1.4) H(p);•
d′ (M) ' Hp,•(Σ)⊗ H•(S)

for p = 0, 1.

The restriction of a THF to any open submanifold is again a THF. In
particular, the manifold

(1.1.5) C× R− {0}
is equipped with a natural THF coming from the obvious split one on C×
R. We will need the following result characterizing the d′-cohomology of
punctured space.

1.1.1 Theorem. For p = 0, 1 the cohomology H(p);•
d′ (C × R − {0}) is concen-

trated in degrees zero and one. In degree zero, there is an isomorphism

(1.1.6) H(p);0
d′ (C× R− {0}) ' Ωp,hol(C)

induced by pulling back holomorphic p-forms along the composition

(1.1.7) C× R− {0} ↪→ C× R→ C.

In degree one, there is an isomorphism

(1.1.8) H(p);1
d′ (C× R− {0}) '

(
Ω1−p,hol(C)

)∨
,

where the dual is the topological dual.

Before proving this result, we will need to develop an analog of the
residue in complex geometry. Denote the coordinates on C × R adapted
to the standard THF by

(1.1.9) z = (z, t).
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For z = (z, t), w = (w, s) let

(1.1.10) r(z, w)2 = |z− w|2 + (t− s)2

be the squared distance between z and w. Viewing w as fixed, define the
(0; 1)-form ω(z; w) on C× R− {w} by the formula

(1.1.11) ω(z; w)
def
=

(t− s)dz− 2(z− w)dt
r(z, w)3 .

It is immediate to check that

(1.1.12) d′ω(z; w) = 0.

It turns out that this (0; 1) form is not d′-exact, so it represents a cohomology
class. Indeed, consider the one-form dz; this is a d′-closed section of (Q1,0)∨

so that dzω(z; w) ∈ A(1);1(C× R− {0}). This class represents the volume
form of a two-sphere centered at w.

1.1.2 Lemma. One has

(1.1.13)
∮

r(z,w)=r
dz ω(z; w) = 8πi,

independent of the radius r > 0.

Proof. Suppose that ξ = (ξ, u) is a new variable on C × R such that z =
w + rξ, t = s + ru. Then ω(z; w) = ω(rξ; 0) so that by Stokes’ theorem we
have
(1.1.14)∮

r(z,w)=r
dz ω(z; w) =

∮
r(ξ,0)=1

dξ
(
udξ − 2ξdu

)
= 3

∫
B(0,1)

dudξdξ = 8πi.

In the last line we have used the identity dξdξdu = 2i volR3 , where volR3 is
the standard volume element on R3 and that the volume of the unit ball is
vol(B(0, 1)) = 4π/3. �

Essentially by Stokes’ formula again, we have the following analog of
the Cauchy residue formula. If f is a smooth function defined on a ball
{z | r(z, w) ≤ r} then

(1.1.15) f (w) =
∮

r(z,w)=r

dz
8πi

f (z)ω(z; w)−
∫

r(z,w)≤r

dz
8πi

d′ f (z)ω(z; w).

In particular, when f is d′-closed we have

(1.1.16) f (w) =
∮

r(z,w)=r

dz
8πi

ω(z; w) f (z).
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1.1.3 Lemma. One has the following identities

∂

∂w
ω(z; w) = d′Vw(z, w)

∂

∂s
ω(z; w) = d′Vs(z, w)

where

Vw =
s− t

r(z, w)3 Vs =
2(z− w)

r(z, w)3 .

In complex geometry, Hartogs’ lemma states that when d > 1 a holo-
morphic function with an isolated singularity can always be extended to a
holomorphic function; in other words, isolated singularities are removable.
From this lemma we can prove the following analog of Hartogs’s lemma in
the context of THF’s.

1.1.4 Proposition. Let K be a compact subset of an open set U ⊂ C × R such
that U − K is connected. Then every d′-closed smooth function f on U − K is the
restriction of a d′-closed smooth function on U.

Proof. Define

(1.1.17) F(w) =
∫

∂U

dz
8πi

ω(z; w) f (z).

Then, F is defined for all w ∈ U. By the residue formula (1.1.16) it is
straightforward to see that F agrees with f on U \ K. To see that F is d′-
closed we observe that by Lemma 1.1.3 we have
(1.1.18)

∂

∂w
F =

∫
∂U

dz
8πi

d′Vw(z, w) f (z) =
∫

∂U
d
(
− dz

8πi
Vw(z, w) f (z)

)
= 0.

Similarly, ∂
∂s F = 0. �

We can now turn to the proof of Theorem 1.1.1.

Proof of Theorem 1.1.1. First we will argue that

(1.1.19) H(p);0
d′ (C× R− {0}) ' H(p);0

d′ (C× R).

In other words, any F-flat section of ∧pQ1,0 on C × R − {0} extends to a
F-flat section over C× R. Indeed, by Proposition 1.1.4 any d′-closed func-
tion on C× R− {0} extends uniquely to a d′-closed function on C× R. A
similar result holds for d′-closed sections of (Q1,0)∨.

Now, since the d′-complex on C× R simply splits as a tensor product of
the Dolbeault complex of (p, •) forms on C with the de Rham complex on
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R we have an isomorphism

(1.1.20) H(p);•
d′ (C× R) ' Hp,•

∂
(C)⊗ H•(R).

This proves the first statement in the proposition.

The second statement follows from the fact that the integration pairing

(1.1.21)
∮

S2
: A(0);• ×A(1);• → C[−1]

induces a perfect pairing in d′-cohomology. �

We note that by Lemma 1.1.2 the element dual to 1 ∈ Ohol(C) in H(1);1
d′ (C×

R− {0}) is the cohomology class of the residue element ω(z; 0)dz.

The 1-form ω(z; w) on C× R− {w} is the direct analog of the function
(z−w)−1 on C−{w}. In particular, they are each Green’s functions for the
corresponding differential: the latter is the Green’s function supported at
w for the Dolbeault differential ∂ and the former the Green’s function sup-
ported at w for the THF differential d′. Correspondingly, they play the role
of propagators in field theories having the corresponding kinetic operators.

1.2. An algebraic model. The goal in this section is to construct an explicit
algebraic model for the Dolbeault-de Rham complex of the THF manifold
C× R− {0}.

Let R be the commutative algebra generated by variables

(1.2.1) z, λ, x

subject to the relation

(1.2.2) zλ + x2 = 1.

Let A be the graded commutative algebra freely generated over R by a
degree +1 element ω. Thus A = R⊕Rω[−1]. Define a differential

(1.2.3) d′ : A→ A[1]

on A by the formulas

(1.2.4) d′(z) = 0, d′(λ) = xω, d′(x) = − 1
2 zω,

and extend it to all of A by the rule that it is a graded derivation.

1.2.1 Proposition. The cohomology of (A, d′) is concentrated in degree zero and
one. The zeroth cohomology H0(A) = C[z] is identified with polynomials in the
holomorphic variable z. The first cohomology H1(A) = C[λ]ω is identified with
polynomials in the variable λ times the element ω.
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Proof. To compute the cohomology we decompose R as a sl(2) representa-
tion. The vector fields (e, f , h) where

(1.2.5) e = z∂x − 2x∂λ, f = −λ∂x + 2x∂z

and h = [e, f ] endow R with the structure of an sl(2) representation. Con-
sider the Laplacian ∆ = ∂2

x + 4∂z∂λ acting on the polynomial algebra C[x, z, λ].
Let Hn ⊂ C[x, z, λ] be the space of polynomials in x, z, λ of homogenous de-
gree n which are ∆-closed. Then under the quotient map q : C[x, z, λ] → R

we have a decomposition R = ⊕nRn; where Rn = q(Hn). Computing
characters we see that Rn = Sym2n(C2) as sl(2) representations. Note that
for each n, the highest weight vector of Rn is proportional to zn while the
lowest weight vector is proportional to λn.

With this identification, we see that d′ = − 1
2 ω ∧ e where e is as above.

We can thus identify the zeroth cohomology of A as

(1.2.6) H0(A) = C[z] =
⊕
n≥0

C{highest weight vector in Rn}.

Similarly

(1.2.7) H1(A) = C[λ]ω =
⊕
n≥0

C{lowest weight vector in Rn} ·ω.

�

The commutative dg algebra A is an algebraic model for the THF coho-
mology of the THF manifold C× R− {0}.

1.2.2 Proposition. There is an injective morphism of commutative dg algebras

j : A ↪→ A(0);•(C× R− {0}).

which is a dense embedding in cohomology. On degree zero generators it is defined
by j(z) = z, j(λ) = z

r2 , j(x) = t
r where r2 = zz+ t2. On the degree one generator

we define j(ω) = ω(z; 0), see equation (1.1.11).

Proof. It is an immediate computation to see that j is a cochain map. The
remaining assertions follow from Theorem 1.1.1 and Proposition 1.2.1. �

Both A and A(0);•(C × R − {0}) are cochain complexes which have ac-
tions by the Lie algebra of algebraic vector fields Vectalg(C) = C[z]∂z de-
fined via the Lie derivative. The map j is equivariant for this action. More
generally there is an algebraic model for the Dolbeault-de Rham complex
with values in an arbitrary invariant vector bundle. If s ∈ R we have the
line bundle K⊗s whose smooth sections are formal expressions of the form
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f (z)dzs. There is a similar algebraic model for A(0);•(C × R − {0}, K⊗s)
which as a graded vector space is

(1.2.8) A(s) def
= R · dzs ⊕R · dzsω[−1].

The differential is given by the same formula

(1.2.9) d′( f (z, t)dzs) = (d′ f (z, t))dzs.

The map j extends in a natural way to a cochain map j(s) : A(s) → A(0);•(C×
R− {0}, K⊗s) which is also Vectalg(C) equivariant and dense in cohomol-
ogy.

The proposition implies a relationship between the cohomology classes
λmω ∈ H1(A) in the algebraic model and the mth holomorphic derivative
of the class ω(z; 0) via

(1.2.10) j (λmω) =
(−2)m

(2m + 1)!!
∂m

z ω(z; 0).

The algebra structure on the cohomology of A is inherited from the one at
the cochain level: the degree 0 part C[z] has its natural ring structure, the
product of two degree 1 elements vanishes, and the product of a degree 0
and degree 1 element is as follows. Based on the form of the differential,
we already know that zω = −2d′x ≡ 0; more generally we have

(1.2.11)
zλm+1ω = (1− x2)λmω

= λmω−
( 1

2(m+1)zλm+1ω + d′( 1
m+1 xλm+1)

)
In particular, we have

(1.2.12) zλm+1ω ≡ 2(m + 1)
2m + 1

λmω

In view of this relation, and the above identification with derivatives of
ω(z; 0), it convenient to define

(1.2.13) Ωm def
=

(2m + 1)!!
2mm!

λmω j (Ωm) =
(−1)m

m!
∂m

z ω(z; 0)

so the action of z at the level of cohomology takes the form

(1.2.14) zΩm =

{
0 m = 0
Ωm−1 m > 0

and, more generally,

(1.2.15) znΩm =

{
0 n > m
Ωm−n n ≤ m
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Schematically, Ωm plays the role of the homogenous Laurent polynomial
“ 1

zm+1 ”. Notice that unlike the case of ordinary Laurent polynomials, how-
ever, there is no relation of the form zn 1

zm = zn−m for n ≥ m.1

From here on we will mostly be interested in the cohomology of A as a
graded commutative algebra and we denote it by

(1.2.16) Kpoly
def
= H•(A, d′).

Thus, in degree zero K0
poly = C[z] and in degree one

(1.2.17) K1
poly = C[λ]ω = C{Ω0, Ω1, . . .}.

Kpoly vanishes in degrees higher than 1. There is a relation in this graded
algebra znΩm = Ωm−n for n ≤ m and znΩm = 0 otherwise. One other way
we can present Kpoly is as the quotient of the polynomial algebra generated
by the infinitely many variables z, Ω0, Ω1, . . . of degrees 0, 1, 1, . . . subject
to the relations znΩm = Ωm−n for n ≤ m, znΩm = 0 for n > m, and
ΩnΩm = 0 for all n, m ≥ 0. We refer to Kpoly as the space of polynomials on
the algebraic raviolo. This is the raviolo analog of the space of polynomials
C[z, z−1] on C×.

There are variants of Kpoly that will be of interest to us:

• Let K be the commutative graded algebra which in degree zero
is C[[z]], in degree one is C[λ]ω = C{Ω0, Ω1, . . .} and whose ring
structure satisfies the same relations as Kpoly. This is the analog of
the ring of Laurent series C((z)) in a single variable, and hence we
refer to this as the space of raviolo Laurent series. There is an em-
bedding of algebras Kpoly ↪→ K.
• Let Kdist denote the graded vector space which in degree zero is

C[[z]], and in degree one is C[[λ]]ω. Notice that one cannot multiply
arbitrary elements in Kdist so that there is no natural commutative
algebra structure. Nevertheless, Kdist is a graded module over Kpoly.
We call Kdist the space of formal raviolo distributions, it is the analog
of C[[z, z−1]].

For α in Kpoly or K, we say that α has a pole of order m if the coefficient in
front of Ωm is nonzero, but the coefficient of Ωn in α vanishes for all n > m.
If the coefficient in front of Ωn vanishes for all n ≥ 0, we say α is regular.

We note that the graded algebras K,Kpoly are each equipped with a nat-
ural degree zero derivation ∂z defined by

(1.2.18) ∂zzn = nzn−1 ∂zΩm = −(m + 1)Ωm+1

1This points to the existence of a transferred A∞ structure on the cohomology of A,
which we do not consider here.
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Given an element f (z) ∈ Kdist (or K,Kpoly), it is useful to separate it into its
homogeneous pieces. Explicitly, if

(1.2.19) f (z) = ∑
n≥0

zn fn + Ωn f−n−1

then we define

(1.2.20) f (z)+
def
= ∑

n≥0
zn fn f (z)−

def
= ∑

n≥0
Ωn f−n−1

We have utilized integration of Dolbeault-de Rham forms along the 2-
sphere to characterize THF cohomology in the previous sections. We now
develop an algebraic version of the residue. In terms of differential forms
in the analytic model for THF cohomology, integration over the 2-sphere
centered at the origin defines a linear map

(1.2.21)
∮

S2
: A(1);• → C[−1]

of cohomological degree −1. Similarly, if we fix the holomorphic one-form
dz we obtain a linear map

(1.2.22)
∮

S2
dz ∧ (−) : A(0);• → C[−1]

also of cohomological degree one. This map clearly descends to cohomol-
ogy.

As we have already pointed out, the two-form dz ∧ ω(z; 0) is the fun-
damental class of this 2-sphere (up to a factor of 8πi), see Lemma 1.1.2.
Formally, we can mimic this integration to define a residue map on our
algebra model K. We define the linear map

(1.2.23) Res : K(1) → C[−1]

of cohomological degree one by the formula

(1.2.24) Res dz zn def
= 0 , Res dz Ωmzn def

= δn,m.

Note that this is equivalent to Res dz zm = 0 and Res dz Ωm = δm,0. In the
analytic description, we see that Res can be identified with performing a
surface integral over an S2 (of any radius) centered at 0, divided by 8πi. We
add a subscript to this residue map if we need to specify the corresponding
variable, e.g. Resz or Resw.

More generally, if we do not explicitly include the factor dz, the 2-sphere
residue defines a non-degenerate pairing

(1.2.25) 〈−,−〉 : K(s) ⊗K(1−s) → C[−1].

In particular, the linear dual of K can be identified with K(1)[1].
14



1.3. The raviolo delta function. Let Kz,w
dist denote the graded vector space

which in degree zero is C[[z, w]], in degree one is C[[z, λw]]ωw ⊕C[[λz, w]]ωz,
in degree two is C[[λz, λw]]ωzωw. In other words, Kz,w

dist = K⊗2
dist. We will

refer to this as the space of formal ravioli distributions in two variables z, w.
In this space, define the degree one element

(1.3.1) ∆(z− w)
def
= ∑

n≥0
wnΩn

z − ∑
n<0

z−n−1Ω−n−1
w

where Ωn
z and Ωn

w are defined in terms of λz, ωz and λw, ωw as above. No-
tice that for any raviolo distribution A(z) in one variable, we have the
equality

(1.3.2) ∆(z− w)A(z) = ∆(z− w)A(w).

We also define

∆(j)
− (z− w)

def
= ∑

n≥0

(
n + j

j

)
wnΩn+j

z ∈ K1
z,dist ⊗K0

w,dist

∆(j)
+ (z− w)

def
= ∑

n<0
(−1)j+1

(
j− n− 1

j

)
z−n−1Ωj−n−1

w ∈ K0
z,dist ⊗K1

w,dist,

so that

(1.3.3) ∆(z− w) = ∆−(z− w) + ∆+(z− w),

where we set ∆± = ∆(0)
± . We observe that ∆(j)

± (z− w) = 1
j! ∂

j
w∆±(z− w).

If R is any C-algebra then R[[z]] is the space of R-valued single variable
formal Taylor series. We let R〈〈z〉〉 = R⊗K be the space of R-valued formal
raviolo Laurent series; this is the analog of R-valued single variable formal
Laurent series R((z)). Concretely, R〈〈z〉〉 is the space of series

(1.3.4) ∑
n<0

z−n−1an + ∑
n≥0

Ωn
z an

where an ∈ R for all n ∈ Z with the property that there exists an N such that
an = 0 for n ≥ N. For example, K = C〈〈z〉〉. Note that R〈〈z〉〉 is naturally a
graded algebra.

We can apply this construction to R = C〈〈z〉〉 to obtain the graded algebra
C〈〈z〉〉〈〈w〉〉. Elements of this space are expressions of the form (1.3.4) where
each an ∈ C〈〈z〉〉 and an = 0 for n � 0. For example, observe that for all
j ≥ 0 one has

(1.3.5) ∆(j)
− (z− w) ∈ C〈〈z〉〉〈〈w〉〉.

Similarly, for all j ≥ 0

(1.3.6) ∆(j)
+ (z− w) ∈ C〈〈w〉〉〈〈z〉〉.
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Both C〈〈z〉〉〈〈w〉〉 and C〈〈z〉〉〈〈w〉〉 naturally embed inside of the space of
bivariate formal ravioli distributions Kz,w

dist defined above. Their intersection
is the quotient of the algebra C[[z, w]][Ωn

z , Ωm
z ]n,m≥0, where z, w are degree

zero and Ωn
z , Ωm

w are degree one, subject to the usual relations

(1.3.7) xnΩm
x = Ωm−n

x

for n ≤ m and x = z, w, xnΩm
x = 0 for n > m and x = z, w as well as

(1.3.8) Ωn
xΩm

x = 0

for n, m ≥ 0 and x = z, w. We denote this algebra by

(1.3.9) Kz,w
poly

def
= C〈〈z〉〉〈〈w〉〉 ∩ C〈〈w〉〉〈〈z〉〉 ⊂ Kz,w

dist.

1.3.1 Proposition. The following identities hold involving the formal distribu-
tion ∆(z− w).

(a) For any Laurent series f ∈ K one has

(1.3.10) Resz dz∆(z− w) f (z) = f (w).

(b) ∆(z− w) = −∆(w− z).
(c) ∂z∆(z− w) = −∂w∆(z− w).

Proof. For (a) it suffices to check this relation for f (z) = zn or f (z) = Ωm
z

for n ≥ 0, m ≥ 0 which is straightforward.

For (b) notice

∆(z− w) = ∑
n≥0

wnΩn
z − ∑

n<0
z−n−1Ω−n−1

w

= ∑
n<0

w−n−1Ω−n−1
z − ∑

n≥0
znΩn

w

= −∆(w− z).

For (c) we see directly that

−∂z∆(z− w) = ∑
n≥0

(n + 1)wnΩn+1
z − ∑

n<0
(n + 1)z−n−2Ω−n−1

w

is the same as

∂w∆(z− w) = ∑
n≥0

nwn−1Ωn
z − ∑

n<0
nz−n−1Ω−n

w

after reindexing the summations via n→ n + 1. �

In comparing equivalent definitions of mutual locality for raviolo fields,
we will use the following technical lemma which provides a uniqueness
result for bivariate formal ravioli distributions.
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1.3.2 Lemma. Let N ≥ 0 be a non-negative integer and let f (z, w) ∈ Kz,w
dist be a

bivariate formal ravioli distribution satisfying the following properties:

(1) (z− w)N+1 f (z, w) = 0, and
(2) or all m ≥ 0(

Ωm
z −

N

∑
j=0

(−1)j
(

m + j
j

)
(z− w)jΩm+j

w

)
f (z, w) = 0.

Then f (z, w) can be written uniquely as a sum

(1.3.11) f (z, w) =
N

∑
i=0

∂i
w∆(z− w)g(i)(w)

where g(i)(w) ∈ Kw
dist.

Proof. Suppose that g0(w) ∈ Kw
dist is any formal raviolo distribution in the

variable w. Applying (1.3.2) to the cases A(z) = zn, A(z) = Ωm
z we obtain

(zn − wn)∆(z− w)g0(w) = 0, n ≥ 0

(Ωm
z −Ωm

w)∆(z− w)g0(w) = 0, m ≥ 0.

Note that the first equation is trivial for n = 0, and the relation for n > 1
follows from the n = 1 case.

Next, consider the derivative ∂w∆(z − w). Differentiating the relation
(1.3.2) we obtain

∂w∆(z− w)A(z) = ∂w∆(z− w)A(w) + ∆(z− w)∂w A(w)

= ∂w∆(z− w) (A(w) + (z− w)∂w A(w)) ,

for any single variable formal raviolo distribution A(z). The second equal-
ity follows from the relation ∆(z−w) = (z−w)∂w∆(z−w), which follows
from taking the derivative of (1.3.2) when A = z. Let g1(w) be any formal
raviolo distribution in the variable w. Applying this derivative formula to
the test functions A = zn, A = Ωm

z we obtain(
zn − (wn + nwn−1(z− w)

)
∂w∆(z− w)g1(w) = 0, n ≥ 0(

Ωm
z − (Ωm

w − (m + 1)(z− w)Ωm+1
w )

)
∂w∆(z− w)g1(w) = 0, m ≥ 0.

In the first relation, the cases n = 0, 1 are trivial, while the relation for n > 2
follows from the case n = 2 which reads

(1.3.12) (z− w)2∂w∆(z− w)g1(w) = 0.
17



More generally, taking the Nth derivative of the relation (1.3.2) we obtain

(1.3.13) ∂N
w ∆(z− w)A(z) = ∂N

w ∆(z− w)
N

∑
j=0

(z− w)j

j!
∂

j
w A(w)

for any distribution A(z). Applying this to the test distribution A(z) =
zN+1 we obtain

(1.3.14) (z− w)N+1∂N
w ∆(z− w)gN(w) = 0

which holds for any formal raviolo distribution gN(w) in the variable w.
Similarly, applying this to the test distribution A(z) = Ωm

z , we obtain
(1.3.15)(

Ωm
z −

N

∑
j=0

(−1)j
(

m + j
j

)
(z− w)jΩm+j

w

)
∂N

w ∆(z− w)gN(w) = 0, m ≥ 0.

Thus, we see that any bivariate formal ravioli distribution of the form (1.3.11)
satisfies conditions (1) and (2).

Conversely, suppose that f satisfies the equations in (1) and (2). We
prove the result for f of homogenous cohomological degree. If f is of de-
gree zero then condition (1) implies that f ≡ 0.

Suppose that f is degree one. Then it admits an expansion of the form

(1.3.16) f (z, w) = ∑
m<0,n≥0

fm,nz−m−1Ωn
w + ∑

m≥0,n<0
fm,nΩm

z w−n−1,

where fm,n are coefficients. Define

(1.3.17) (δ f )m,n
def
= fm+1,n − fm,n+1.

Condition (1) implies the following recursive relation among the coeffi-
cients

(1.3.18)
(

δN+1 f
)

m,n
= 0

which must hold in the two cases
α : m < 0, n ≥ 0
β : m ≥ 0, n < 0.

We remark that in the relation (1.3.18) the coefficients fm,n are only defined
when (m, n) lie in α or β. Our convention is that when indices m, n appear
that do not fall into the sets α, β above then we declare fm,n = 0. For exam-
ple, in the case N = 0 we have fm+1,n − fm,n+1 = 0 when m < −1, n ≥ 0
(respectively, m ≥ 0, n < −1) and f−1,n+1 = 0 (respectively, fm+1,−1 = 0)
for n ≥ 0 (respectively, m ≥ 0).

Relation (1.3.18) implies that f (z, w) is of the form

(1.3.19) f (z, w) = ∑
p∈Z

f (p)(z, w)

18



where f (p)
m,n = 0 unless m+ n = p where (m, n) ∈ α or β. Suppose that p ∈ Z

and (m, n) ∈ α. Then, Eq. (1.3.18) has N + 1 independent solutions

(1.3.20) wp+i+1∂i
w∆+(z− w), i = 0, . . . , N.

In fact, since (1.3.18) is a difference equation with N + 1 terms, these are
all of the solutions. Similarly, if (m, n) ∈ β, then Eq. (1.3.18) has the N + 1
independent solutions

(1.3.21) wp+i+1∂i
w∆−(z− w), i = 0, . . . , N.

Thus, we see that condition (1) implies that f (z, w) is of the form

(1.3.22) f (z, w) =
N

∑
i=0

∂i
w∆+(z− w)g(i)+ (w) +

N

∑
i=0

∂i
w∆−(z− w)g(i)− (w)

where g(i)± (w) = ∑m≥0 g(i)±,mwm ∈ Kw
dist are of cohomological degree zero.

We now consider condition (2). Observe the following identities

Ωm
z ∆+(z− w) = Ωm

w ∆−(z− w) = Ωm
z,w

Ωm
z ∆−(z− w) = Ωm

w ∆+(z− w) = 0

for each m ≥ 0, where

(1.3.23) Ωm
z,w

def
=

m

∑
`=0

Ω`
zΩm−`

w ∈ Kz,w
dist.

Given the expansion as in (1.3.22) we see that

(1.3.24) Ωm
z f (z, w) =

N

∑
i=0

∂i
wΩm

z,wg(i)+ (w)

and

(1.3.25)

(
N

∑
j=0

(−1)j
(

m + j
j

)
(z− w)jΩm+j

w

)
f (z, w) =

N

∑
i=0

∂i
wΩm

z,wg(i)− (w).

Applying condition (2) successively for each m ≥ 0 we thus find that all
coefficients of g(i)± must satisfy g(i)+,m − g(i)−,m = 0 for every i, m ≥ 0; thus

f (z, w) = ∑N
i=0 ∂i

w∆(z− w)g(i)(w) where g(i) = g(i)+ = g(i)− as desired.

Finally suppose that f is degree two. In this case, we note that condition
(2) is vacuously true. The formal distribution admits an expansion of the
form

(1.3.26) f (z, w) = ∑
n,m≥0

fm,nΩm
z Ωn

w

for coefficients fm,n. Condition (1) implies the relation

(1.3.27) (δN+1 f )m,n = 0
19



for m, n ≥ 0. This means that f (z, w) is of the form

(1.3.28) f (z, w) = ∑
p∈Z

f (p)(z, w)

where f (p)
m,n = 0 unless n − m = p. For each p this equation has N + 1

independent solutions

(1.3.29) ∂i
w∆(z− w)Ωp+i

w , i = 0, . . . , N.

This completes the proof. �

1.4. Distributional expansions. The vertex algebra axioms use the func-
tion space

(1.4.1) C[[z, w]][z−1, w−1, (z− w)−1]

to formulate notions like mutual locality and associativity. Geometrically,
this function space is closely related to the space of holomorphic functions
on the configuration space of three points in C, modulo overall translations.
In our context, the natural replacement for this is thus the space of ‘holo-
morphic’ functions on the configuration space of three points in the THF
space C×R, modulo overall translations. (By holomorphic we mean those
functions preserved by the foliation defining the THF structure on C× R).
As in the case of two points, we must consider not only functions on the
configuration space of three points, but the full THF cohomology of this
space.

There are three differential forms of particular interest: we have the two
1-forms ω(z; 0) and ω(w; 0) inherited from the two coordinate copies of
C× R− {0}, as well as the 1-form

(1.4.2) ω(z, w)
def
=

(t− s)(dz− dw)− 2(z− w)(dt− ds)
r(z, w)3 .

from the diagonal. Note that ω(z, w) = ω(w, z) is not quite the same as
ω(z; w), cf. Eq. (1.1.11); rather, it is ω(z−w; 0). As was the case on C×R−
{0}, the derivatives of these 1-forms with respect to the anti-holomorphic
coordinates z, w and the smooth coordinates t, s are trivial in d′ cohomol-
ogy, as are zω(z; 0), wω(w; 0), and (z− w)ω(z, w). Also note that

(1.4.3) ∂wω(z; 0) = 0 = ∂zω(w; 0) ∂zω(z, w) = −∂wω(z, w)

Our algebraic model for the space of functions should thus have three tow-
ers of generators Ωn

z , Ωn
w, and Ωn

z−w in degree 1. Explicitly, we define
Kz,w,z−w as the quotient of the graded polynomial algebra

(1.4.4) C[[z, w]][Ωn
z , Ωm

m, Ωk
z−w]n,m,k≥0

where z, w are of degree zero, and Ωn
x are of degree +1 for x = z, w, z− w,

n ≥ 0 by the following relations:
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• xnΩm
x = Ωm−n

x for n ≤ m and x = z, w, z− w, xnΩm
x = 0 for n > m

and x = z, w, z− w.
• Ωn

xΩm
x = 0 for n, m ≥ 0 and x = z, w, z− w.

• Finally, the relation between degree one generators

(1.4.5) Ω0
z−wΩ0

z + Ω0
wΩ0

z−w + Ω0
zΩ0

w = 0

together with all relations obtained by taking holomorphic deriva-
tives ∂z, ∂w.2

There are three particularly important regions of this configuration space:
when w is close to 0, r(z, 0)� r(w, 0); when z is close to 0, r(z, 0)� r(w, 0);
and when z is close to w, r(z, w) � r(w, 0). When w is close to 0 we can
expand ω(z, w) as a series in w; as the z and t derivatives of ω(z; 0) are triv-
ial in cohomology, we are lead to the following expansion in our algebraic
model:

(1.4.6) Ω0
z−w → ∑

n≥0

(−w)n

n!
∂n

z Ω0
z = ∑

n≥0
wnΩn

z = ∆−(z− w)

and, more generally,

(1.4.7) Ωm
z−w → ∑

n≥0

(
m + n

n

)
wnΩm+n

z = 1
m! ∂

m
w ∆−(z− w).

Similarly, when z is close to 0 we expand as a series in z

(1.4.8) Ωm
z−w → (−1)m ∑

n≥0

(
m + n

n

)
znΩm+n

w = − 1
m! ∂

m
w ∆+(z− w).

Finally, when z is close to w we expand as a series in (z− w)

(1.4.9) Ωn
z → ∑

n≥0
(−1)n

(
n + m

n

)
(z− w)nΩm+n

w .

1.4.1 Lemma. The assignment

(1.4.10) Ωn
z−w 7→ 1

n! ∂
n
w∆−(z− w)

defines a graded algebra map Kz,w,z−w → C〈〈z〉〉〈〈w〉〉. Similarly, the assignment

(1.4.11) Ωn
z−w 7→ − 1

n! ∂
n
w∆+(z− w)

defines a graded algebra map Kz,w,z−w → C〈〈w〉〉〈〈z〉〉 and the assignment

(1.4.12) Ωn
z 7→ ∑

n≥0
(−1)n

(
n + m

n

)
(z− w)nΩm+n

w

defines a graded algebra map Kz,w,z−w → C〈〈w〉〉〈〈z− w〉〉.
2This is analogous to the degree two relation present in the de Rham cohomology

H•(Con f3(R2)) of three points in R2, see [Arn69, Tot96]. We expect that our relation is
present in the THF cohomology of three points in C× R.
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Proof. For the first claim it suffices to show that

(1.4.13) ∆−(z− w)Ω0
z + Ω0

w∆−(z− w) + Ω0
zΩ0

w = 0

in the space C〈〈z〉〉〈〈w〉〉, but this follows by noting

(1.4.14) ∆−(z− w)Ω0
z = 0 Ω0

w∆−(z− w) = Ω0
wΩ0

z

The second and third claims similarly follow by noting

(1.4.15) − ∆+(z− w)Ω0
z = Ω0

wΩ0
z −Ω0

w∆+(z− w) = 0

and

(1.4.16) Ω0
z−w∆0(z− w) = Ω0

z−wΩ0
w ∆0(z− w)Ω0

w = 0

�

Viewing C〈〈z〉〉〈〈w〉〉 and C〈〈w〉〉〈〈z〉〉 as subspaces of Kz,w
dist, we see that the

images of Ω0
z−w under the above maps are not the same: ∆−(z − w) 6=

−∆+(z− w). Their difference is precisely the raviolo delta function ∆(z−
w). This is entirely analogous to the ordinary formal distributions on the
disk, cf. Section 1.1 of [FBZ04].

2. THE DEFINITION OF A RAVIOLO VERTEX ALGEBRA

Like a vertex algebra, we start with a vector space V, which we imag-
ine being the space of local operators in a mixed holomorphic-topological
quantum field theory. We assume that the vector space is Z-graded by co-
homological degree—this is a key difference with the ordinary vertex alge-
bra case. While most vertex algebras studied in practice make sense with-
out reference to cohomological degree, non-trivial examples of raviolo ver-
tex algebras exist only when the cohomological degree is non-trivial.3 We
denote by Vr the space of vectors which are of homogenous cohomological
degree r.

2.1. Raviolo fields. We start with the raviolo analog of a field on V, cf. Sec-
tion 1.2.1 of [FBZ04]. This object will allow us to organize the action of a
given local operator on V in a way that makes manifest the geometry of the
raviolo.

Definition 2.1.1. A raviolo field on V is an element

(2.1.1) A(z) = ∑
m<0

z−m−1Am + ∑
m≥0

Ωm
z Am ∈ End(V)⊗Kdist.

3This should be compared to algebras over the little n-disks operad valued in ordinary
vector spaces. For any n > 1 this simply recovers the notion of a commutative algebra.
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such that for any v ∈ V there exists N sufficiently large with

(2.1.2) Amv = 0, for all m ≥ N

We call the endomorphisms Am modes of A(z) and the above expression
the mode expansion of A(z). We say that A(z) is homogeneous (of degree
|A|) if Am is an endomorphism of cohomological degree |A| for m < 0 and
of cohomological degree |A| − 1 for m ≥ 0.

A few remarks are in order. First, we often simply call this a field when
it is the understood that we are not speaking of a field in the sense of ver-
tex algebras. We denote by Frav(V) ⊂ End(V) ⊗Kdist the vector space of
(raviolo) fields on V. We also note that the main property of a field is equiv-
alent to saying A(z)v is a formal raviolo Laurent series valued in V, that is
A(z)v ∈ V〈〈z〉〉 = V⊗K for every v ∈ V. Equivalently, there exists N ≥ 0
sufficiently large such that zN A(z)v ∈ V[[z]]. Finally, the shift in degree for
the Am with m ≥ 0 is due to the fact that Ωm

z carries cohomological degree
+1 in Kdist. Unless otherwise specified, we will only consider homoge-
neous fields.

The action of ∂z on Kdist induces an action on End(V)⊗Kdist. It is easy
to verify that ∂z preserves the space of fields Frav(V).

2.1.2 Lemma. If A(z) is a field on V then

∂z A(z) = ∑
m<0

z−m−1(−mAm−1
)
+ ∑

m≥0
Ωm

z
(
−mAm−1

)
is also a field on V.

Given two fields A(z) and B(w) on V, their composition A(z)B(w) is
itself not a field. Moreover, it generally does not have a well-defined z→ w
limit. If we are to realize the action of local operators on V by way of raviolo
fields, we need to replace composition of fields with a suitable regularized
product that allows us to take this coincidence limit.

Definition 2.1.3. Let A(z) and B(w) be fields on V. We define their normal-
ordered product : A(z)B(w) : to be the following element of End(V)⊗Kz,w

dist:
(2.1.3)
: A(z)B(w) : = A(z)+B(w) + (−1)|A||B|B(w)A(z)−

= ∑
n<0

w−n−1
(

∑
m<0

z−m−1AmBn + (−1)(|A|+1)|B| ∑
m≥0

Ωm
z Bn Am

)
+ ∑

n≥0
Ωn

w

(
(−1)|A| ∑

m<0
z−m−1AmBn + (−1)(|A|+1)(|B|+1) ∑

m≥0
Ωm

z Bn Am

)

The following lemma is immediate from the definition.
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2.1.4 Lemma. Let A(z) and B(w) be fields on V. The specialization of their
normal-ordered product : A(z)B(w) : at w = z is a well-defined field on V. More-
over,
(2.1.4)

: A(z)B(z) : = Resw

(
∆−(w− z)A(w)B(z)− (−1)|A||B|∆+(w− z)B(z)A(w)

)

For brevity, we often denote the specialization : A(z)B(z) : by : AB :(z).
We note that the normal-ordered product : AB :(z) is homogeneous of de-
gree |A|+ |B|.

Proof. The desired specialization is given by

(2.1.5)

: AB :(z) = ∑
m<0

z−m−1
( −1

∑
n=m

AnBm−n−1

)
+ ∑

m≥0
Ωm

z

(
(−1)|A| ∑

n<0
AnBm−n−1 + (−1)|A||B|Bn Am−n−1

)
To verify that this defines a field on V, we choose v ∈ V; as A(z), B(w) are
fields on V, there exists an integer N ≥ 0 such that Anv = 0 and Bnv = 0
for all n ≥ N. As m− n− 1 ≥ m for n < 0, it follows that v is annihilated
by the coefficient of Ωm

z in : AB :(z) for all m ≥ N. The second assertion
follows from computing residues. �

It is straight forward to verify the following lemma characterizing the
interplay between ∂z and the normal-ordered product.

2.1.5 Lemma. Let A(z), B(w) be fields on V, then ∂z is a derivation of the normal-
ordered product

∂z: A(z)B(z) : = : ∂z A(z)B(z) : + : A(z)∂zB(z) :

2.2. Locality. The most important preliminary definition is that of mutual
locality of two fields A(z), B(w). For this we closely follow the analogous
notion in the setting of vertex algebras, cf. Section 1.2 [FBZ04], for example.
In Section 1.2 we introduced the bivariate ravioli algebras C〈〈z〉〉〈〈w〉〉 and
C〈〈w〉〉〈〈z〉〉, which should be viewed as the ravioli analogs of the bivariate
Laurent series algebras C((z))((w)) and C((w))((z)) respectively. Similarly,
we introduced the algebra Kz,w,z−w in Section 1.4 serving as the ravioli ana-
log of C[[z, w]][z−1, w−1, (z− w)−1]; in Lemma 1.4.1, we showed that there
were maps of graded algebras

(2.2.1) C〈〈z〉〉〈〈w〉〉 ← Kz,w,z−w → C〈〈w〉〉〈〈z〉〉
encoding the expansion of an element of Kz,w,z−w in when either z is close
to 0 (left) or w is close to 0 (right), cf. Eq. 1.1.9 of [FBZ04].
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Choose v ∈ V and ϕ ∈ V∗ (the linear dual of V). Given two raviolo fields
A(z) and B(w) it follows that the matrix element 〈ϕ, A(z)B(w)v〉 belongs
to C〈〈z〉〉〈〈w〉〉. Similarly, (−1)|A||B|〈ϕ, B(w)A(z)v〉 belongs to C〈〈z〉〉〈〈w〉〉.
Requiring these two matrix elements are equal in Kz,w

dist is too strong of a
constraint to impose; as in vertex algebras, we instead require that they are
the images of the same element of Kz,w,z−w.

Definition 2.2.1. We say two fields A(z), B(w) are mutually local if for
every v ∈ V and ϕ ∈ V∗ (the linear dual of V) the matrix elements

〈ϕ, A(z)B(w)v〉 and (−1)|A||B|〈ϕ, B(w)A(z)v〉

are expansions of one and the same element

fv,ϕ ∈ Kz,w,z−w

in C〈〈z〉〉〈〈w〉〉 and C〈〈w〉〉〈〈z〉〉, respectively, and the order of the pole of fv,ϕ
in z− w is uniformly bounded for all v, ϕ.

As in the theory of vertex algebras, there are several equivalent formu-
lations of mutual locality in terms of commutators4 and normal-ordered
products, cf. Theorem 2.3 of [Kac97] or Propositions 1.2.5 and 3.3.1 of
[FBZ04].

2.2.2 Proposition. Let A(z) and B(w) be fields on V, then the following are
equivalent.

1) A(z) and B(w) are mutually local.
2) There exists N ≥ 0 such that

(z− w)N+1[A(z), B(w)] = 0

and(
Ωm

z −
N

∑
n=0

(w− z)n
(

m + n
n

)
Ωm+n

w

)
[A(z), B(w)] = 0

as elements of End(V)⊗Kz,w
dist.

3) There is an identity in End(V)⊗Kz,w
dist

[A(z), B(w)] =
N

∑
n=0

1
n! ∂

n
w∆(z− w)Cn(w)

for fields Cn(w).

4We use the convention that [x, y] = xy− (−1)|x||y|yx denotes the graded commutator.
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4) The modes Am and Bl of A(z) and B(w) have the following commutators

[Am, Bl ] =



(−1)|A|+1
N

∑
n=0

(
m
n

)
Cn

m+l−n l, m ≥ 0

N

∑
n=max(0,m+l+1)

(
m
n

)
Cn

m+l−n m ≥ 0, l < 0

(−1)|A|+1
N

∑
n=max(0,m+l+1)

(
m
n

)
Cn

m+l−n m < 0, l ≥ 0

0 l, m < 0

where Cn
m are the modes of fields Cn(w).

5) There are identities

A(z)B(w) = : A(z)B(w) : +
N

∑
n=0

1
n! ∂

n
w∆−(z− w)Cn(w)

and

(−1)|A||B|B(w)A(z) = : A(z)B(w) :−
N

∑
n=0

1
n! ∂

n
w∆+(z− w)Cn(w)

in End(V)⊗Kz,w
dist for fields Cn(w).

Proof. We start by showing the equivalence of 3), 4), and 5). The equiva-
lence of 3) and 4) follows from taking ravioli residues of the stated com-
mutator. To see 3) implies 5), we note that the normal-ordered product
satisfies

(2.2.2) A(z)B(w) = : A(z)B(w) : + [A(z)−, B(w)]

The presented formula for the commutator [A(z), B(w)] implies

(2.2.3) [A(z)−, B(w)] = ∑
n≥0

1
n! ∂

n
w∆−(z− w)Cn(w)

yielding the first identity. The second identity is similarly obtained by con-
sidering the commutator [A(z)+, B(w)] and using

(2.2.4) (−1)|A||B|B(w)A(z) = : A(z)B(w) :− [A(z)+, B(w)]

The opposite implication 5)⇒ 3) follows by explicitly computing the com-
mutator from the given expressions:

(2.2.5)

[A(z), B(w)] = ∑
n≥0

1
n!

(
∂n

w∆+(z− w) + ∂n
w∆−(z− w)

)
Cn(w)

= ∑
n≥0

1
n! ∂

n
w∆(z− w)Cn(w)

Thus 3), 4), and 5) are equivalent.
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To finish the proof, we show 1) implies 2), 2) implies 3), and 5) ≡ 3)
implies 1). Suppose A(z), B(w) are mutually local fields and choose v ∈
V and ϕ ∈ V∗. It follows that the matrix elements 〈ϕ, A(z)B(w)v〉 and
(−1)|A||B|〈ϕ, B(w)A(z)v〉 are expansions of the same element fv,ϕ(z, w) of
Kz,w,z−w. We write fv,ϕ uniquely as

(2.2.6) fv,ϕ = gv,ϕ(z, w) +
N

∑
n=0

Ωn
z−w f n

v,ϕ(w)

where f n
v,ϕ(w) ∈ Kw and gv,ϕ(z, w) ∈ Kz,w

poly. The expansion of fv,ϕ in
C〈〈z〉〉〈〈w〉〉 takes the form

(2.2.7) gv,ϕ(z, w) +
N

∑
n=0

1
n! ∂

n
w∆−(z, w) f n

v,ϕ(w)

whereas its expansion in C〈〈w〉〉〈〈z〉〉 takes the form

(2.2.8) gv,ϕ(z, w)−
N

∑
n=0

1
n! ∂

n
w∆+(z, w) f n

v,ϕ(w)

We conclude that the matrix elements of the commutator are given by

(2.2.9) 〈ϕ, [A(z), B(w)]v〉 =
N

∑
n=0

1
n! ∂

n
w∆(z, w) f n

v,ϕ(w)

In particular, Lemma 1.3.2 implies

(2.2.10) (z− w)N+1〈ϕ, [A(z), B(w)]v〉 = 0

and

(2.2.11)
(

Ωm
z −

N

∑
n=0

(w− z)n
(

m + n
n

)
Ωm+n

w

)
〈ϕ, [A(z), B(w)]v〉 = 0

for every m. The requirement that the order of the pole in (z− w) is uni-
formly bounded in v, ϕ implies that if N is sufficiently large then these
equations hold independent of v, ϕ and hence we conclude A(z) and B(w)
satisfy condition 2).

To show 2) implies 3), we note that Proposition 2.2.2 and Lemma 1.3.2
imply that the commutator [A(z), B(w)] has the expected form with Cn(w)
a general element of End(V)⊗Kdist, but not necessarily a field. We verify
that the Cn(w) are fields as follows. We start by considering the negative
modes of the commutator:

(2.2.12) [A(z)−, B(w)−] = ∑
n≥0

1
n! ∂

n
w∆−(z, w)Cn(w)−
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where Cn(w) = 0 for n > N. Now choose v ∈ V. Using the fact that A and
B are fields, there exist M, L ≥ 0 sufficiently large so that

(2.2.13) 0 = zMwL[A(z)−, B(w)−]v = zMwL
(

∑
n≥0

1
n! ∂

n
w∆−(z, w)Cn(w)−

)
v

Expanding z = w + (z− w) and using (z− w)∂n+1
w ∆−(z, w) = ∂n

w∆−(z, w)
and (z− w)∆−(z, w) = 0, this equation becomes

(2.2.14)
( M

∑
m=0

∑
n≥0

1
(m + n)!

(
M
m

)
wL+M−m∂n

w∆−(z, w)Cm+n(w)−

)
v = 0

By linear independence of the ∂n
w∆−(z, w), we conclude

(2.2.15)
( M

∑
m=0

1
(m + n)!

(
M
m

)
wL+M−mCm+n(w)−

)
v = 0

for every n ≥ 0. Consider the case n = N. Only the m = 0 term contributes
because all higher Cn vanish, therefore

(2.2.16) wL+MCN(w)−v = 0

so that CN(w) is a field. For n = N − 1, we find

(2.2.17)
(

1
(N − 1)!

wL+MCN−1(w)− +
M
N!

wL+M−1CN(w)−

)
v = 0

and by multiplying this equation by w and using the above we see that
CN−1(w) is a field:

(2.2.18) wL+M+1CN−1(w)−v = 0

Continuing in this fashion, we conclude

(2.2.19) wL+M+N−nCn(w)−v = 0

and hence all Cn(w) are fields.

Finally, to show that condition 5) implies 1) we choose v ∈ V and ϕ ∈ V∗,
leading to the following identities:

(2.2.20)

〈ϕ, A(z)B(w)v〉 = 〈ϕ, : A(z)B(w) :v〉

+ (−1)|ϕ|
N

∑
n=0

1
n! ∂

n
w∆−(z− w)〈ϕ, Cn(w)v〉

and
(2.2.21)

(−1)|A||B|〈ϕ, B(w)A(z)v〉 = 〈ϕ, : A(z)B(w) :v〉

+ (−1)|ϕ|
N

∑
n=0

1
n! ∂

n
w∆+(z− w)〈ϕ, Cn(w)v〉
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Based on the form of the normal-ordered product : A(z)B(w) :, and using
the fact that A(z) and B(w) are fields, it follows that 〈ϕ, : A(z)B(w) :v〉 be-
longs to Kz,w

poly. To finish the proof, we note that ∆(n)
+ (z−w) and ∆(n)

− (z−w)

are expansions of n!Ωn
z−w in their respective domains, so that 〈ϕ, A(z)B(w)v〉

and (−1)|A||B|〈ϕ, B(w)A(z)v〉 are both expansions in their respective do-
mains of

(2.2.22) 〈ϕ, : A(z)B(w) :v〉+ (−1)|ϕ|
N

∑
n=0

Ωn
z−w〈ϕ, Cn(w)v〉

whence A(z) and B(w) are mutually local. �

Each of these reformulations of locality has an analog in the theory of
vertex algebras and the differences are worth pointing out. Conditions
3) and 5) are direct translations of the analogous statements for vertex
algebras, modulo replacing formal delta function δ(z − w) and its pos-
itive/negative parts δ±(z − w) with their raviolo analogs ∆(z − w) and
∆±(z − w), so we do not discuss them. The first relation in condition 2)
is the same as in vertex algebras, the second is new: its vertex-algebraic
analog would read

(2.2.23)
(

1
zm+1 −

N

∑
n=0

(
m + n

n

)
(w− z)n

wm+n+1

)
[A(z), B(w)] = 0

but this Laurent polynomial coefficient is proportional to (z− w)N , so this
relation is a consequence of the other. This formulation of locality for vertex-
algebraic fields comes directly from properties of the formal delta function
δ(z−w), cf. Lemma 1.1.4 [FBZ04] or Corollary 2.2 of [Kac97]. That the anal-
ogous formulation of locality for raviolo fields requires an extra constraint
follows from the analogous properties of the formal raviolo delta function
∆(z− w), cf. Lemma 1.3.2.

We finally turn to condition 4), where the differences are most dramatic.
For reference, we note that the analogous commutators of vertex-algebraic
fields A(z), B(w) take the form

(2.2.24) [Am, Bl ] = ∑
n≥0

(
m
n

)
Cn

m+l−n

The additional signs (−1)|A|+1 when l ≥ 0 are due to the fact that the ravioli
residue pairings Resz dz and Resw dw have cohomological degree 1; these
signs do not appear in ordinary vertex algebras as the usual residue pairing
has degree 0. The truncation of the sum when m ≥ 0, l < 0 or m < 0, l ≥ 0
and the fact that the commutator must vanish when m, l < 0 do not appear
in vertex algebras and both stem from the relations zΩ0

z = 0 and wΩw = 0.
As we will see, the vanishing of these last set of commutators has pretty
remarkable consequences.
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We now collect some useful properties of mutually local fields for later
use. We start by showing that taking derivatives doesn’t impact mutual
locality.

2.2.3 Proposition. Suppose A(z) and B(w) are mutually local fields on V, then
∂m

z A(z) and ∂l
wB(w) are mutually local for any m, l ≥ 0.

Proof. We use the formulation of mutual locality given by assertion 3) of
Proposition 2.2.2. In particular, mutual locality implies the existence of
fields Cn(w) such that

(2.2.25) [A(z), B(w)] = ∑
n

1
n! ∂

n
w∆(z, w)Cn(w)

Using the fact that ∂z∆(z, w) = −∂w∆(z, w), we see that ∂z A(z) and B(w)
are mutually local because

(2.2.26) [∂z A(z), B(w)] = −∑
n

1
n! ∂

n+1
w ∆(z, w)Cn(w)

Similarly, because that ∂wCn(w) is also a field, we see that A(z) and ∂wB(w)
are mutually local. The assertion follows by induction on m and l. �

We also have the following raviolo analog of Dong’s Lemma, cf. Propo-
sition 2.3.4 of [FBZ04] or Proposition 3.2.7 of [Li96]:

2.2.4 Lemma. Let A(z), B(x), and C(w) be fields on V and suppose A(z) is
mutually local with B(x) and C(w), then A(z) and : BC :(w) are mutually local.

Proof. We compute the commutator between A(z) and : BC :(w). By Lemma
2.1.4, this commutator takes the form
(2.2.27)
[A(z), : BC :(w)] = Resx∆−(x− w)[A(z), B(x)C(w)]

− (−1)|B||C|Resx∆+(x− w)[A(z), C(w)B(x)]

= Resx∆−(x− w)[A(z), B(x)]C(w)

− (−1)(|A|+|B|)|C|Resx∆+(x− w)C(w)[A(z), B(x)]

+ (−1)|A||B|Resx∆−(x− w)B(x)[A(z), C(w)]

− (−1)|B|(|A|+|C|)Resx∆+(x− w)[A(z), C(w)]B(x)
)

Mutual locality implies that the commutator [A(z), B(x)] takes the form

(2.2.28) [A(z), B(x)] = ∑
m≥0

1
m! ∂

m
x ∆(z− x)Dm(x)

and, similarly,

(2.2.29) [A(z), C(w)] = ∑
m≥0

1
m! ∂

m
w ∆(z− w)Em(w)
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for fields Dm(x) and Em(w), where Dm(x) = 0 and Em(w) = 0 for m � 0.
Using the fact that (x−w)∆±(x−w) = 0 together with the Taylor formula

(2.2.30) ∂m
x ∆(z− x) = ∑

n≥0

1
n! (x− w)n∂m+n

w ∆(z− w)

we conclude that the commutator [A(z), : BC :(w)] is equal to

(2.2.31) ∑
m≥0

1
m! ∂

m
w∆(z− w)

(
: DmC :(w) + (−1)(|A|+1)|B|: BEm :(w)

)
whence A(z) and : BC :(w) are mutually local. �

Not only does this proof show A(z) and : BC :(w) are mutually local, it
actually gives the following useful expression for the commutator of A(z)
and : BC :(w):

2.2.5 Corollary. Let A(z), B(w), C(u) be fields on V and suppose A(z) is mutu-
ally local with respect to B(w) and C(u) with commutators

[A(z), B(w)] = ∑
m≥0

1
m! ∂

m
w ∆(z− w)Dm(w)

and
[A(z), C(u)] = ∑

m≥0

1
m! ∂

m
u ∆(z− u)Em(u)

then we have the following identity:

[A(z), : BC :(w)] = ∑
m≥0

1
m! ∂

m
w ∆(z−w)

(
: DmC :(w)+ (−1)(|A|+1)|B|: BEm :(w)

)

The final property of mutually local fields we present uses the reformu-
lation of mutual locality in Proposition 2.2.2 in terms of the commutators
of modes.

2.2.6 Proposition. Let A(z), B(w) be mutually local fields on V, then

: AB :(z) = (−1)|A||B|: BA :(z) .

Moreover, given pairwise mutually local fields A(z), B(w), C(u) on V we have

: A: BC : :(z) = : : AB :C :(z) .

This proposition implies the normal-ordered product defines a commu-
tative and associative product on a collection of mutually local raviolo
fields. This is in stark contrast to the theory of vertex algebras, where the
normal-ordered product of mutually local fields is generally neither com-
mutative nor associative.
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As we remarked above, the field : AB :(z) is meant to represent the usual
operator product in the underlying quantum field theory. That the normal-
ordered product defines a commutative, associative product reflects the
fact that this operator product is commutative and associative. The model
for local operators in a minimally twisted three-dimensional supersymmet-
ric quantum field theory described by [OY20, CDG23] is as a commutative
vertex algebra with some extra structure (e.g. a 1-shifted λ-bracket). Al-
though the normal-ordered product in a vertex algebra is generally not as-
sociative, this is true for commutative vertex algebras, cf. Section 1.4 of
[FBZ04].

Proof. Comparing the above formula for the normal-ordered product : AB :(z)
to that of (−1)|A||B|: BA :(z), we see the two expressions agree thanks to the
commutativity of Am, Bn for n, m < 0:

(2.2.32) : AB :(z)− (−1)|A||B|: BA :(z) = ∑
m<0

−1

∑
n=m

z−m−1[Am, Bm−n−1] = 0

In order to verify associativity, we compare the two normal-ordered prod-
ucts. The mode expansion of the left-hand side is given by

(2.2.33)

: A: BC : :(z) = ∑
m≥0

zm
( m

∑
l=0

m−l

∑
n=0

A−l−1B−n−1Cl+n−m−1

)
+ ∑

m≥0
Ωm

z

(
∑
l≥0

∑
n≥0

(−1)|A||B|A−l−1B−n−1Cn+m+l

+ (−1)|A|+(|B|+1)|C|A−l−1C−n−1Bn+m+l

+ (−1)(|B|+|C|)(|A|+1)B−l−1C−n−1An+m+l

)
whereas the right-hand side is given by

(2.2.34)

: : AB :C :(z) = ∑
m≥0

zm
( m

∑
n=0

n

∑
l=0

A−l−1Bl−n−1Cn−m−1

)
+ ∑

m≥0
Ωm

z

(
∑
l≥0

∑
n≥0

(−1)|A||B|A−l−1B−n−1Cn+m+l

+ (−1)|A|+(|A|+|B|+1)|C|C−l−1A−n−1Bn+m+l

+ (−1)(|B|+|C|)(|A|+1)+|B||C|C−l−1B−n−1An+m+l

)
Again, these two expressions are equal to one another due to the commu-
tativity of the An, Bm, Cl for n, m, l < 0. �
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2.3. The main definition. We now move to the definition of a raviolo vertex
algebra. From the point of view of quantum field theory, this structure is
parallel to that of a vertex algebra. A vertex algebra is an algebraic structure
modeling the local operators of a chiral/holomorphic field theory in two
real dimensions.

Likewise, our motivation for the definition of a raviolo vertex algebra is
the algebraic structure underpinning the local operators of a three-dimensional
quantum field theory which is partially holomorphic and partially topolog-
ical. Such theories arise naturally from twists of three-dimensional super-
symmetric theories [CDFK13, CDFK14, OY20, CDG23].

The essential data of a vertex algebra is the so-called state-operator (or
state-field) correspondence which is a linear assignment from V to the space
of fields on V. With our modified notion of field, i.e. a raviolo field, we can
apply the same definition in our setting. We require that the state-operator
correspondence

(2.3.1) Y(−, z) : V→ Frav(V) ⊂ End(V)⊗Kdist

be compatible with the gradings on V and Kdist, i.e. if a ∈ Vr then Y(a, z) is
a homogeneous raviolo field of cohomological degree r, so that Y(−, z) is a
homogeneous linear map of degree 0. We write the mode expansion of this
field as

(2.3.2) Y(a, z) = ∑
m<0

z−m−1a(m) + ∑
m≥0

Ωm
z a(m)

By a common abuse of notation we will sometimes denote the field Y(a, z)
by a(z).

Definition 2.3.1. A raviolo vertex algebra is the data (V, |0〉, ∂, Y) where

• V =
⊕

Vr is a Z graded vector space.
• |0〉 ∈ V0 is a distinguished element (the vacuum vector).
• ∂ : V → V is an endomorphism of degree 0 (the translation opera-

tor).
• Y = Y(−, z) : V→ End(V)⊗Kdist is a linear map of degree 0.

This data is required to satisfy the following axioms

(1) For every a ∈ V the element Y(a, z) is a raviolo field as in Definition
2.1.1 (state-field correspondence).

(2) One has

(2.3.3) [∂, Y(a, z)] = ∂zY(a, z)

for every a ∈ V (translation axiom).
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(3) The vacuum vector satisfies ∂|0〉 = 0, Y(|0〉, z) = 1V, and for any
a ∈ V one has Y(a, z)|0〉 ∈ V[[z]], and Y(a, z = 0)|0〉 = a (vacuum
axiom).

(4) For every a, b ∈ V the fields Y(a, z), Y(b, w) are mutually local as in
Definition 2.2.1 (locality axiom).

We say that a ∂-invariant subspace W ⊂ V containing the vacuum vector
|0〉 ∈ W is a raviolo vertex subalgebra of V if Y(a, z)b ∈ W〈〈z〉〉 for any
a, b ∈ W. A ∂-invariant subspace I is called a raviolo vertex algebra ideal
of V if Y(a, z)b ∈ I〈〈z〉〉 for any a ∈ I and b ∈ V.

A morphism of raviolo vertex algebras

ρ : (V1, |0〉1, ∂1, Y1)→ (V2, |0〉2, ∂2, Y2)

is the data of a linear map ρ : V1 → V2 of degree 0 that preserves the
vacuum ρ(|0〉1) = |0〉2, and intertwines the translation operators ∂2ρ(a) =
ρ(∂1a) and state-operator correspondences ρ(Y1(a, z)b) = Y2(ρ(a), z)ρ(b).

The kernel of a morphism ρ : V1 → V2 is an ideal of V1 and the image
is a subalgebra of V2. As with vertex algebras, there is a skew-symmetry
property (Proposition 3.2.2) ensuring that if I is an ideal of V then Y(b, z)a ∈
I〈〈z〉〉 for any a ∈ I and b ∈ V. In particular, the quotient V/I has the
structure of a raviolo vertex algebra. We also note that if V1 and V2 are
raviolo vertex algebras, then the tensor product V1 ⊗ V2 naturally inherits
the structure of a raviolo vertex algebra.

Definition 2.3.2. A derivation D (of degree r) of a raviolo vertex algebra V

is a (homogeneous) linear map D : V→ V (of degree r) such that

[D, Y(a, z)] = Y(Da, z)

as fields on V. A degree 1, square-zero derivation D is called a differential
on V and we call the pair (V, D) a differential-graded raviolo vertex algebra
or dg raviolo vertex algebra.

For example, the translation operator ∂ is always a derivation. We note
that if D is a derivation of V then the kernel of D is a subalgebra of V. If
D is a differential, then the image of D is an ideal of the kernel of D. In
particular, the cohomology of a differential D has the structure of a raviolo
vertex algebra.

2.4. Additional gradings. The underlying vector space V often has addi-
tional gradings that are compatible with the axioms of a raviolo vertex al-
gebra; correspondingly, the space of fields Frav(V) inherits natural gradings
from End(V).

34



Let L > 0 be an integer. A spin grading on a raviolo vertex algebra is an
additional (non-cohomological) grading

(2.4.1) V = ⊕s∈ 1
L ZV

(s)

such that the vacuum vector |0〉 and Y are weight 0, the translation operator
∂ : V(s) → V(s+1) increases the weight by +1, and for any a ∈ V(s) the mode
a(n) increases weight by s− n− 1. We call the weight with respect to such
a grading spin. This grading does not appear in any Koszul rule of signs.
Typically L = 1, 2, or 4 in the examples that we consider.

It will be useful to allow for an additional Z/2 grading, which amounts
to working with graded super vector spaces. That is, for each cohomologi-
cal degree r ∈ Z we have a super vector space

(2.4.2) Vr = Vr
+ ⊕ΠVr

−

where Vr
+ is the even part and Vr

− is the odd part. We assume that the vac-
uum |0〉, the state-operator correspondence Y, and the translation opera-
tor ∂ are even with respect to the super grading. Additionally, the Koszul
rule of signs must be modified; in any place where the degree |a| of an
element enters in an algebraic expression it must be understood as the to-
talized grading. That is, if a ∈ Vr

+ then |a| = r mod 2, but if a ∈ Vr
− then

|a| = (r + 1) mod 2. We say that a state/field is bosonic (resp. fermionic) if
it has even (resp. odd) totalized grading and call such states/fields bosons
(resp. fermions).

If V has a spin grading then we can consider the following graded char-
acter as a formal q-series

(2.4.3) chV(q)
def
= ∑

s∈ 1
L Z

grdim(V(s))qs

where grdim(V(s)) is the dimension of the vector space spanned by bosonic
(with respect to the totalized grading) elements of spin s minus the dimen-
sion of the vector space spanned by the fermionic elements of spin s.

2.5. Raviolo vertex algebras over graded commutative unital C-algebras.
For this last subsection, fix a graded commutative unital C-algebra S. We
introduce the notion of a raviolo vertex algebra over S; there should be a
similar construction when S is replaced by a general graded commutative
ring, but we will not need that level of generality. See [Mas18] for the analo-
gous construction in the theory of vertex algebras. In brief, a raviolo vertex
algebra over S is merely a graded S-module V =

⊕
Vr equipped with a

compatible raviolo vertex algebra structure.

The notion of raviolo field has a natural incarnation over S by simply
replacing linear maps by S-module morphisms.
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Definition 2.5.1. A raviolo field over S on V is an element

A(z) = ∑
m<0

z−m−1Am + ∑
m≥0

Ωm
z Am ∈ EndS(V)⊗Kdist

such that for every v ∈ V there exists N sufficiently large with

Amv = 0 for all m ≥ N

A raviolo field A(z) over S is homogeneous of degree |A| if Am is an S-
module morphism of degree |A| for m < 0 and degree |A| − 1 for m ≥ 0.

The space of raviolo fields over S on V will be denoted Frav/S(V). There is
a notion of mutual locality of two raviolo fields over S; we use the algebraic
reformulation of mutual locality provided by Proposition 2.2.2.

Definition 2.5.2. Two raviolo fields A(z), B(w) over S are mutually local if
there exists N ≥ 0 such that

(z− w)N+1[A(z), B(w)] = 0

and (
Ωm

z −
N

∑
n=0

(w− z)n
(

m + n
n

)
Ωm+n

w

)
[A(z), B(w)] = 0

as elements of EndS(V)⊗Kz,w
dist.

With the notion of mutually local raviolo fields over S on an S-module
V, we can now state the definition of a raviolo vertex algebra over S.

Definition 2.5.3. A raviolo vertex algebra over S is the data (V, |0〉, ∂, Y)
where

• V =
⊕

Vr is a graded S-module.
• |0〉 ∈ V0 is a distinguished element (the vacuum vector).
• ∂ : V → V is an S-module morphism of degree 0 (the translation

operator).
• Y = Y(−, z) : V → EndS(V) ⊗ Kdist is a S-module morphism of

degree 0.

This data is required to satisfy the following axioms

(1) For every a ∈ V the element Y(a, z) is a raviolo field over S as in
Definition 2.5.1 (state-field correspondence).

(2) One has

(2.5.1) [∂, Y(a, z)] = ∂zY(a, z)

for every a ∈ V (translation axiom).
(3) The vacuum vector satisfies ∂|0〉 = 0, Y(|0〉, z) = 1V, and for any

a ∈ V one has Y(a, z)|0〉 ∈ V[[z]], and Y(a, z = 0)|0〉 = a (vacuum
axiom).
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(4) For every a, b ∈ V the fields Y(a, z), Y(b, w) are mutually local as in
Definition 2.5.2 (locality axiom).

We say that a ∂-invariant S-submodule W ⊂ V containing the vacuum
vector |0〉 ∈ W is a raviolo vertex subalgebra over S if for any Y(a, z)b ∈
W〈〈z〉〉 for any a, b ∈ W. A ∂-invariant S-submodule I is called a raviolo
vertex algebra ideal over S if Y(a, z)b ∈ I〈〈z〉〉 for any a ∈ I and b ∈ V.

A morphism of raviolo vertex algebras over S

ρ : (V1, |0〉1, ∂1, Y1)→ (V2, |0〉2, ∂2, Y2)

is the data of an S-module morphism ρ : V1 → V2 of degree 0 that pre-
serves the vacuum ρ(|0〉1) = |0〉2, and intertwines the translation oper-
ators ∂2ρ(a) = ρ(∂1a) and state-operator correspondences ρ(Y1(a, z)b) =
Y2(ρ(a), z)ρ(b).

There are natural variants of the above that allow for spin and super
gradings. Although it is not strictly necessary, our examples are such that
S has trivial spin and super gradings, i.e. all elements of S are spin 0 and
even, but can have support in non-trivial cohomological degree.

It is easy to characterize when a raviolo vertex algebra is a raviolo vertex
algebra over S, but we must put off the proof until the end on Section 3
when we have more tools.

2.5.4 Proposition. Let V be a raviolo vertex algebra, then V is a raviolo vertex al-
gebra over S if and only if V is a graded S-module such that the S-action commutes
with ∂ and Y(a, z) for all a ∈ V.

In fact, the proof of this result allows us to characterize the action of S on
general states in V, and their corresponding fields, in terms of its action on
the vacuum |0〉 via the state-operator correspondence.

2.5.5 Corollary. Let V be a raviolo vertex algebra over S. The linear map κV

representing the action of κ ∈ S on V is equal to the constant field Y(κV|0〉, z). The
action of κ ∈ S on the field Y(a, z) is via normal-ordered product with Y(κV|0〉, z).

From this perspective, a subalgebra of a raviolo vertex algebra over S is
a raviolo vertex subalgebra that is also an S-submodule, i.e. it is preserved
by the action of S. Suppose I is an ideal of S. If V is a raviolo vertex algebra
over S, then there is a natural ideal II of V spanned (as an S-module) by
finite sums of elements of the form κa with κ ∈ I and a ∈ V. The quotient
V/II is then naturally a raviolo vertex algebra over the quotient S/I.
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3. ELEMENTARY PROPERTIES OF RAVIOLO VERTEX ALGEBRAS

We now prove some elementary properties of raviolo vertex algebras.
We stress that the statement of many of our results is a direct translation
from the theory of vertex algebras, but often the proofs of these results
provided in, e.g., [Kac97, FBZ04] must be modified due to the fact that the
ring of formal raviolo Laurent series K = C〈〈z〉〉 has zero-divisors, whereas
C((z)) is a field.

3.1. Rigidity of the state-operator correspondence. We start with a ravi-
olo analog of Goddard’s uniqueness theorem, cf. Theorem 3.1.1 of [FBZ04]
or [God88].

3.1.1 Proposition. Let V be a raviolo vertex algebra and A(z) a field on V. If
A(z) is mutually local with Y(b, z) for all b ∈ V and there exists a ∈ V with

A(z)|0〉 = Y(a, z)|0〉

then A(z) = Y(a, z).

Proof. As in the proof of Theorem 3.1.1 in [FBZ04], mutual locality implies

(3.1.1) (z− w)N A(z)Y(b, w)|0〉 = (z− w)NY(a, z)Y(b, w)|0〉

for N sufficiently large. The vacuum axiom implies these expressions are
well-defined at w = 0; using Y(b, 0)|0〉 = b, we conclude

(3.1.2) zN A(z)b = zNY(a, z)b

for all b ∈ V. The exponent N varies as we vary b, but we can nonetheless
conclude that A(z)+b = Y(a, z)+b for all b, and hence A(z)+ = Y(a, z)+.

In order to show that the remaining modes agree, we start with the fol-
lowing observation:

(3.1.3) [A(z)−Y(a, z), Y(b, w)]|0〉 = (A(z)− −Y(a, z)−)Y(b, w)|0〉

which follows from A(z)+ = Y(a, z)+ and A(z)|0〉 = Y(a, z)|0〉; the vac-
uum axiom implies that this expression has no terms proportional to Ωm

w .
On the other hand, mutual locality implies that

(3.1.4) [A(z)−Y(a, z), Y(b, w)] = ∑
m≥0

1
m! ∂

m
w ∆(z− w)Cm(w)

for some fields Cm(w), from which it follows that

(3.1.5) (A(z)− −Y(a, z)−)Y(b, w)|0〉 = ∑
m≥0

1
m! ∂

m
w ∆(z− w)Cm(w)|0〉
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As the left-hand side does not contain terms proportional to Ωn
w, we con-

clude

(3.1.6) ∑
m≥0

1
m!

(
∂m

w ∆+(z− w)Cm(w)+ − ∂m
w ∆−(z− w)Cm(w)−

)
|0〉 = 0

The distributions ∂m
w∆+(z− w)wn and ∂m

w ∆−(z− w)Ωn
w are all linearly in-

dependent, so we conclude Cm(w)|0〉 = 0. In particular,

(3.1.7) (A(z)− −Y(a, z)−)Y(b, w)|0〉 = 0 (A(z)− −Y(a, z)−)b = 0

whence A(z)− = Y(a, z)−. �

3.2. Relations involving the translation operator. Using this uniqueness
result, we can prove the following properties describing the action of ∂; see
Lemma 3.1.3, Corollary 3.1.6, and Lemma 3.2.3 of [FBZ04] for the analogous
results in the theory of vertex algebras.

3.2.1 Lemma. Let V be a raviolo vertex algebra, then for all a ∈ V we have

1) Y(a, z)|0〉 = ez∂a as elements of V[[z]]
2) Y(∂a, z) = ∂zY(a, z) as fields on V

3) e−w∂Y(a, z)ew∂ = Y(a, z− w) as elements of End(V)⊗Kz,w
dist

Proof. The proofs of Lemma 3.1.3, Corollary 3.1.6, and Lemma 3.2.3 in [FBZ04]
transfer with little modification to raviolo vertex algebras to prove asser-
tions 1), 2), and 3), respectively. The first assertion follows from the vac-
uum and translation axioms; the second is a consequence of Proposition
3.1.1 applied to A(z) = ∂zY(a, z); the third is another consequence of the
translation axiom and the Taylor formula. �

The raviolo analog of Goddard’s uniqueness theorem together with prop-
erty 1) in Lemma 3.2.1 implies that the field Y(a, z) is the unique raviolo
field on V satisfying the differential equation

(3.2.1) ∂z A(z)|0〉 = ∂A(z)|0〉

subject to the initial condition A(z)|0〉|z=0 = a, cf. Remark 3.1.5 of [FBZ04].

The second property we verify is the raviolo analog of the skew-symmetry
property of a vertex algebra, cf. Proposition 3.2.5 of [FBZ04].

3.2.2 Proposition. Let V be a raviolo vertex algebra, then for any a, b ∈ V

Y(a, z)b = (−1)|a||b|ez∂Y(b,−z)a

as elements of V〈〈z〉〉.
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Proof. Mutual locality of Y(a, z) and Y(b, z) ensures that there exist fields
Cn(w) such that
(3.2.2)
Y(a, z)Y(b, w)|0〉 = (−1)|a||b|Y(b, w)Y(a, z)|0〉+ ∑

n≥0

1
n! ∂

n
w∆(z, w)Cn(w)|0〉

We then apply the first assertion in Lemma 3.2.1 to both sides to conclude

(3.2.3) Y(a, z)ew∂b = (−1)|a||b|Y(b, w)ez∂a + ∑
n≥0

1
n! ∂

n
w∆(z, w)Cn(w)|0〉

This equality implies the following four equalities:
(3.2.4)

Y(a, z)+ew∂b = (−1)|a||b|Y(b, w)+ez∂a

Y(a, z)−ew∂b = ∑
n≥0

1
n! ∂

n
w∆−(z, w)Cn(w)+|0〉

0 = (−1)|a||b|Y(b, w)−ez∂a− ∑
n≥0

1
n! ∂

n
w∆+(z, w)Cn(w)+|0〉

0 = − ∑
n≥0

1
n! ∂

n
w∆−(z, w)Cn(w)−|0〉

Applying the third assertion of Lemma 3.2.1 to the first equation and
setting w = 0 leads to

(3.2.5) Y(a, z)+b = (−1)|a||b|ez∂Y(b,−z)+a

Setting w = 0 in the second equation, and using ∂n
w∆−(z, w)|w=0 = n!Ωn

z ,
gives us

(3.2.6) Y(a, z)−b = ∑
n≥0

Ωn
z Cn

(−1)|0〉 a(n)b = Cn
−1|0〉

We cannot set w = 0 in the third equality due to the factors of Ωm
w , but we

can once again apply the third assertion of Lemma 3.2.1 to turn it into

(3.2.7) (−1)|a||b|ez∂Y(b, w− z)−a = ∑
n≥0

1
n! ∂

n
w∆+(z, w)Cn(w)+|0〉

where we identify m!Ωm
w−z with the expansion (−1)m∂m

w ∆+(z, w). The left-
hand side of this equality is thus equal to

(3.2.8) (−1)|a||b| ∑
m,l≥0

zl(−1)m

l!m!
∂m

w ∆+(z, w)∂lb(m)a

expanding z = (z− w) + w and taking the term proportional to w0 gives
the equality

(3.2.9) (−1)|a||b| ∑
n,l≥0

(−1)n+l

l!n!
∂m

w ∆+(z, w)∂lb(n+l)a
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As the distributions wi∂
j
w∆+(z, w) are linearly independent, we can equate

the coefficients of ∂n
w∆+(z, w) on both sides of the above equation to find

(3.2.10) (−1)|a||b|+n ∑
l≥0

(−1)l

l!
∂lb(n+l)a = Cn

−1|0〉 = a(n)b

for all n ≥ 0. Put together, these equations say

(3.2.11) (−1)|a||b|ez∂Y(b,−z)−a = Y(a, z)−b

as desired. �

3.3. Associativity and the operator product expansion. The definitions
we have given and results we have proven provide obvious parallels with
the theory of vertex algebras. As we have seen, many of the manipula-
tions one performs in a vertex algebra transfer mutatis mutundis to raviolo
vertex algebras. The last and most important property we consider is the
notion of associativity.

3.3.1 Theorem. Let V be a raviolo vertex algebra and choose a, b, c ∈ V, then the
three expressions

Y(a, z)Y(b, w)c ∈ V〈〈z〉〉〈〈w〉〉 ,

(−1)|a||b|Y(b, w)Y(a, z)c ∈ V〈〈w〉〉〈〈z〉〉 , and

Y(Y(a, z− w)b, w)c ∈ V〈〈w〉〉〈〈z− w〉〉

are expansions, in their respective domains, of the same element of V⊗Kz,w,z−w.

Proof. The proof of Theorem 3.2.1 of [FBZ04] transfers without issue. For
completeness, we sketch the argument. First, mutual locality of Y(a, z) and
Y(b, w) implies the assertion that the first two expressions are expansions
of the same element. We now show that the first and third expressions are
expansions of the same element.

Proposition 3.2.2 and property 3) in Lemma 3.2.1 together imply

(3.3.1) Y(a, z)Y(b, z)c = (−1)|b||c|ew∂Y(a, z− w)Y(c,−w)b

cf. Eq. (3.2.4) of [FBZ04]. Similarly, Proposition 3.2.2 implies

(3.3.2) Y(Y(a, z− w)b, w)c = (−1)(|a|+|b|)|c|ew∂Y(c,−w)Y(a, z− w)b

cf. Eq. (3.2.5) of [FBZ04]. Mutual locality of Y(a, z− w) and Y(c,−w) then
implies that Y(a, z)Y(b, z)c and Y(Y(a, z − w)b, w)c are expansions of the
same element. �

As with vertex algebras, we often abbreviate the above result by saying
Y(a, z)Y(b, w)c and Y(Y(a, z− w)b, w)c are equal to one another, with the
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understanding that they are expansions of the same element of Kz,w,z−w in
different regions. Phrased differently, we find that for any c
(3.3.3)

Y(Y(a, z−w)b)c =
(

∑
m<0

(z−w)−m−1Y(a(m)b, w)+ ∑
m≥0

Ωm
z−wY(a(m)b, w)

)
c

is also equal, by Proposition 2.2.2 and Taylor expanding Y(a, z), to
(3.3.4)

Y(a, z)Y(b, w)c =
(

∑
m≥0

1
m! (z−w)m: ∂m

wY(a, w)Y(b, w) :+ ∑
m≥0

Ωm
z−w Am(w)

)
c

for some fields Am(w). Comparing the coefficients of (z− w)m and Ωm
z−w

in these two expressions leads us to the following equality (with the usual
caveat that the two sides are expansions in different regions)

(3.3.5)

Y(a, z)Y(b, w) = ∑
n<0

(z− w)−n−1Y(a(n)b, w) + ∑
n≥0

Ωn
z−wY(a(n)b, w)

= :Y(a, z)Y(b, w) : + ∑
n≥0

Ωn
z−wY(a(n)b, w)

We call this is the operator product expansion (OPE) of the fields Y(a, z) and
Y(b, w) and call coefficients of Ωn

z−w the singular terms of the OPE and the
remaining terms regular. Proposition 3.2.2 implies that the OPE satisfies the
following skew symmetry relation:

(3.3.6)

Y(b, z)Y(a, w) = :Y(b, z)Y(a, w) :

+ ∑
n≥0

Ωn
z−w

(
(−1)|a||b| ∑

l≥0

(−1)n+l

l!
Y(∂la(n+l)b, w)

)
Following standard vertex algebra conventions, for brevity we will some-
times omit the regular terms in the OPE and write

(3.3.7) Y(a, z)Y(b, w) ∼ ∑
n≥0

Ωn
z−wY(a(n)b, w)

Of course, the notation ∼ is borrowed from the theory of vertex algebras
and refers to equality up to regular terms. As all the Y(a, z) are fields, there
is at most a finite number of singular terms in the OPE of any two fields.

An immediate consequence of this analysis, and hence the associativity
property established in Theorem 3.3.1, is the following result showing that
the state-operator correspondence for a general state is uniquely character-
ized by those of “simpler” states.

3.3.2 Corollary. For any a1, . . . , al ∈ V and j1, . . . , jl < 0, we have

Y(a1
(j1) . . . al

(jl)
|0〉, z) =

1
(−j1 − 1)! . . . (−jl − 1)!

: ∂
−j1−1
z Y(a1, z) . . . ∂

−jl−1
z Y(al , z) :
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Proof. We prove this by induction on l. The case of l = 1 follows from
Lemma 3.2.1. The general case follows from the relation

(3.3.8) Y(a(−n−1)b, w) =
1
n!

: ∂n
wY(a, w)Y(b, w) :

derived above for general a, b. �

Another immediate corollary of our OPE formula and the expression in
Proposition 2.2.2 for the commutators of the modes of two mutually local
fields.

3.3.3 Corollary. The linear map a(0) is a derivation of V for any a ∈ V.

Proof. Identify C0(w) in Proposition 2.2.2 with Y(a(0)b, z), we find

(3.3.9) [a(0), Y(b, z)] = Y(a(0)b, z)

�

To finish this subsection, we return to the proof of Proposition 2.5.4 pro-
viding an alternative description of raviolo vertex algebras over a graded
commutative unital C-algebra S.

Proof of Proposition 2.5.4. Suppose V is a raviolo vertex algebra over S. As
any graded S-module is itself a graded vector space (over C), it is clear that
the graded vector space underlying V is simultaneously an S-module and
a raviolo vertex algebra. By an abuse of notation, we denote the data (state-
operator correspondence, vacuum vector, translation operator) by the same
symbols. The fact that the S-action on V commutes with ∂ and Y(a, z) for
any a ∈ V is due to the requirement that ∂ and the modes a(m) are mor-
phisms of S-modules. To see that the action of κ ∈ S is realized by a field,
let κV be the linear map realizing action of κ on V, then

(3.3.10) κV = κV1V = κVY(|0〉, z) = Y(κV|0〉, z)

where we used the vacuum axiom and the fact that Y(−, z) : V→ EndS(V)⊗
Kdist is a morphism of S-modules. The fact that Y(κV|0〉, z) is constant is
due to the translation axiom and the fact that ∂ is a morphism of S-modules.

Now suppose V is both a raviolo vertex algebra and an S-module such
that the S-action commutes with ∂ and Y(a, z) for all a ∈ V. The former
implies that ∂ is a morphism of S-modules. The latter implies that all of
the modes a(m) are morphisms of S-modules, hence Y(a, z) is a raviolo field
over S for all a ∈ V. Now choose κ ∈ S, we again denote by κV the linear
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map representing the action of κ on V. Consider the vector κV|0〉, then the
corresponding field is necessarily constant because

(3.3.11) ∂zY(κV|0〉, z) = Y(∂κV|0〉, z) = Y(κV∂|0〉, z) = 0

where we used property 2) in Lemma 3.2.1 in the first equality, that ∂ com-
mutes with the S-action in the second, and the vacuum axiom in the third.
In particular, we find that the vacuum axiom implies

(3.3.12) Y(κV|0〉, z)|0〉 = κV|0〉
The uniqueness result in Proposition 3.1.1 then implies

(3.3.13) Y(κV|0〉, z) = κV

as the S-action commutes with all Y(a, z), hence the constant field κV is
mutually local with them.

Using this description of the S-action in terms of fields, we can see that
Y(−, z) is a morphism of S-modules using Y(a(−1)b, z) = :Y(a, z)Y(b, z) :, a
consequence of Theorem 3.3.1:

(3.3.14) κVY(a, z) = :Y(κV|0〉, z)Y(a, z) : = Y(κVa, z)

Putting this together, we see that the data (Y, |0〉, ∂, Y) matches that of a
raviolo vertex algebra over S. We already established the fact that Y(a, z)
is a raviolo field over S for all a; the remaining axioms of a raviolo vertex
algebra over S follow from the fact that they are satisfied for V. �

3.4. Interpreting the OPE. Raviolo vertex algebras are meant to capture
the algebraic structure underlying local operators in a three-dimensional
holomorphic-topological quantum field theory. In the theory of vertex al-
gebras, the notion of an OPE encodes the physical expectation that in a 2d
holomorphic quantum field theory the insertion of two operators placed
at points z, w close to one another can be expressed as a sum of operators
inserted at w depending on the separation (z− w). Due to its equally cen-
tral role in raviolo vertex algebras, we think it is worthwhile to provide a
physical interpretation for the above OPE, and why it deserves the name
OPE in the first place.

As mentioned in Section 2.1, the expansion in (z − w) of the normal-
ordered product :Y(a, z)Y(b, w) : encodes the physical operator product ex-
pansion of two local operators placed at points z, w in C× R. The special-
ized normal-ordered product :Y(a, w)Y(b, w) : = Y(a(−1)b, w) is the field
corresponding to the physical operator product of a and b. The remaining
fields Y(a(−m−1)b, w) encode the physical operator product of derivatives
of a with b.

The fields Y(a(m)b, w) for m ≥ 0 have a different interpretation: they
encode the singularities in the physical operator product expansion of the
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first descendant of a with b. Indeed, the singular terms encode the fields
corresponding to a tower of brackets that we define as

(3.4.1) {{a, b}}(n) def
= a(n)b, n ≥ 0

Momentarily we will show that this tower of brackets and the operator
product satisfy relations akin to that of a Poisson algebra. Indeed, these
brackets are the raviolo vertex algebra avatar of the holomorphic-topological
descent brackets of [OY20, CDG23].

Notice that for each n ≥ 0 the bracket {{−,−}}(n) defined in (3.4.1) is of
cohomological degree −1 while the products (−)(−n−1)(−) are of cohomo-
logical degree zero. Let

(3.4.2) a · b def
= a(−1)b.

These operations satisfy the following relations.

3.4.1 Proposition. For each n ≥ 0 the bracket {{−,−}}(n) and product · satisfy
the following relations where a, b, c ∈ V:

(1) (Super commutativity) a · b = (−1)|a||b|b · a.
(2) (Associativity) a · (b · c) = (a · b) · c.
(3) (Graded skew symmetry) {{a, b}}(n) = (−1)|a||b| ∑m≥0

(−1)n+m

m! ∂m{{b, a}}(n+m).
(4) (Derivation) {{a, b · c}}(n) = {{a, b}}(n) · c+(−1)(|a|−1)|b|b · {{a, c}}(n).

Additionally, for n, m ≥ 0 the Jacobi-type identity holds

(3.4.3)
{{a, {{b, c}}(m)}}(n) = (−1)|a|+1 ∑

l≥0

(
m
l

)
{{{{a, b}}(l), c}}(m+n−l)

+ (−1)(|a|+1)(|b|+1){{b, {{a, c}}(n)}}(m)

Proof. Super commutativity and associativity follow from Proposition 2.2.6;
graded skew-symmetry follows from Proposition 3.2.2; the derivation prop-
erty follows from Corollary 2.2.5; the Jacobi-type identity follows from the
commutator of the modes a(n) and b(m) for n, m ≥ 0 established in Proposi-
tion 2.2.2 together with the above identification. �

3.5. Comparison to 1-shifted Poisson vertex algebras. As we have men-
tioned several times, there is another model for the algebraic structure
furnished by local operators in a three-dimensional mixed holomorphic-
topological quantum field theory as established by [OY20]: that of a 1-
shifted Poisson vertex algebra. In this section we compare the notion of
a 1-shifted Poisson vertex algebra to that of a raviolo vertex algebra, find-
ing they are totally equivalent. We first recall the definition of a vertex Lie
algebra, cf. Chapter 16 of [FBZ04].

45



A vertex Lie algebra is the data (L, ∂, Y−) where

• L = ⊕rL
r is a Z-graded vector space.

• ∂ : L → L is an endomorphism of degree 0 (the translation opera-
tor).
• Y− : L→ End(L)⊗K1

dist is a linear map of degree 0.

where Y− maps a vector a ∈ L to a series

Y−(a, z) = ∑
m≥0

Ωn
z a(m)

such that for any v ∈ L we have a(n)v = 0 for n� 0. This data satisfies the
following axioms

(1) For every a ∈ L we have Y−(∂a, z) = ∂zY−(a, z) (translation axiom).
(2) For every a, b ∈ L we have Y−(a, z)b = (−1)|a||b|ez∂Y−(b,−z)a (skew-

symmetry axiom).
(3) For every a, b ∈ L we have

[a(m), Y−(b, w)] = ∑
n≥0

(
m
n

)
wm−nY−(a(n)b, w).

(commutator axiom).

Even though K1
dist, the space of degree one formal raviolo distributions,

appears explicitly this definition of a vertex Lie algebra completely agrees
with the standard one (except for the fact that we are considering a coho-
mologically graded version of a vertex Lie algebra). More commonly, the
expansion of Y− is in positive powers of the variable z−1, but for raviolo
vertex algebras it is more natural to use the variables Ωn

z , n ≥ 0. Also recall
that it is common to organize the commutators of the modes in a vertex Lie
algebra into a λ-bracket, leading to the notion of a Lie conformal algebra, cf.
Section 2.7 [Kac97].

As with vertex Lie algebras, we can extract a vertex Lie algebra from a
raviolo vertex algebra.

3.5.1 Lemma. Let V be a raviolo vertex algebra. The choice Y−(a, z) = Y(a, z)−
gives the data (V[1], ∂, Y−) the structure of a vertex Lie algebra.

Notice that the key difference in obtaining a vertex Lie algebra from a
vertex or raviolo vertex algebra is the cohomological degree shift by one.
This is because K1 is the degree one part of formal functions K on the ravi-
olo.
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Proof. The translation axiom follows from Lemma 3.2.1; the skew-symmetry
axiom follows from the skew-symmetry property established in Proposi-
tion 3.2.2; the commutator axiom follows from mutual locality, cf. Proposi-
tion 2.2.2. �

There is also the other direction: from a vertex Lie algebra one can con-
struct a raviolo vertex algebra as follows. Let L be a vertex Lie algebra.
Define

(3.5.1) Lierav(L)
def
= (L⊗K)/Im (∂⊗ 1 + 1⊗ ∂z) .

For a ∈ L denote by a[n] the image of a⊗ zn in Lierav(L) for n ≥ 0. Similarly,
denote by a[n] the image of a⊗Ω−n−1 in Lierav(L) for n < 0. Note that if
a is of cohomological degree r in L then a[n] is of cohomological degree r
(respectively r + 1) for n ≥ 0 (respectively n < 0). Similarly, we let

(3.5.2) Lierav(L)+
def
= L[[z]]/Im (∂⊗ 1 + 1⊗ ∂z) .

The proof of the following lemma is completely analogous to the ordi-
nary vertex algebra setting, see [FBZ04, Lemma 16.1.7].

3.5.2 Lemma. The graded vector space Lierav(L) is a graded Lie algebra with Lie
bracket defined by

(3.5.3)
[

a[n], b[m]

]
= ∑

k≥0

(
n
k

)
(a(n) · b)[n+m−k],

and Lierav(L)+ ⊂ Lierav(L) is a Lie subalgebra.

Next, define

(3.5.4) Vac(L) def
= U (Lierav(L))⊗U(Lierav(L))+

C.

Here C denotes the one-dimensional trivial representation of Lierav(L)+.
From the reconstruction theorem proved below, Proposition 4.0.1, one can
prove the following result.

3.5.3 Proposition. There is a raviolo vertex algebra structure on Vac(L) such
that

(3.5.5) Y(a[−1]|0〉, z) = ∑
n≥0

a[n]Ω
n + ∑

n<0
a[n]z

−n−1.

Moreover, if V is any raviolo vertex algebra then there is an isomorphism

(3.5.6) Hom(L,V[1]) ' Hom(Vac(L),V)

where on the left hand side we view V[1] as a vertex Lie algebra following Lemma 3.5.1.
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We now define a 1-shifted Poisson vertex algebra, see also [Tam02, OY20].
This combines the notion of a (commutative) vertex algebra and a vertex
Lie algebra in a compatible way; see e.g. Section 16.2 of [FBZ04] for the
analogous definition in the unshifted case.

Definition 3.5.4. A 1-shifted Poisson vertex algebra is the data (V, |0〉, ∂, Y+, Y−),
where (V, |0〉, ∂, Y+) is a commutative vertex algebra, (V[1], ∂, Y−) is a ver-
tex Lie algebra, and for any a ∈ V the modes of Y−(a, z) act by derivations
of the normal-ordered product on V.

3.5.5 Theorem. Let V be a Z-graded vector space. A raviolo vertex algebra struc-
ture on V is equivalent to a 1-shifted Poisson vertex algebra structure on V. These
two structure have the same translation operator ∂ and vacuum vector |0〉. The
state-operator correspondences are related as

Y±(a, z) = Y(a, z)± Y(a, z) = Y+(a, z) + Y−(a, z).

for any a ∈ V.

Proof. Suppose V has the structure of a raviolo vertex algebra with vac-
uum vector |0〉, translation operator ∂, and state-operator correspondence
Y(−, z); we define

(3.5.7) Y±(a, z) def
= Y(a, z)±

Mutual locality of the Y(a, z) implies that Y+(a, z) commutes with Y+(b, w)
for any a, b ∈ V. In particular, (V, |0〉, ∂, Y+) has the structure of a commu-
tative vertex algebra; the vertex algebra axioms follow from their raviolo
analogs. Lemma 3.5.1 implies (V[1], ∂, Y−) has the structure of a vertex Lie
algebra. To see that (V, |0〉, ∂, Y+, Y−) is a 1-shifted Poisson vertex alge-
bra, it remains to check that the modes of Y−(a, z) act as derivations of the
normal-ordered product on (V, |0〉, ∂, Y+), but this follows from Corollary
2.2.5.

We now suppose V has the structure of a 1-shifted Poisson vertex algebra
and define

(3.5.8) Y(a, z) = Y+(a, z) + Y−(a, z)

Note that the commutativity of (V, |0〉, ∂, Y+) implies Y+(a, z) has no terms
proportional to negative powers of z. (Rather, the corresponding endomor-
phisms act as zero.) That this defines a (raviolo) field on V follows from the
fact that (V[1], ∂, Y−) is a vertex Lie algebra.

As the modes of Y−(a, z) act as derivations of the normal-ordered prod-
uct on (V, |0〉, ∂, Y+), we have the following commutator for any a, b ∈ V:

(3.5.9) [a(m), b(−1)] = (a(m)b)(−1)
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where m ≥ 0. Taking commutators with ∂, we find for any l < 0

(3.5.10) [a(m), b(l)] = ∑
n≥max(0,m+l+1)

(
m
n

)
(a(n)b)(m+l−n)

The skew-symmetry axiom of (V, ∂, Y−) applied to Y(b, z)−a, together with
the above commutator of [a(m), b(l)] for m, l ≥ 0 and the commutativity of
the Y+(a, z), implies that the (raviolo) fields Y(a, z) and Y(b, w) are mutu-
ally local for any a, b ∈ V using Proposition 2.2.2.

To verify the translation axiom, it suffices to check [∂, Y−(a, z)] = ∂zY−(a, z).
The translation axiom of a vertex Lie algebra implies (∂a)(m) = −ma(m−1).
Choose b ∈ V, we compute:

(3.5.11)
b =

(
∂(a(m)b)(−2) + a(m)b(−2)

)
|0〉

= −ma(m−1)b(−1)|0 = −ma(m−1)b

whence [∂, Y−(a, z)] = ∂zY−(a, z).

We are left with checking the vacuum axiom. The vacuum axiom of
(V, |0〉, ∂, Y+) implies Y+(|0〉, z) is the unit of the normal-ordered product;
because Y−(a, z) acts a derivation of the normal-ordered product we con-
clude [Y−(a, z), Y+(|0〉, w)] = 0 for any a ∈ V, from which it follows Y−(a, z)|0〉 =
0 for any a. Thus, Y(a, z)|0〉 = Y+(a, z)|0〉 ∈ V[[z]] by the vacuum axiom
of (V, |0〉, ∂, Y+). Finally, to see that Y(|0〉, z) = 1V, it suffices to check
Y−(|0〉, z) = 0, which follows from the skew-symmetry property of (V, ∂, Y−)
together with Y−(a, z)|0〉 = 0:

(3.5.12) Y−(|0〉, z)a = ez∂Y−(a,−z)|0〉 = 0

�

4. EXAMPLES OF RAVIOLO VERTEX ALGEBRAS

We now describe some simple examples of raviolo vertex algebras.

Our last general result is the raviolo analog of the Reconstruction Theo-
rem of vertex algebras, cf. Proposition 3.1 of [FKRW95] or Theorem 4.4.1 of
[FBZ04]. We will find this useful for showing our examples actually furnish
the structure of a raviolo vertex algebra.

4.0.1 Proposition. Let V =
⊕

Vr be a Z-graded vector space, |0〉 a non-zero
vector, ∂ a degree 0 endomorphism of V. Further, let {ai} be a countable ordered
set of vectors in V, with ai ∈ Vri , and suppose we are given homogeneous fields

Ai(z) = ∑
m<0

z−m−1Ai
m + ∑

m≥0
Ωm

z Ai
m
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of degree ri such that the following hold:

1) Ai
−1|0〉 = ai and Ai

m|0〉 = 0 for all i and m ≥ 0
2) ∂|0〉 = 0 and [∂, Ai(z)] = ∂z Ai(z) for all i
3) All fields Ai(z) are mutually local
4) V is spanned by the vectors

Ai1
j1

. . . Ail
jl
|0〉 jk < 0

Then the assignment

Y(Ai1
j1

. . . Ail
jl
|0〉, z)

=
1

(−j1 − 1)! . . . (−jl − 1)!
: ∂
−j1−1
z Ai1 . . . ∂

−jl−1
z Ail :

determines a well-defined raviolo vertex algebra structure on V. Moreover, this is
the unique raviolo vertex algebra structure on V satisfying 1)− 4) and such that
Y(ai, z) = Ai(z).

If V has a 1
L Z-grading such that |0〉 has weight 0, ∂ increases weight by 1,

the vectors {ai} are homogeneous, with ai of weight si, and the mode Ai
m

of Ai(z) has weight si −m− 1, then this grading induces a spin grading for
V. Similarly, if V has an additional Z/2 grading so that ai is a boson (resp.
fermion) and the modes Ai

m are bosonic (resp. fermionic) for m < 0 and
fermionic (resp. bosonic) for m ≥ 0 then this induces a super grading on V.

If S is a graded commutative unital C-algebra, then we can replace Z-
graded vector space by graded S-module, add as an S-module after the word
spanned in condition 4), require ∂ is an S-module morphism, and require
Ai are homogeneous fields over S, then the following proof yields a raviolo
vertex algebra over S.

Proof. The proof is nearly identical to the proof of Theorem 4.4.5 of [FBZ04],
but we shall repeat it for completeness.

First, note that property 3) together with Lemma 2.2.3 and Lemma 2.2.4
implies that all of the fields

(4.0.1)
1

(−j1 − 1)! . . . (−jl − 1)!
: ∂
−j1−1
z Ai1 . . . ∂

−jl−1
z Ail :

are mutually local.

Second, ∂|0〉 = 0 is a consequence of 2) and Y(|0〉, z) = 1V is a conse-
quence of 4). We can further show that applying the above field to |0〉 gives
an element of V[[z]] with Ai1

j1
. . . Ail

jl
|0〉 as the constant term by induction on
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l. The case l = 1 is provided by property 1). The general case follows by
using

(4.0.2) : ∂−j−1Ai(z)A(z) : = ∂−j−1Ai(z)+A(z) + (−1)|A
i ||A|A(z)Ai(z)−

to see that : ∂−j−1Ai(z)A(z) :|0〉 belongs to V[[z]] and has a constant term of
the desired form: the second term annihilates |0〉 by property 1), and the
inductive hypothesis implies ∂−j−1Ai(z)+A(z)|0〉 belongs to V[[z]] and such
that ∂−j−1Ai(z)+A(z)|0〉|z=0 = (−j− 1)!Ai

j A(z)|0〉|z=0.

Third, repeated applications of property 2) implies [∂, ∂
−j−1
z Ai(z)] =

∂
−j
z Ai(z) for any j < 0. Induction on l then shows [∂, A(z)] = ∂z A(z) for

A(z) any field of the above form: the residue formula in Lemma 2.1.4 and
the inductive hypothesis then implies

(4.0.3)
[∂, : ∂

−j−1
z Ai(z)A(z) :] = : ∂

−j
z Ai(z)A(z) : + : ∂

−j−1
z Ai(z)∂z A(z) :

= ∂z: ∂
−j−1
z Ai(z)A(z) :

where we use Lemma 2.1.5 in the second equality.

Now choose a basis amongst the Ai1
j1

. . . Ail
jl
|0〉 containing |0〉 and define

the state-operator correspondence Y(−, z) on V by the above formula ex-
tended to V linearly. The above shows that (V, |0〉, ∂, Y) gives V the struc-
ture of a raviolo vertex algebra: the locality axiom is follows from the first
point; the vacuum axiom follows from the second point; and the translation
axiom follows from the third point.

We now show that the state-operator correspondence Y(−, z) does not
depend on the choice of basis. Suppose Y1(−, z) and Y2(−, z) are the state-
operator correspondences for two different choices. Lemma 2.2.4 and Propo-
sition 2.2.3 imply Y1(a, z) and Y2(b, z) are mutually local for all a, b ∈ V. For
fixed a, the vertex algebra axioms imply

(4.0.4) Y1(a, z)|0〉|z=0 = a = Y2(a, z)|0〉|z=0

and the translation axioms imply

(4.0.5) ∂zY1(a, z)|0〉 = ∂Y1(a, z)|0〉 ∂zY2(a, z)|0〉 = ∂Y2(a, z)|0〉
We see that these fields agree Y1(a, z) = Y2(a, z) due to Proposition 3.1.1.

Finally, to the asserted uniqueness of the vertex algebra structure is pro-
vided by the fact that the above formula for the state-operator correspon-
dence is uniquely determined by Y(ai, z) = Ai(z), cf. Corollary 3.3.2. �

This reconstruction result enables a generator-and-relations style approach
to raviolo vertex algebras. We formalize these notions with the following
definitions.
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Definition 4.0.2. Let V be a raviolo vertex algebra. A countable ordered
set of (homogeneous) vectors {ai} are (homogeneous) generators of V if V
is spanned by monomials of the form ai1

(j1)
. . . ail

(jl)
|0〉. The generators {ai}

are said to be strong generators if V is spanned by monomials of the form
ai1
(j1)

. . . ail
(jl)
|0〉 with ji < 0.

If V is a raviolo vertex algebra over S, we say that a set of (homoge-
neous) elements {bi} are generators over S if V is spanned as an S-module
by monomials of the form bi1

(j1)
. . . bil

(jl)
|0〉. The generators {bi} are said to be

strong generators over S if V is spanned as an S-module by monomials of
the form bi1

(j1)
. . . bil

(jl)
|0〉 with ji < 0.

With these definitions, we see that the vectors {ai} appearing in the for-
mulation of Proposition 4.0.1 are strong generators of V. If V is a raviolo
vertex algebra over S and {bi} are strong generators over S, they need not
be strong generators of V merely as a raviolo vertex algebra.

4.1. Free field algebras. Our first example will be the simplest example of
a free field algebra, roughly analogous to the complex fermion (a.k.a. bc
ghost) or symplectic boson (a.k.a. βγ ghost) vertex algebras.

We start by considering the abelian Lie algebra F := K⊕K(1)[1] which is
concentrated in cohomological degrees −1, 0, 1. The residue pairing gives
us a natural central extension F̂:

(4.1.1) 0→ CK → F̂ → F → 0

For α ∈ K and β ∈ K(1)[1] the commutator in the central extension is given
by

(4.1.2) [α, β] = KResαβ = −[β, α]

where K is the (degree 0, bosonic) central generator. Notice that the co-
homological shift in β is necessary to ensure K is degree 0. There is an
auxiliary grading, which we will refer to as flavor charge in this section,
induced by declaring that α has flavor charge 1 and β has flavor charge−1.
This forces K to have flavor charge 0.

The Lie algebra F̂ has a basis given by the central generator K together
with Yn = un and ψn = Ωn

u from K as well as χn = undu and Xn = duΩn
u

from K(1)[1], where n ∈ Z≥0. The gradings are as follows:

• The generator K has cohomological degree zero and spin zero.
• The generator Yn has cohomological degree zero and spin −n.
• The generator ψn has cohomological degree 1 and spin n + 1.
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• The generator Xn has cohomological degree zero and spin n.
• The generator χn has cohomological degree −1 and spin −n− 1.

The generators Xn, χn have flavor charge 1 while the generators ψn, Yn have
flavor charge −1. These generators have the following commutators:

(4.1.3) [Yn, Xm] = δn,mK = −[Xm, Yn] [ψn, χm] = δn,mK = [χn, ψm]

The action of −∂u on K,K(1) leads to a derivation ∂ on F̂: it annihilates the
central generator ∂K = 0, its action on Yn, χn is given by

(4.1.4) ∂Yn = −nYn−1, ∂χn = −nχn−1

and its action on Xn, ψn is given by

(4.1.5) ∂Xn = (n + 1)Xn+1 ∂ψn = (n + 1)ψn+1.

We now define a particular ‘vacuum’ type module for F̂. The centrally-
extended algebra F̂ has a “positive” subalgebra F̂≥0 generated by Yn, χn,
and K for n ≥ 0. For k ∈ C we then consider the representation Ck of F̂≥0
where Yn, χn act as zero and K acts as multiplication by k. The vacuum
module is defined by induction

(4.1.6) FCk = UF̂⊗UF̂≥0
Ck

where Ug denotes the universal enveloping algebra of a Lie algebra g.

We are mostly interested in situations with k 6= 0; in this case we can
rescale the generators to set k = 1 and we will always assume this has
been done. Correspondingly, K acts as the identity matrix 1FC1 and we will
omit k, K from the notation entirely. The proof that there is a raviolo vertex
algebra structure for k = 0 is exactly the same as k 6= 0. Yet more generally,
we could replace Ck by C[K] and consider the C[K]-module

(4.1.7) FCuniv = UF̂⊗UF̂≥0
C[K]

The following proof shows that FCuniv has the structure of a raviolo ver-
tex algebra over the polynomial ring C[K] strongly generated over C[K] by
X(z) and ψ(z). The raviolo vertex algebra FCk is identified with the quo-
tient of FCuniv associated to the maximal ideal (K− k) of C[K].

4.1.1 Proposition. FC is a raviolo vertex algebra with spin grading that is strongly
generated by the fields

X(z) = ∑
n≥0

znXn + Ωn
z χn , ψ(z) = ∑

n≥0
znψn + Ωn

z Yn.

In terms of our usual notation, we have that X(n) = X−n−1 for n < 0 and
X(n) = χn for n ≥ 0 and similarly for ψ(n).
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Proof. The vacuum vector |0〉 will be identified with the image of 1⊗ 1 ∈
UF̂ ⊗ C1 in the quotient FC and the translation operator ∂ on FC will be
induced from the one defined on F̂ together with ∂1 = 0. To complete the
proof, we now show that the vectors X0|0〉, ψ0|0〉 and the fields X(z), ψ(z),
together with the vacuum vector |0〉 and the translation operator ∂, satisfy
the conditions of Proposition 4.0.1.

The fact that the above “spin” induces a spin grading on FC is obvious.
Conditions 2) and 4) hold by construction. Condition 1) follows from the
fact that Yn and χn annihilate the vacuum vector. To complete the proof we
verify mutual locality of the generators by computing their commutators:

(4.1.8)
[X(z), X(w)] = 0 [ψ(z), X(w)] = ∆(z, w)1FC

[X(z), ψ(w)] = ∆(z, w)1FC [ψ(z), ψ(w)] = 0

�

We see that the singular terms in the OPEs of these generating fields take
the following form:

(4.1.9)
X(z)X(w) ∼ 0 ψ(z)X(w) ∼ Ω0

z−w

X(z)ψ(w) ∼ Ω0
z−w ψ(z)ψ(w) ∼ 0

where we have suppressed the factors of 1FC. In particular, X and ψ have
regular OPEs with themselves and a non-trivial singular term in the OPE
with one another. This example arises as the raviolo vertex algebra un-
derlying the local operators in the minimal twist of a collection of a free
three-dimensional N = 2 supersymmetric theory called the theory of a ‘free
chiral multiplet’, cf. Section 3.2 of [OY20].

Let’s consider the two-variable character of FCk defined by

(4.1.10) chFCk(q, y) def
= ∑

r,s∈Z
grdim(FC(s),r

k )qsyr

where FC(s),r
k ⊂ FCk is spanned by the elements of spin s and flavor charge r.

Then

(4.1.11) chFCk(q, y) =
(qy−1; q)∞

(y; q)∞

where the infinite Pochammer symbol is the formal series (y; q)∞ = ∏n≥0(1−
yqn). This character reproduces the superconformnal index of the free three-
dimensional chiral multiplet, as expected.

There are variants of this example obtained by changing the spin that the
generators carry. For this general case, we can define a central extension
of the abelian graded Lie algebra F(s) = K(−s) ⊕ K(s+1)[1] which can be
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used to define the raviolo vertex algebra FC(s)
univ over C[K] and its quotients

where X(z) has spin s and ψ(z) has spin 1− s.

Another variant changes the cohomological degrees of the generators at
the cost of introducing a super grading. We give the field X(z) an intrinsic
cohomological degree r as well as the super grading (−1)r to ensure it is
always a boson; the field ψ(z) is then a fermion of cohomological degree
1 − r. We will denote the resulting raviolo vertex algebra over C[K] by
FCr,univ. We instead follow the above construction with F replaced by Fr :=
Πr(K[r]⊕K(1)[1− r]

)
.

Finally, we note that we can combine these two variants to form the ravi-
olo vertex algebra FC(s)

r,univ strongly generated over C[K] by the bosonic field
X(z) of cohomological degree r and spin s and the fermionic field ψ(z) of
cohomological degree 1− r and spin 1− s. We denote its quotient at the
ideal (K− 1) by FC(s)

r .

4.2. Raviolo Heisenberg algebra. Our second example is another free field
algebra, roughly analogous to the Heisenberg and symplectic fermion ver-
tex algebras.

Consider the abelian graded Lie algebra H = K⊕K[1] which is concen-
trated in degrees −1, 0, 1. The residue gives a 2-cocycle on this Lie algebra

(4.2.1) (α, β) 7→ Resu duα∂uβ

where α ∈ K, β ∈ K[1] which, in turn, determines a central extension

(4.2.2) 0→ CK → Ĥ→ H→ 0.

Notice that this differs from the previous example by a derivative. We can
assign an auxiliary grading to this graded Lie algebra which we again call
flavor charge5, by declaring that α has charge +1 and β has charge −1.

The Lie algebra Ĥ has a basis given by the central generator K together
with cn = un and νn = Ωn

u from K as well as ϕn = un and bn = Ωn
u from

K[1], where n ∈ Z≥0. As before the action of −∂u defines a derivation ∂
that annihilates on K, acts on K as

(4.2.3) ∂νn = (n + 1)νn+1 ∂cn = −ncn−1

and on K[1] as

(4.2.4) ∂bn = (n + 1)bn+1 ∂ϕn = −nϕn−1

5For the reader familiar with the appearance of this system in the context of three-
dimensional supersymmetric gauge theory, we point out that this terminology is mislead-
ing, but we will use it only in this section.
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The gradings are as follows:

• The generator K has cohomological degree zero and spin zero.
• The generator cn has cohomological degree zero and spin −n.
• The generator νn has cohomological degree 1 and spin n + 1.
• The generator bn has cohomological degree zero and spin n + 1.
• The generator ϕn has cohomological degree −1 and spin −n.

The non-vanishing commutators of these generators are

(4.2.5) [cn, bm] = −nδn,m+1K = −[bm, cn]

and

(4.2.6) [νn, ϕm] = mδn+1,mK = [ϕm, νn]

Note that the generators c0 and ϕ0 are central in Ĥ.

The graded Lie algebra Ĥ has a positive subalgebra Ĥ≥0 = K0⊕K0[1]⊕
CK. For k ∈ C define the Ĥ≥0-module Ck where K0,K0[1] act trivially and
K acts by k. Define the induced Ĥ-module

(4.2.7) Hk
def
= UĤ⊗UĤ≥0

Ck.

For k 6= 0 we can rescale generators to set k = 1, we denote H = H1. As in
the case of FC, we could even consider the C[K]-module

(4.2.8) Huniv
def
= UĤ⊗UĤ≥0

C[K].

and the following proof leads us to a raviolo vertex algebra over C[K]
strongly generated over C[K] by two fields b(z) and ν(z). The raviolo ver-
tex algebra Hk is then the quotient of Huniv associated to the ideal (K − k)
of C[K].

4.2.1 Proposition. H is a raviolo vertex algebra with spin grading that is strongly
generated by the fields

b(z) = ∑
n≥0

znbn + Ωn
z ϕn , ν(z) = ∑

n≥0
znνn + Ωn

z cn.

Proof. The vacuum vector |0〉 is the image of 1⊗ 1 ∈ UĤ⊗ C1 in the quo-
tient H and the translation operator ∂ is induced from the one defined on Ĥ

together with ∂1 = 0. We associate the vectors b0|0〉 and ν0|0〉 to the fields
b(z), ν(z). To complete the proof, it suffices to show this data satisfies the
conditions of Proposition 4.0.1. As this is nearly identical to the previous
example, we just verify mutual locality of the generators. Computing their
commutators, we find

(4.2.9)
[b(z), b(w)] = 0 [ν(z), b(w)] = −∂w∆(z− w)

[b(z), ν(w)] = ∂w∆(z− w) [ν(z), ν(w)] = 0
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so that these generators are indeed mutually local. �

We see that the singular terms in the OPEs of these generating fields take
the following form:

(4.2.10)
b(z)b(w) ∼ 0 ν(z)b(w) ∼ −Ω1

z−w

b(z)ν(w) ∼ Ω1
z−w ν(z)ν(w) ∼ 0.

In the universal raviolo Heisenberg algebra Huniv, the OPEs replace Ω1
z−w

by Ω1
z−wK.

Let’s consider the two-variable character of FCk defined by

(4.2.11) chH(q, y) def
= ∑

r,s∈Z
grdim(H(s),r)qsyr

where H(s),r ⊂ H is spanned by the elements of spin s and flavor charge r.
Then

(4.2.12) chH(q, y) =
(y−1q; q)∞

(yq; q)∞
.

Recall the graded Lie algebra F̂ underlying the free chiral raviolo vertex
algebra FC from the previous subsection. Notice that there is a map of
graded Lie algebras

(4.2.13) Ĥ→ F̂

induced by sending cn 7→ Yn, νn 7→ ψn, ϕn 7→ −∂χn, bn 7→ −∂Xn, and
K 7→ K. This induces a morphism Huniv → FCuniv of raviolo vertex algebras
over C[K] and hence morphisms Hk → FCk of the quotients that send ν(z)
to ψ(z) and b(z) to −∂zX(z). We also note that there is a map of graded Lie
algebras Ĥ → F̂(1) and hence a morphism Huniv → FC(1)

univ corresponding
to the identifications ν(z) = ∂zψ(z) and b(z) = X(z).

There are variants of this example obtained by changing the spin that the
generators carry. For this general case, we can define a central extension of
the abelian graded Lie algebra K(−s) ⊕K(s)[1] which can be used to define
the raviolo vertex algebra H(s)

univ over C[K] where b(z) has spin 1 + s and
ν(z) has spin 1− s. It is also possible to give the generators an intrinsic co-
homological grading at the cost of introducing a super grading: b(z) would
be a boson of cohomological degree r and ν(z) a fermion of degree 1− r.

4.3. Raviolo current algebra. The next example we consider is the raviolo
analog of an affine vertex algebra. We choose a complex Lie superalgebra
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g and equip it with an even, symmetric, g-invariant bilinear form h. With
this data, we can construct a degree +1 one-dimensional central extension

(4.3.1) 0→ Cκ[−1]→ ĝh → g〈〈u〉〉 → 0

of the graded Lie algebra g〈〈u〉〉 = g⊗Ku defined by the formula

(4.3.2) [A⊗ α, B⊗ β] = [A, B]⊗ αβ− κh(A, B)Resu duα∂uβ

where α, β ∈ K and κ is the degree +1, central term. If g has multiple
factors, one could allow for multiple degree 1 generators. For simplicity, we
will focus on the case where there is only one. This central extension is the
raviolo analog of the affine Kac–Moody central extension of g((z)). Notice
that the cohomological shift of the central term arises from the residues.
We refer to ĝh as the raviolo Kac-Moody algebra, see [FHK19] for related
algebras.

If we choose a homogeneous basis {Ta} of g, with h(Ta, Tb) = hab and
commutators [Ta, Tb] = f c

abTc, then we have the following basis for ĝh:

• The central element κ is of cohomlogical degree +1 and spin 0.
• For each n ≥ 0 we have the cohomological degree zero generator

Ja,n = Ta ⊗ un which has spin −n.
• For each n ≥ 0 we have the cohomological degree +1 generator

µa,n = Ta ⊗Ωn
u which has spin n + 1.

The generator Ja,n (resp. µa,n) is bosonic (resp. fermionic) if Ta ∈ g+ and
fermionic (resp. bosonic) if Ta ∈ g−; the generator κ is always fermionic.
These generators have the following commutators:

(4.3.3)

[Ja,m, Jb,n] = f c
ab Jc,m+n [µa,m, µb,n] = 0

[Ja,m, µb,n] =


0 n + 1 < m
mhabκ n + 1 = m
f c
abµc,n−m n ≥ m

The action of −∂u on K implies the following action of the translation op-
erator on the generators:

(4.3.4) ∂µa,n = (n + 1)µa,n+1 ∂Ja,n = −nJa,n−1 ∂κ = 0

Next, we define the analog of the vacuum module associated to the ravi-
olo Kac-Moody algebra. As we will see, this is most naturally a module
over C[κ] = C ⊕ Cκ[−1]. We view ĝ≥0 = g[[u]] ⊕ Cκ[−1] as the positive
subalgebra of ĝh and define the vacuum module by

(4.3.5) V[g, h]univ = Uĝh ⊗Uĝ≥0 C[κ].

where g[[u]] acts trivially on C[κ] and κ by multiplication by κ. As a C[κ]-
module, V[g, h]univ can be identified with the space of C[κ]-linear polyno-
mials in the variables µa,n. The vacuum vector |0〉will be the image of 1⊗ 1
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in the quotient. The translation operator acts as above and gets extended
to V[g, h]univ by the Leibniz rule.

The state-operator correspondence is directly analogous to the previous
case, so we do not spell it out in detail. Instead, we describe the generating
fields. The linear states µa,0|0〉 will correspond to the fields

(4.3.6) µa(z) = ∑
n≥0

znµa,n + Ωn
z Ja,n

It is a simple task to verify that the above data satisfies the conditions of
Proposition 4.0.1. For example, the commutators of the fields µa(z) are
given by

(4.3.7) [µa(z), µb(w)] = ∂w∆(z, w)habκ + ∆(z, w) f c
abµc(w)

which establishes their mutual locality. We see that the singular terms in
the OPEs of the generating fields are given by

(4.3.8) µa(z)µb(w) ∼ Ω1
z−whabκ + Ω0

z−w f c
abµc(w)

4.3.1 Proposition. V[g, h]univ is a raviolo vertex algebra over C[κ] with spin
grading and super grading that is strongly generated over C[κ] by the fields µa(z).

We note that V[g, h]univ, viewed as merely a raviolo vertex algebra, isn’t
strongly generated by the fields µa(z) because states proportional to κ can-
not be realized by acting on the vacuum with the µa,n. Instead, V[g, h]univ is
strongly generated by the µa(z) and the constant field κ = Y(κ|0〉, z).

The only non-trivial ideal of C[κ] is the (maximal) ideal (κ) and the re-
sulting quotient is given by

(4.3.9) V[g] = Uĝh ⊗Uĝ≥0 C

where C is the trivial 1-dimensional representation of ĝ≥0. We note that this
quotient is independent of the bilinear form h used to define the central
extension ĝh. This raviolo vertex algebra is strongly generated by fields
µa(z) with OPEs

(4.3.10) µa(z)µb(w) ∼ Ω0
z−w f c

abµc(w)

With the notion of a raviolo current algebra, we can formulate a notion
of raviolo vertex algebras with symmetries. This should capture when a
raviolo vertex algebra V admits a non-trivial morphism from V[g, h]univ.

Definition 4.3.2. Let V be a raviolo vertex algebra over C[κ]. We say V

has a Hamiltonian g symmetry at level h if it equipped with a non-trivial
morphism V[g, h]univ → V of raviolo vertex algebras over C[κ].

If the level h vanishes or if V is a trivial C[κ] module, the morphism
V[g, h]univ → V factors through the quotient V[g] → V. By an abuse of
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notation, we often denote by µa(z) the fields on V corresponding to the
images of µa,0|0〉 in V. For ζ = ζaTa ∈ g we denote µζ(z) = ζaµa(z). The
modes µζ,(0) give V the structure of a representation for g via raviolo vertex
algebra derivations. As a representation we can consider its character.

As usual, we denote by q the generator for the U(1) action determining
the spin grading. Let W be the Weyl group of G and T ⊂ G a Cartan. For
any weight w of G let sw : T → C× be the corresponding one-dimensional
T-representation. In particular, for a root α we have the representation sα.
If we choose generators {si}rk(g)

i=1 for the Cartan T then sα = ∏
rk(g)
i=1 sαi

i . The
character of a raviolo vertex algebra with a g symmetry is defined as the
graded dimension with respect to both the spin grading and the grading
determined by the Cartan of g. For the raviolo Kac–Moody algebra V[g]
one has

(4.3.11) chV[g](q, {si}) = ∏
α∈rt(g)

(qsα; q)∞

where rt(g) is the set of roots of g.

Definition 4.3.3. Let V be a raviolo vertex algebra with a Hamiltonian g

symmetry at level h (possibly zero). A vector a ∈ V(s) is called a g primary
state if for every ζ ∈ g

µζ,(n+1)a = 0 , n > 0

The corresponding field Y(a, z) is called a g primary field.

The primary constraint on a implies the follow OPE:

(4.3.12) µζ(z)Y(a, w) ∼ Ω0
z−wY(ζ · a, w)

where ζ · a = µζ,(0)a.

From the perspective of the three-dimensional QFT, the operators µa,(−1)|0〉
giving rise to the fields µa(z) generate a g[[z]] symmetry of the theory via the
descent brackets {{µa,−}}(n) ↔ Ja,n. From this perspective, κVh has a clear
meaning. If κVh is non-trivial, this g[[z]] symmetry suffers from an anomaly:
µa and its derivatives generate the g[[z]] symmetry but do not transform as
expected, i.e. they are not primary operators transforming in the coadjoint
representation g∗.

With g primary fields in hand, the following useful property of their
normal-ordered product is an immediate consequence of Corollary 2.2.5.

4.3.4 Proposition. Let Y(a1, z), Y(a2, w) be g primary fields for a Hamiltonian g
symmetry transforming in representations R1 and R2, then their normal-ordered
product :Y(a1, z)Y(a2, z) : is a primary field transforming in the representation
R1 ⊗ R2.
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This behavior is quite different from the case of vertex algebras, where
the normal-ordered product of primaries need not be a primary. For ex-
ample, in the VOA of a free, complex fermion ψ(z)χ(w) ∼ (z− w)−1 the
current J = : ψχ : is not a primary for itself due to the anomaly.

We note that the raviolo vertex algebra of N free fields has a Hamiltonian
gl(N) symmetry:

4.3.5 Proposition. FC⊗N has a Hamiltonian gl(N) symmetry at level 0 gener-
ated by : ψjXi :. Moreover, Xi and ψi are primaries, transforming in the standard
representation CN and its dual (CN)∗, respectively.

This follows from an explicit computation that we do not show here.
There is a Hamiltonian g symmetry (at level 0) for any g ⊆ gl(N). We
also note that the raviolo Heisenberg algebra H has a Hamiltonian gl(1)
symmetry:

4.3.6 Proposition. H has a Hamiltonian gl(1) symmetry at level 0 generated by
ν(z). The field b(z) is not a primary.

4.4. Conformal raviolo algebras. The final basic example we describe is
the raviolo vertex algebra analog of the Virasoro vertex algebra. As with the
raviolo current algebra studied in the previous section, the raviolo analog
of the central charge ξ will have degree 1. We will denote the resulting
raviolo vertex algebra over C[ξ] = C⊕ Cξ[−1] by Viruniv.

Geometrically, the Virasoro algebra is a central extension of the Lie alge-
bra of vector field s on the punctured disk. In the raviolo context, the correct
Lie algebra to start with is the Lie algebra of vector fields on C× R− {0}
which are compatible with the THF structure. In Section 1.2 we denoted
a derived algebraic model for this by A(−1) and its cohomology by K

(−1)
poly .

We denote its completed version by K(−1). The Lie bracket of vector fields
endows A(−1) with the structure of a dg Lie algebra and its cohomology
K(−1) with the structure of a graded Lie algebra.

The degree zero part of the graded Lie algebra K(−1) can be identified
with C[[u]]∂u; we will denote generators by Gm = −um∂u, for m ≥ 0. In
degree one there are expressions of the form Γn = Ωn∂u, for n ≥ 0. The
spin gradings are such that Gm is of spin 1−m and Γn is of spin n + 2. The
bracket in K(−1) is

(4.4.1)

[Gm, Gn] = (m− n)Gm+n−1 [Γm, Γn] = 0

[Gm, Γn] =

{
0 n + 1 < m
(m + n + 1)Γn−m+1 n + 1 ≥ m
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There is a shifted central extension of K(−1) defined by the following
cocycle

(4.4.2) ( f ∂u, g∂u) 7→ − 1
12 ξ Resu du f ∂3

ug.

Explicitly, this does not change the [Gm, Gn], [Γm, Γn] brackets, but modifies
the last bracket in (4.4.1) to

(4.4.3) [Gm, Γn] =


0 n + 3 < m
m(m−1)(m−2)

12 ξ n + 3 = m
0 n + 2 = m
(m + n + 1)Γn−m+1 n + 1 ≥ m

where we have introduced the degree +1, spin zero central generator ξ. We
call this the raviolo Virasoro algebra Vir.

We can build a raviolo vertex algebra over C[ξ] via induction over the
positive subalgebra Vir≥0 = C[[u]]∂u ⊕ Cξ[−1] as before:

(4.4.4) Viruniv = UVir⊗UVir≥0 C[ξ]

To avoid repetition, we note that the vacuum vector is again the image of
1⊗ 1 ∈ UVir ⊗ C[ξ] in the quotient and just describe the generating field
Γ. This is a field of cohomological degree 1 and spin 2 with the following
OPE with itself:

(4.4.5) Γ(z)Γ(w) ∼ Ω3
z−w(ξ/2) + Ω1

z−w2Γ(w) + Ω0
z−w∂wΓ

This is the field corresponding to the image of Γ0 ⊗ 1 ∈ UVir⊗ C[ξ] in the
quotient.

4.4.1 Proposition. Viruniv is a raviolo vertex algebra over C[ξ] with spin grading
that is strongly generated over C[ξ] by the field Γ(z).

The quotient raviolo vertex algebra Vir associated to the maximal ideal
(ξ) of C[ξ] has underlying vector space

(4.4.6) Vir = UVir⊗UVir≥0 C.

It also has a spin grading and is strongly generated by a field Γ(z) whose
OPE with itself is

(4.4.7) Γ(z)Γ(w) ∼ Ω1
z−w2Γ(w) + Ω0

z−w∂wΓ

With respect to this grading, the character of the raviolo vertex algebra Vir
is

(4.4.8) chVir(q) = (q2; q)∞.

Definition 4.4.2. Let V be a raviolo vertex algebra over C[ξ] with spin grad-
ing. V is called conformal (of central charge ξV), if we are given a non-
zero conformal vector γ ∈ V1,(2) such that the modes of the stress tensor

62



Γ(z) = Y(γ, z) satisfy the relations of the raviolo Virasoro algebra with ξ
acting by ξV, and in addition we have G0 = ∂ and G1|V(s) = s1V(s) .

As described in Section 1.1 of [CDG23], it is expected that the algebra of
local operators in the holomorphic-topological twist of any three-dimensional
N = 2 supersymmetric theory (with a U(1)R R-symmetry) has a “higher
stress tensor” Γ (that they denote G) so that the descent bracket {{Γ,−}}(0)
generates z-translations, i.e.

(4.4.9) {{Γ, O}}(0) = ∂zO.

The higher order brackets {{Γ,−}}(n) naturally realize the remaining holo-
morphic vector fields zn∂z and so we are lead to the expectation that the
algebra of local operators in the twist of such a theory has the structure of
a (possibly dg) conformal raviolo vertex algebra.

Definition 4.4.3. Let V be a conformal raviolo vertex algebra. A vector
a ∈ V(s) is called a conformal primary (of spin s) if

Gn+1a = 0 , n > 0

The corresponding field a(z) = Y(a, z) is called a conformal primary field.

We see that the OPE of the stress tensor Γ with a conformal primary field
a(z) of spin s takes the following form:

(4.4.10) Γ(z)a(w) ∼ sΩ1
z−wa(w) + Ω0

z−w∂wa(w)

As we saw with Hamiltonian g symmetries, a non-vanishing ξV implies
the action of holomorphic coordinate transformations is anomalous, i.e. Γ
isn’t itself a conformal primary (of spin 2). This is directly analogous to
the setting in vertex algebras, where the central charge accounts for a con-
formal anomaly of the two-dimensional theory, cf. e.g. Section 5.4.2 of
[DFMS97].

As with the above current algebra, Lemma 2.2.5 implies the following
useful property of the normal-ordered product of conformal primaries:

4.4.4 Proposition. Let a1, a2 be conformal primaries of spins s1, s2, then their
normal-ordered product : a1a2 : is a conformal primary of spin s1 + s2.

The following two propositions are straight-forward computations:

4.4.5 Proposition. The raviolo vertex algebra FC(s) is conformal with vanishing
central charge for any choice of spin s for the boson X; the stress tensor is given by

(4.4.11) Γ = (1− s): ψ∂zX :− s: X∂zψ : .

Moreover, X and ψ are conformal primaries.
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4.4.6 Proposition. The raviolo Heisenberg vertex algebra is conformal with van-
ishing central charge; the stress tensor is given by

(4.4.12) Γ = −: bν : .

Moreover, b and ν are conformal primaries.

Suppose V is a raviolo vertex algebra over C[κ, ξ] that is conformal with
central charge ξV and stress tensor Γ(z) that also has a Hamiltonian gl(1)
symmetry at level h ∈ C generated by a field µ(z) = Y(µ(−1)|0〉, z). If
we further assume µ is a conformal primary, then shifting the stress tensor
Γ → Γ̃ = Γ− ∂zµ defines a new stress tensor of central charge ξV − h

12 κV.
If O is simultaneously a conformal primary for Γ of spin s and a primary
for this abelian current of weight q then it will be a conformal primary of Γ̃
of spin s + q. Thus, if we simultaneously modify the spin grading on V by
weights for µ(0), we get another conformal structure on the same raviolo
vertex algebra. For example, we can realize FC(s) from FC in this way.

Note that neither V[g, h]univ nor the quotient V[g] is conformal by itself.
This is particularly clear in the abelian case: the field µ has degree 1 and
therefore : µ2 : = 0. The only local operator with degree 1 and spin 2 is ∂zµ,
but the OPE of ∂zµ with itself doesn’t match that of a stress tensor. This
result is the raviolo analog of the situation in vertex algebras where the
Sugawara construction fails in the universal affine vertex algebra over C[k]
and at critical level k = −hg, where hg is the dual Coexeter number for g,
as we cannot invert k + hg in either case. In the context of raviolo vertex
algebras, there are no non-critical levels.

4.5. Nilpotent Deformations. A particularly important construction when
describing the raviolo vertex algebras of local operators in three-dimensional
holomorphic-topological quantum field theory is the possibility of defor-
mations coming from holomorphic-topological descent. For the connection
between deformations of ordinary vertex algebras and two-dimensional
conformal field theory we refer to [Li23].

For any (bosonic) local operator O of cohomological degree 2 and spin
1, we can consider deforming the action by the term

∫
C×R O(2), where O(2)

is the second descendant of O; at the level of local operators, this should
introduce a differential given by taking (or deform the existing differential
by adding) the descent bracket with O, cf. the discussion in Section 3.4 of
[CDG23].

The requirement that O has spin 1 ensures this integral is (twisted) Lorentz
invariant or, equivalently, that {{O,−}}(0) has spin 0; the requirement that
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O has cohomological degree 2 ensures
∫

C×R O(2) is degree 0 or, equiva-
lently, that {{O,−}}(0) has degree 1; finally, O must be bosonic to ensure
the action is bosonic or, equivalently, that the {{O,−}}(0) is a fermionic
derivation. Note that it is not sensible to consider arbitrary O of cohomo-
logical degree 2 and spin 1. For this deformation to define a differential, it
must also square to zero6 and hence {{O, O}}(0) = 0.

We now suppose V is a raviolo vertex algebra. Choose a non-zero ele-
ment W ∈ V2 of cohomological degree 2. It is immediate that DW = W(0)
defines a fermionic derivation of V with cohomological degree 1, cf. Corol-
lary 3.3.3. If, moreover, DW

2 = 0 then we see that DW gives V the structure
of a dg raviolo vertex algebra. In terms of the OPE of W with itself, we see
that DW

2 = 0 if and only if the coefficient of Ω0
z−wΩ0

w in the OPE W(z)W(w)
vanishes. We will require the slightly stronger constraint: we require that
the coefficient of Ω0

z−w in the OPE W(z)W(w) is a total derivative, i.e. it
belongs to the image of ∂w.7

Definition 4.5.1. An element W ∈ V2 is called a superpotential for V if
W(0)W(−1)|0〉 belongs to the image of ∂. We use the notation (V, W), calling
the pair a raviolo vertex algebra with superpotential.

If V has a spin grading, we require the superpotential W(z) has spin 1 so
that the derivation DW has spin 0. Additionally, if V has a super grading,
we require W(z) is even and hence bosonic; the derivation DW is thus even
and fermionic.

The above analysis can be summarized as the following lemma.

4.5.2 Lemma. Let (V, W) be a raviolo vertex algebra with superpotential. The
map

DW : a 7→W(0)a

gives V the structure of a dg raviolo vertex algebra.

An important class of examples comes from conformal raviolo vertex
algebras equipped with a superpotential W that is a conformal primary.

Definition 4.5.3. A raviolo vertex algebra with superpotential (V, W) is
called conformal if V is conformal and W is a conformal primary.

6More generally, if there is already a differential then this O must solve a suitable
Maurer-Cartan equation.

7This stronger constraint is physically quite natural. For the twisted theories consid-
ered in [CDG23], it is shown in Section 3.4 thereof that the descent bracket {{−,−}}(0)
is related to the BV bracket. Our constraint translates to requiring that BV bracket of the
Lagrangian density with itself is a total derivative, whence the action solves the classical
master equation.
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4.5.4 Corollary. Let (V, W) be a conformal raviolo vertex algebra with superpo-
tential, then DW gives V the structure of a conformal dg raviolo vertex algebra.
Moreover, if a ∈ V is a conformal primary of spin s then so too is DW a.

Proof. The proof is a simple computation. The OPE ΓW is given by

(4.5.1) ΓW ∼ Ω1
z−wW + Ω0

z−w∂wW  WΓ ∼ −Ω1
z−wW

because W is a primary of weight 1; this implies the action of DWΓ = 0.

Now suppose a(z) = Y(a, z) is a conformal primary operator. It follows
that the OPE of Γ and DW a is given by

(4.5.2)
ΓDW a = −DW(Γa)

∼ sΩ1
z−wDW a + Ω0

z−w∂wDW a

as desired. �

4.5.1. Example: chiral fields with a superpotential. As an example of a raviolo
vertex algebra with a superpotential, we consider the conformal raviolo
vertex algebra of N free fields

(4.5.3) V =
N⊗

i=1

FC(ri/2)
ri .

We denote the generating fields by Xi(z), ψi(z) which have cohomological
degrees ri, 1− ri and spins ri

2 , 1− ri
2 , respectively. The stress tensor is

(4.5.4) Γ =
N

∑
i=1

(
1− ri

2

)
: ψi∂Xi :− ri

2 : Xi∂ψi :

Thinking of Xi
(−1) as coordinate functions on CN , we choose a holomor-

phic function W : CN → C that is quasihomogeneous of weight 2 and
promote it to the field W(z) = Y(W(Xi

(−1))|0〉, z). The requirement that W
is quasihomogeneous implies W(z) is a field of cohomological degree 2 and
spin 1, i.e. W(Xi

(−1))|0〉 ∈ V2,(1). Moreover, W(z) has a regular OPE with

itself because the Xi have regular OPEs with each other, thus W(z) defines
a superpotential. Finally, because the Xi are conformal primaries and W is
a normal-ordered product thereof, W is a conformal primary.

4.5.5 Proposition. The choice of quasi-homogeneous function W : CN → C
equips V =

⊗
i FC(ri/2)

ri with the structure a conformal raviolo vertex algebra with
superpotential.
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The OPEs of W(z) with the generating fields Xi(z) and ψi(z) are partic-
ularly simple:

(4.5.5) W(z)Xi(w) ∼ 0 W(z)ψi(w) ∼ Ω0
z−w∂iW(w)

where ∂iW(z) is the field corresponding to
∂W(Xi

(−1))

∂Xi
(−1)
|0〉. The action of the

differential DW encodes the first-order pole in the OPE with W(z), thus we
find the following action on the generating fields

(4.5.6) DW Xi(z) = 0 DWψi(z) = ∂iW(z)

This is the direct analog of the dg vertex algebra described in Section
5.1 of [CDG23] modeling the algebra of local operators in the twist of a
three-dimensional N = 2 theory of N chiral superfields coupled by the
superpotential W : CN → C. Quasihomogeneity of the superpotential is
required to ensure that the theory admits the U(1)R R-symmetry used for
twisting.

4.5.2. Example: perturbative gauge theory, BRST reduction. Another impor-
tant example arises from holomorphic-topological perturbative gauge the-
ory. Let V be a raviolo vertex algebra with a Hamiltion g symmerty at level
0 generated by fields µa, a = 1, ..., dim g.

We introduce an additional dim g pairs of free fields ca, ba, where ca is a
fermion of cohomological degree 1 and spin 0 and ba is a boson of coho-
mological degree 0 and spin 1. These generate the free field raviolo vertex
algebra

(4.5.7) V
g
bc = (FC(1))⊗dim g.

In the tensor product raviolo vertex algebra V⊗V
g
bc we consider the field

(4.5.8) Wg =
1
2 f a

bc: bacbcc :− : caµa :.

It is a simple computation to show that Wg has a regular OPE with itself,
hence defines a superpotential on V ⊗ V

g
bc. The action of the differential

DWg
takes the following form:

(4.5.9)
DWg

ca(z) = 1
2 f a

bc: cbcc :(z) DWg
ba(z) = f c

ab: bccb :(z)− µa(z)
DWg

O(z) = : ca(z)
(
TaO(z)

)
:

where O ∈ V and, as above, TaO denotes the action of Ta ∈ g on O. We
call the resulting dg raviolo vertex algebra the BRST reduction of V by g and
denote it V//g.

We can modify this construction in two ways. First, V could itself be
equipped with a superpotential W. So long as the OPE of µa and W is reg-
ular, i.e. the superpotential is a g-invariant primary, it is easy to check that
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W + Wg has a regular OPE with itself and hence defines a superpotential
on V⊗ V

g
bc.

Now suppose we are given a (possibly degenerate) symmetric, g-invariant
bilinear form Kab

8 on g; a second deformation comes from considering the
field

(4.5.10) Wg,K = 1
2 f a

bc: bacbcc : + 1
2 Kab: ca∂zcb :− : caµa :

The OPE of Wg,K with itself is not regular, but the coefficient of Ω0
z−w is

a total derivative due to the g-invariance of Kab implying Kad f d
bc is totally

antisymmetric in abc:
(4.5.11)

Wg,KWg,K ∼ Ω0
z−w

(
1
4 Kad f d

bc: cacb∂wcc :
)
= Ω0

z−w∂w

(
1

12 Kad f d
bc: cacbcc :

)
It follows that Wg,K is once again a superpotential.

We can combine these two constructions together to get the following
result.

4.5.6 Theorem. Let V be a raviolo vertex algebra with a Hamiltionian g symmetry
at level 0 generated by fields µa. Choose Kab a (possibly degenerate) symmetric, g-
invariant bilinear form on g and W a g-invariant primary superpotential on V,
then

Wtot =
1
2 f a

bc: bacbcc : + 1
2 Kab: ca∂cb :− : caµa : + W

is a superpotential on V⊗ V
g
bc. Moreover, if (V, W) is a conformal raviolo vertex

algebra with superpotential and Γ is its stress tensor, then (V ⊗ V
g
bc, Wtot) is a

conformal raviolo vertex algebra with superpotential, where the stress tensor is
given by

Γtot = Γ− : ba∂zca :

If W : CN → C is a holomorphic function invariant under a (linear) g ac-
tion on CN , then the conformal raviolo vertex algebra with superpotential
described in Section 4.5.1 satisfies the necessary conditions for this Theo-
rem to hold. The differential Dtot on the generating fields ca, ba, Xi, ψi takes
the form

(4.5.12)
Dtotca = 1

2 f a
bc: cbcc : Dtotba = f c

ab: bccb : + Kab∂cb − µa

DtotXi = (ρa)
i
j: caX j : Dtotψi = −(ρa)

j
i: caψj : + ∂iW

cf. Eq. (3.34) of [CDG23]. The resulting conformal dg raviolo vertex algebra
is thus a model for the algebra of local operators in the (perturbatively)

8Physically, K corresponds to the Chern-Simons level of the gauge fields, divided by 2π.
Because we are working perturbatively, we need not impose quantization conditions on
these levels.
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gauged theory. We hope to understand non-perturbative corrections in the
future.

5. MODULES FOR RAVIOLO VERTEX ALGEBRAS

We now turn to the notion of a module for a raviolo vertex algebra V.
Our definition is a direct translation from the theory of vertex algebras, cf.
Section 5.1.1 of [FBZ04]:

Definition 5.0.1. Let V be a raviolo vertex algebra. A graded vector space
M is called a V-module if it is equipped with an operation YM : V→ End(M)⊗
Kdist that assigns to each a ∈ V a field

YM(a, z) = ∑
n<0

z−n−1aM
(n) + ∑

n≥0
Ωn

z aM
(n)

on M subject to the following axioms:

• YM(|0〉, z) = 1M

• for each a, b ∈ V and m ∈ M the three expressions

YM(a, z)YM(b, w)m ∈ M〈〈z〉〉〈〈w〉〉 ,

(−1)|a||b|YM(b, w)YM(a, z)m ∈ M〈〈w〉〉〈〈z〉〉 , and

YM(Y(a, z− w)b, w)m ∈ M〈〈w〉〉〈〈z− w〉〉
are expansions, in their respective domains, of the same element of
M⊗Kz,w,z−w.

We say that M′ ⊂ M is a submodule of M if m ∈ M′ then YM(a, z)m ∈
M′〈〈z〉〉 for every a ∈ V. A module M is called simple if it has no non-trivial
submodules.

A morphism of V-modules f : (M, YM) → (N, YN) is the data of a linear
map f : M→ N intertwining the structure maps

f (YM(a, z)m) = YN(a, z) f (m)

If V has a spin grading and/or Z/2 super grading, then we say that M
is graded if M has a C (spin) and/or Z/2 (super) grading such that when-
ever a is homogeneous the field YM(a, z) is homogeneous with the same
gradings as a. A morphism f : (M, YM) → (N, YN) is homogeneous if
f : M→ N is homogeneous.

As with vertex algebras, the vector space V underlying a raviolo vertex
algebra is naturally a V-module, called the vacuum module. Similarly, given
a morphism W → V it follows that any V-module M has the structure of a
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W-module, thereby giving us a functor from the category of V-modules to
the category of W-modules.

When V is a conformal raviolo vertex algebra, it is natural to restrict the
class of modules one allows. In particular, if γ ∈ V is the conformal vector,
then it is natural to constrain the action of the modes of the field YM(γ, z).

Definition 5.0.2. Let V be a conformal raviolo vertex algebra with confor-
mal vector γ. A V-module M is called a grading restricted generalized mod-
ule if the spin grading on M induced by generalized eigenspaces M(s) of
γ(1) satisfies

• M(s) is finite dimensional
• M(s+n) = 0 for n sufficiently negative

M is called conformal if γ(1) acts in a semisimple way.

Our first result concerning modules is an analog of Proposition 5.1.2 of
[FBZ04].

5.0.3 Proposition. Let V be a raviolo vertex algebra and M a V-module. Then for
every a ∈ V

1) YM(∂a, z) = ∂zYM(a, z)
2) All fields YM(a, z) are mutually local.

Proof. To prove 1), we consider the second axiom for b = |0〉. For any
m ∈ M and a ∈ V we have

(5.0.1) YM(Y(a, z− w)|0〉, w) = ∑
n≥0

(z− w)n

n!
∂n

wY(a, w)m

Assertion 1) follows by comparing the coefficient of (z− w), together with

(5.0.2) Y(a, z− w)|0〉 = ∑ n ≥ 0 = (z− w)na(−n)|0〉

and a(−2)|0〉 = ∂a.

The second assertion is also straightforward. To show that YM(a, z) and
YM(b, w) are mutually local for all a, b ∈ V, we apply their commutator to a
general element m ∈ M. The second axiom of a module, together with the
associativity proprty of V implies the following equality in M⊗Kz,w

dist

(5.0.3) [YM(a, z), YM(b, w)]m = ∑
n≥0

1
n! ∂

n
w∆(z− w)YM(a(n)b, w)m
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As this holds independent of m, we deduce the following equality in End(M)⊗
Kz,w

dist

(5.0.4) [YM(a, z), YM(b, w)] = ∑
n≥0

1
n! ∂

n
w∆(z− w)YM(a(n)b, w)

As a(n)b = 0 for n � 0, we conclude YM(a, z) and YM(b, w) are mutually
local. �

5.1. Raviolo vertex algebras induced from Lie algebras. As with vertex
algebras, when V is defined as an induced module for a a graded Lie al-
gebra G, such the first examples given in Section 4, we can construct V-
modules from certain G modules by using the G action to define an action
of the generating fields. As the generators of V must give fields on any
module M, it follows that the action of G must be smooth. For concreteness,
we will compare V[g, h]univ-modules and modules for the shifted central
extension ĝh of g〈〈u〉〉. The following considerations apply equally well for
the other universal raviolo vertex algebras FCuniv, Huniv, and Viruniv and
their corresponding Lie algebras F̂, Ĥ, and Vir.

Definition 5.1.1. A ĝh module M is smooth if for every m ∈ M there exists
N ≥ 0 such that Ja,nm = 0 for n ≥ N.

This is necessary if we want the above to define a V[g, h]univ-module, as
YM(µa,0|0〉, z) must define a field. We now show that smooth ĝh-modules
are equivalent to V[g, h]univ-modules.

5.1.2 Proposition. The category of V[g, h]univ-modules is equivalent to the cate-
gory of smooth ĝh-modules.

Proof. First let M be a V[g, h]univ module. The fields µM
a (z) = YM(µa,0|0〉, z)

have the following commutators

(5.1.1) [µM
a (z), µM

b (w)] = ∂w∆(z− w)habκ + ∆(z− w) f c
abµM

c (w)

due to the second axiom defining a V[g, h]univ-module. In particular, the
modes of µM

a (z) give M the structure of an ĝh-module; M is smooth because
the µM

a (z) are fields on M.

Now suppose M is a smooth ĝh module. We first set YM(|0〉, z) = 1M,
YM(κ|0〉, z) = κ, and define fields µM

a (z), corresponding to YM(µa,0|0〉, z),
in the obvious way; that these are fields on M follows by smoothness.
The above commutator still holds due to the fact that M is a ĝh module.
In particular, the µM

a (z) define mutually local fields on M. If we define
YM(µa,nµb,0|0〉, z) by the formula

(5.1.2) ∑
n≥0

(z− w)nYM(µa,nµb,0|0〉, w) = : µM
a (z)µM

b (w) :
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then the above commutator translates to

(5.1.3)
µM

a (z)µM
b (w) = ∂w∆−(z− w)habκ + ∆−(z− w) f c

abµM
c (w)

+ ∑
n≥0

(z− w)nYM(µa,nµb,0|0〉, w)

and
(5.1.4)
(−1)(|a|+1)(|b|+1)µM

b (w)µM
a (z) = −∂w∆+(z− w)habκ − ∆+(z− w) f c

abµM
c (w)

+ ∑
n≥0

(z− w)nYM(µa,nµb,0|0〉, w)

Putting these together, we see that

(5.1.5)

YM(µa,0|0〉, z)YM(µb,0|0〉, w)m ,

(−1)(|a|+1)(|b|+1)YM(µb,0|0〉, w)YM(µa,0|0〉, z)m , and

YM(Y(µa,0|0〉, z− w)µb,0|0〉, w)m

are all expansions of the same element of M⊗Kz,w,z−w, namely

(5.1.6) Ω1
z−whabκm + Ω1

z−w f c
abµM

c (w)m + ∑
n≥0

(z− w)nYM(µa,nµb,0|0〉, w)m

More generally, we define

(5.1.7) YM(µa1,j1 . . . µal ,jl |0〉, z) =
1

j1! . . . jl !
: ∂

j1
z µa1(z) . . . ∂

jl
z µal (z) :

and

(5.1.8) YM(κµa1,j1 . . . µal ,jl |0〉, z) =
1

j1! . . . jl !
κ: ∂

j1
z µa1(z) . . . ∂

jl
z µal (z) :

The fact that axiom 2 holds for general elements of V[g, h]univ follows by
Corollary 2.2.5 and induction on l. �

Unsurprisingly, this result for the universal algebras implies the follow-
ing relation for their quotients.

5.1.3 Corollary. The category of V[g]-modules is equivalent to the category of
smooth g〈〈u〉〉-modules.

An analogous result holds for the quotients Vir, Hk, and FCk, where one
must restrict to smooth Ĥ or F̂ modules where the central element K is
required to act as k on the latter two examples.

A special class of modules for V[g, h]univ come by induction from mod-
ules of g. Let R be a representation of g, we then consider the representation
R[κ] of g[[z]]⊕ Cκ[−1] on which g[[z]] acts through its quotient to g and the
central element acts as multiplication by κ; the vector space

(5.1.9) Uĝh ⊗Uĝ≥0 R[κ]
72



is a smooth ĝh-module and thus admits the structure of a V[g, h]univ mod-
ule. Viewing a raviolo vertex algebra with a Hamiltonian g-symmetry as an
V[g, h]univ module, we see that the g-primary operators discussed in Section
4.3, together with the states obtained by normal-ordered products with the
currents µa(z) and their derivatives, transform in V[g, h]univ-submodules of
V of this form.

5.2. Lattice raviolo vertex algebra. As a final example, we consider a cer-
tain module for the raviolo Heisenberg algebra H that itself has the struc-
ture of a raviolo vertex algebra. Our construction is totally analogous to
the construction of a lattice vertex algebra, cf. Section 5.2 [FBZ04], and
serves as a model for the full, non-perturbative algebra of local operators
in holomorphic-topological abelian BF theory, which is equivalent to the
twist of a free three-dimensional N = 2 vector multiplet.

We start with a family of smooth modules for the Lie algebra Ĥ built by
induction over the subalgebra Ĥ≥0. We consider the module Cλ = C1,λ

generated by a vector |λ〉 with the action of Ĥ≥0 given by

(5.2.1) cn+1|λ〉 = ϕn|λ〉 = 0, n ≥ 0, c0|λ〉 = λ|λ〉, K|λ〉 = |λ〉
We then consider the following Fock module:

(5.2.2) Fockλ = UĤ⊗UĤ≥0
Cλ

This has the structure of an H-module, where the states b0 and ν0 corre-
spond to the fields

(5.2.3) b(z) = YM(b0, z) = ∑
n<0

z−n−1bn + ∑
n≥0

Ωn
z ϕn

and

(5.2.4) ν(z) = YM(ν0, z) = ∑
n<0

z−n−1νn + ∑
n≥0

Ωn
z cn

It is immediate that Fock0 is isomorphic to the vacuum module. Using the
fact that the stress tensor is Γ = −: bν :, we see that |λ〉 is annihilated by γ(1),
i.e. it is an eigenvector with eigenvalue 0, whence Fockλ is a conformal
module for H. We now prove the following result, cf. Lemma 5.2.2 of
[FBZ04].

5.2.1 Lemma. Any simple graded H-module with spin bounded from below is
isomorphic to Fockλ for some λ ∈ C.

We do not need to impose the stronger constraint that the H-module
is conformal, merely that it has a compatible spin graded that is bounded
from below. Note that the spin grading on Fockλ is uniquely determined by
the spin sλ ∈ C of |λ〉; a choice of conformal structure on H distinguishes a
particular spin grading.
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Proof. We start by noting that Fockλ is itself simple. As noted above, any
homogeneous vector m ∈ Fockλ can be written as P|λ〉 for P some polyno-
mial homogeneous polynomial in the bn, νn. If P isn’t constant, there exists
n > 0 with ∂P/∂bn 6= 0 and hence cnm 6= 0. The polynomial [cn, P] is
again homogeneous, but has strictly lower spin. Continuing in this fash-
ion, we find a vector cn1 . . . cnk m 6= 0 annihilated by all cn for n > 0, i.e.
P′ = [cn1 , [. . . , [cnk , P]]] is a homogeneous polynomial in νn. If P′ isn’t con-
stant, there is some l > 0 with ∂P′/∂νl 6= 0. Continuing in this fashion, we
find a vector ϕl1 . . . ϕlj cn1 . . . cnk m annihilated by cn+1 and ϕn for all n ≥ 0
and therefore

(5.2.5) ϕl1 . . . ϕlj cn1 . . . cnk m = α|λ〉

for some nonzero α ∈ C. Due to the fact that Fockλ is generated by acting
with bn, νn on |λ〉, we conclude that any two elements of Fockλ are related
by acting with an element of UĤ, whence Fockλ is simple.

Now suppose M is any simple graded H-module with grading bounded
from below. We first note that ϕ0 must act as zero due to M being simple –
the image of ϕ0 is a submodule of M because ϕ0 is central in Ĥ. Let Mmin
be the subspace of minimal spin. It follows that Mmin is annihilated by cn+1
and ϕn for n ≥ 0. Moreover, dimC Mmin = 1 because M is simple. We
conclude that c0 acts via multiplication by a scalar λ on M, hence M '
Fockλ. �

We now consider the following conformal H-module:

(5.2.6) VZ =
⊕
m∈Z

Fockm

5.2.2 Proposition. VZ has the structure of a conformal raviolo vertex algebra (of
central charge 0) such that H = Fock0 is a conformal raviolo vertex subalgebra.

Proof. Using the fact that Fockm is generated by |m〉 by acting with the
modes of b(z), ν(z), the raviolo reconstruction theorem 4.0.1 implies that
it suffices to define fields Vm(z) = Y(|m〉, z) for all m 6= 0 and verify they
satisfy the necessary conditions.

Using the prescribed action of H on Fockm, we necessarily have the fol-
lowing OPEs of the generators b(z) and ν(z) with Vm(w):

(5.2.7)
b(z)Vm(w) = : b(z)Vm(w) :

ν(z)Vm(w) = mΩ0
z−wVm(w) + : ν(z)Vm(w) :
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By assumption, we are taking the stress tensor for VZ to be given by Γ =
−: bν :; the action of its modes on |m〉 are given by

(5.2.8) γ(n)|m〉 =
{

0 n 6= 0
−mb(−1)|m〉 n = 0

hence Vm(w) must be a conformal primary of spin 0. Its OPE with the stress
tensor Γ(z) must therefore be given by

(5.2.9) Γ(z)Vm(w) = −mΩ0
z−w: bVm :(w) + : Γ(z)Vm(w) :

where : bVm :(z) = Y(b(−1)|m〉, z). In particular, part 2) of Corollary 3.2.1
implies we must further have

(5.2.10) ∂zVm(z) = −m: bVm :(z)

As b and ν are spin 1 and the Vm are all spin 0, it follows that VZ has
a spin grading with support only in the non-negative integers; the only
states with spin 0 are the vectors |m〉, all of which have different weight
with respect to ν(0) = c0. It immediately follows that

(5.2.11) Vm1,(n)|m2〉 =
{

0 n ≥ 0
km1,m2 |m1 +m2〉 n = −1

for some km1,m2 ∈ C. The vacuum axiom dictates km,0 = 1 for every m. To-
gether with Eq. (5.2.7) and Eq. (5.2.10), the action in Eq. (5.2.11) uniquely
characterizes the field Vm(z) — Eq. (5.2.10) encodes the action of the re-
maining modes of Vm1(z) and the OPEs Eq. (5.2.7) give us the necessary
commutators to define the action of these modes on a general state in Hm2 .

As in the theory of vertex algebras, we can write an explicit formula for
the field Vm(z) using the modes of b. We let Sm denote the shift operator
defined by

(5.2.12) Sm1 |m2〉 = km1,m2 |m1 +m2〉
and that it commutes with all of the b(n) as well as the ν(n) with n 6= 0.
Vm(z) then takes the form

(5.2.13) Vm(z) = Sm exp
(
m ∑

n<0
z−n b(n)

n
−m ∑

n>0
Ωn−1

z
b(n)
n

)
Note that this expression is homogeneous of cohomological degree 0.

It is easy to verify this expression for Vm satisfies the above properties.
We find the commutators of Vm with the generators b(z) and ν(z) are given
by

(5.2.14)
[b(z), Vm(w)] = 0

[ν(z), Vm(w)] = m∆(z− w)Vm(w)
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from which the OPEs in Eq. (5.2.7) follow immediately, cf. Proposition
2.2.2. Moreover, we see that Vm(w) is mutually local with both b(z) and
ν(z). Taking the derivative with respect to z, we find

(5.2.15) ∂zVm(z) = −m
(

∑
n<0

z−n−1b(n) + ∑
n>0

Ωn
z b(n)

)
Vm(z)

As the b(n) all commute with one another, we conclude the right-hand side
is precisely −m: bVm :(z) and hence Eq. (5.2.10) holds as well; the fact that
b(0) = ϕ0 is absent from the sum is no issue as it acts as 0 on all of VZ.
Finally, the action of Vm1(z) on |m2〉 is given by

(5.2.16) Vm1 |m2〉 = km1,m2 exp
(
m1 ∑

n<0
z−n b(n)

n

)
|m1 +m2〉

from which Eq. (5.2.11) is immediate.

We are finally in a position to verify the conditions of Proposition 4.0.1.
The vacuum vector is |0〉, and the translation operator ∂ acts as above. We
consider the fields b(z), ν(z), and the Vm(z) for all m 6= 0, corresponding
to the vectors b(−1)|0〉, ν(−1)|0〉, and |m〉, respectively. Conditions 1) and
4) are immediate from the above, and condition 2) holds for b and ν. To
see that condition 2) holds for Vm(z), we note that the above commutators
imply that the commutator of Γ and Vm is

(5.2.17) [Γ(z), Vm(w)] = −mΩ0
z−w: bVm :(w)

and hence [∂, Vm(z)] = [γ(0), Vm(z)] = ∂zVm(z).

We are left with checking condition 3), i.e. the mutual locality of these
generators. We already know b and ν are mutually local with one another
and with Vm, so it suffices to verify the mutual locality of Vm1 and Vm2 .
Using the fact that the modes b(n) commute with one another, we see that
they are mutually local if and only if

(5.2.18) Sm1 Sm2 = Sm2 Sm1 ⇔ km1,m2+m3 km2,m3 = km2,m1+m3 km1,m3

Thus, any choice of the km1,m2 satisfying this constraint, together with km,0 =
1, gives VZ the structure of a raviolo vertex algebra, cf. the proof of Propo-
sition 5.2.5 in [FBZ04]. Our preferred solution will be to set km1,m2 = 1 for
all m1,m2. �

It is worth noting that b(z) = : V1∂zV−1 :. In particular, VZ is strongly
generated by the bosonic fields V±(z) = V±1(z) and fermionic field ν(z).
As noted in Section 4, H has a Hamiltonian gl(1) symmetry (at level 0)
generated by ν(z) and hence so too does VZ. The fields Vm(z) are primaries
of weight m. Physically, this gl(1) symmetry corresponds to the topological
flavor symmetry of an abelian 3d gauge theory; the weight m is identified
with monopole number and the operators Vm(z) are called monopole operators.
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We note that the above proof can be applied to the module

(5.2.19) VΛ =
⊕
λ∈Λ

Fockλ

for Λ any countable additive subgroup of C. Similarly, we can start from
H⊗N and built a raviolo vertex algebra VΛ from any countable additive
subgroup Λ ⊂ CN . Unlike the case of vertex algebras, we find that there
are no integrality constraints on Λ.

Although they are different H-modules, the raviolo vertex algebra struc-
ture on VΛ only depends on Λ up to overall rescaling — rescaling the gen-
erators b(z), ν(z) as σb(z), σ−1ν(z) for σ ∈ C× is an automorphism of H
that sends Fockλ to Fockσλ and yields the desired isomorphism VΛ ' VσΛ.

For any subgroup Λ′ ⊂ Λ it follows that VΛ′ is a subalgebra of VΛ. In
the case of N = 1, the smallest non-trivial additive subgroups of C take the
form Λ = λZ for some nonzero λ ∈ C and hence correspond to a raviolo
vertex algebra isomorphic to VZ. We note that the graded character of VZ
is given by

(5.2.20) chVZ(q, x) def
= ∑

s,λ
grdim(V

(s),λ
Z )qsxλ = ∑

m∈Z
xm

where V
(s),λ
Z is the subspace of VZ of spin s and c0 weight λ.9 This exactly

matches the superconformal index of a free N = 2 vector multiplet
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