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1. Introduction

Superconformal field theories are an important and interesting class of supersymmet-
ric quantum field theories, characterized, at least roughly speaking, by their lack of any
characteristic energy scale. Algebraically, superconformal theories admit an action of the
superconformal super Lie algebra. This algebra contains both the algebra of conformal
transformations and the super Poincaré algebra. The super Poincaré algebra saff(d,N) is a
super Lie algebra containing the algebra of infinitesimal affine symmetries on Rd, together
with odd symmetries saff(d,N)− in spinor representations of so(d) ⊂ aff(d). The integer (or
pair of integers) N labels the number of copies of the minimal set of odd generators that are
present, and so can be thought of as the degree of extended supersymmetry. Superconformal
algebras should thus sit in a commuting diagram of inclusions of super Lie algebras:

conf(d)

aff(d) sconf(d,N).

saff(d,N)

A superconformal algebra, if it exists, is a completion of this diagram which is a simple super
Lie algebra, and for which

dim sconf(d,N)− = 2 dim saff(d,N)−.

Unlike super Poincaré algebras, algebras describing superconformal symmetries cannot be
constructed in every dimension; examples exist only up to spacetime dimension six. (The
first classification of superconformal algebras is due to Nahm [Nah78], making use of Kac’s
classification of simple super Lie algebras [Kac77].)

It is well known that the algebra of conformal vector fields in two dimensions is infinite-
dimensional; as such, all two-dimensional superconformal algebras have the same property.
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In spacetime dimensions from three to six, however, superconformal algebras are finite-
dimensional. The goal of this paper is to provide an infinite-dimensional enhancement of
the four-dimensional superconformal algebra which exists after performing a twist of the
supersymmetric field theory.

At root, a twist of a supersymmetric field theory is obtained by taking the invariants
of an appropriate fermionic element of the super Poincaré algebra. This generally means
asking that the chosen supercharge be a Maurer–Cartan element, and therefore defines a
deformation of the classical action; the twist is then precisely the corresponding deformation.
Maurer–Cartan elements in super Poincaré algebras have been classified [ESW18; ES18];
since the internal differential is here trivial, the Maurer–Cartan equation reduces to the
familiar condition {Q,Q} = 0.

The most heavily studied examples of twists are topological. Such twists extract a topo-
logical quantum field theory from a supersymmetric theory as studied in physics. Such twists
are of enormous interest, since topological quantum field theories are amenable to axiom-
atization and provide invariants of manifolds. However, as tools for studying the full field
theory, topological twists leave much to be desired: they are only available in the presence
of sufficient extended supersymmetry, and forget much of the data of the supersymmetric
theory from which they arose.

The minimal twists are in fact not topological, but rather are holomorphic. These
have been studied by many authors over the last twenty-five years; we cite [Joh95a; Nek96;
Cos13a; Cos13b] just for example. As tools for the study of the original supersymmetric
theory, these have three distinct advantages over other twists: firstly, they are more often
available, appearing in any even-dimensional theory for which nontrivial Maurer–Cartan
elements are present. For example, any four-dimensional supersymmetric theory admits a
holomorphic twist. Secondly, the holomorphic twist is the least forgetful twist; the space
of nilpotent supercharges is naturally stratified [ESW18], and as such lives naturally over a
poset. Holomorphic twists always form the minimal elements of this poset, and therefore
can be used to study any other twist by further deformation. This also means that, even for
theories that do admit topological twists—such as N = 2 theories in four dimensions—the
holomorphic twist can be used to extract much finer information about the original theory.

The third and final point is that holomorphic theories have a richer and more intricate
structure than topological theories, admitting (for example) nontrivial operator product
expansions that depend holomorphically on the spacetime. The familiar example to keep
in mind is the distinction between two-dimensional topological field theories (which, by a
simple and familiar classification, correspond to finite-dimensional Frobenius algebras) and
vertex algebras.

Vertex algebras—and, relatedly, the familiar phenomenon of symmetry enhancement
in two-dimensional chiral theories, which replaces finite-dimensional global or conformal
symmetries by infinite-dimensional Kac–Moody or Virasoro algebras—have long been seen
as peculiar to two-dimensional physics. One main philosophical point of this note is to
argue that these phenomena, which have been of such enormous importance and profit to
theoretical physics at least since the foundational work of [BPZ84], occur in holomorphic
theories much more generally, and are not at all peculiar to two dimensions per se.
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The reason that attention has largely been restricted to two-dimensional theories thusfar
has to do with two distinct phenomena. The first of these is that the wave equation, on
which free field theory is based, factors into left- and right-moving (or holomorphic and
anti-holomorphic) sectors. This means that ordinary field theory in two dimensions is very
closely related to holomorphic field theory, even in the absence of supersymmetry. In higher
dimensions, this of course fails; as outlined above, though, there is still a close connection
between supersymmetric and holomorphic theories.

The second, perhaps more subtle, reason is often alluded to in the physics literature by
citing Hartogs’ theorem, which implies that every holomorphic function on Cn \0 (for n ≥ 2)
extends to a holomorphic function on Cn. It thus seems to be hopeless to make sense of an
analogue of the Kac–Moody construction in more than one complex dimension. Let us give
a brief outline of the usual argument for this enhancement in two dimensions that shows
how it seems to break down for n ≥ 2.

Suppose a theory has a global symmetry by a Lie algebra g. The only obstruction to a
local symmetry is the presence of derivatives in the kinetic term; as such, the holomorphic
theory admits a symmetry by all holomorphic functions with values in g, since only the ∂
operator appears in the action functional. On the local operators, there is a symmetry by
any holomorphic function on the punctured affine plane,

(1) Ohol(C
n \ 0)⊗ g

n=1−−→ C[z, z−1]⊗ g.

When n = 1, there is then a central extension by the residue pairing, which gives rise to the
Kac–Moody algebra and is represented in interesting fashion on the local operators. When
n > 1, there are no meromorphic functions and no such pairing on Ohol(Cn \ 0) exists.

However, a natural analogue of the residue map does exist. It is, however, not defined
on Ohol itself, but rather on its derived replacement: the Dolbeault complex Ω0,•(Cn \ 0). (It
is worth emphasizing here that a twist of a physical field theory will always produce such
a derived replacement, since the original sheaves of fields or currents are locally free over
C∞ functions at the cochain level.) The homotopy type of Cn \ 0 is, of course, that of the
(2n− 1)-sphere, and so the wedge product followed by integration over the top class defines
a pairing on differential forms. The integration map is a trace of degree n − 1 on the cdga
of Dolbeault forms, defined by taking

(2) α 7→
∫

S2n−1

α ∧ Ω,

where Ω is a holomorphic Calabi–Yau form on Cn\0. The degree of the pairing on Dolbeault
cohomology is therefore n− 1, which is zero precisely in complex dimension one. In general,
Dolbeault cohomology of punctured affine space is supported in degrees 0 and n−1, and can
be thought of as consisting of holomorphic functions on affine space in degree zero, together
with their dual (multiples of the Bochner–Martinelli kernel) in degree n − 1. These are
superimposed, purely by accident, in complex dimension one, and form the positive- and
negative-degree parts of the Laurent polynomials C[z, z−1]. Thus, in our view, the second
confusing coincidence in complex dimension one is the fact that Dolbeault cohomology is
supported only in degree zero in this case, and the residue map is defined without any shift
of grading.
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At this stage, it is worth remarking on a connection between the structure at hand and
recent work [Bee+18] studying higher operations in topological quantum field theory arising
from the homology of the operad of little n-disks (i.e., of configuration spaces of points
in Rn). The ghost number in our higher algebras is essentially Dolbeault form degree, and
a holomorphic analogue of topological descent is possible, making use of those supercharges
which witness a nullhomotopy of the antiholomorphic translations in the twisted theory.
The graded pairing that gives rise to higher central extensions, as we have emphasized,
arises from the top class in the homology of Cn \ 0, which is the same class that gives rise to
the bracket operation on local operators in TQFT discussed in [Bee+18], albeit paired with
the Calabi–Yau form. In a sense, for us, Cn \ 0 is playing the role of a holomorphic analogue
of Conf2(R2n); one physical interpretation of our higher symmetry algebras is that nonlocal
operators play an important role, giving rise to algebraic structures on local operators via
holomorphic descent. We expect that it is possible to study a holomorphic analogue of the
operad of little disks, and to use it to characterize secondary operations in holomorphic
theories at the level of operads which can imposed concretely via a holomorphic analog of
descent; however, we do not pursue this here, reserving such questions for future work.

Using the formalism of factorization algebras and the pairing discussed above, higher
analogues of Kac–Moody algebras were recently introduced in [FHK19; GW18]. It was
then argued in [GW18; SW19] that these algebras appear naturally in holomorphic twists of
four-dimensional field theory as twists of the current supermultiplet associated to a global
symmetry. A natural higher analogue of the Virasoro algebra in holomorphic theories was
also proposed in [HK18; Wil]; there is a model which uses the Dolbeault resolution of the
Lie algebra of holomorphic vector fields on Cn \ 0. (The reader will recall that the Virasoro
algebra is a central extension of the Witt algebra of holomorphic vector fields on C \ 0.)
Central extensions generalizing the well-known Kac–Moody and Virasoro central extensions
were shown to exist. The space of local central extensions of the higher Virasoro algebra was
shown in [Wil] to be two-dimensional; it is natural to guess that these cocycles correspond
to the a and c central charges of four-dimensional conformal field theory, and we hope to
make this connection explicit in future work.

In the present work, our aim is to explore the relation of the four-dimensional higher
Virasoro algebra to superconformal symmetry in the full theory. We compute the holo-
morphic twist of the four-dimensional superconformal algebra in §2, and argue that the
resulting algebra, sl(3|N−1) (or psl(3|3) when N = 4), acts naturally as a finite-dimensional
closed subalgebra of the holomorphic vector fields on an appropriate holomorphic superspace,
C2|N−1. See Theorem 2.10 for the precise statement.

In §3 we define the main holomorphic symmetry algebras of interest which are natural
from the point of view of complex geometry. In §4, we show that the holomorphic twists
of supersymmetric theories in four dimensions admit natural actions of these holomorphic
symmetry algebras (at the classical level). At this stage it plays no role if the untwisted
theory is in fact superconformal or not. For the precise results pertaining to symmetry
enchancements of twists of four-dimensional theories, see Propositions 4.6–4.9.
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In §5, we introduce factorization algebras associated to the various symmetry algebras
and theories. §6 then goes on to consider further deformations of the enhanced symmetry al-
gebra as a factorization algebra, which play a role in other twists of the theory. We consider,
in particular, the deformation of the centrally extended higher Kac–Moody and Virasoro
factorization algebras by a Maurer–Cartan element arising from a special supersymmetry in
the global superconformal algebra, making connection with the work of Beem and collabo-
rators [Bee+15]. For us, this deformation appears as a simple odd vector field implementing
the Koszul resolution of a subspace C ⊂ C2. The main results of §6 can be summarized as
follows.

Theorem 1.1. Let FKM and FVir be the N = 2 higher Kac–Moody and Virasoro factorization
algebras of level κ and charge c, respectively, on (z1, z2) ∈ C2. (See Definitions 5.4 and 5.9
respectively). Let F′KM and F′Vir be the corresponding factorization algebras deformed by the
Maurer–Cartan element z2

∂
∂ε

arising as a special supercharge in the global superconformal
algebra (see §6). Then:

• F′KM is equivalent to a stratified factorization algebra on C2 which is trivial away from
z2 = 0 and along the plane Cz1 = {z2 = 0} is equivalent to the Kac–Moody vertex
algebra at level −κ/2.
• F′Vir is equivalent to the stratified factorization algebra on C2 which is trivial away
from z2 = 0 and along the plane Cz1 = {z2 = 0} is equivalent to the Virasoro vertex
algebra at level −12c.

In words, at the level of stratified factorization algebras, the deformations of our higher
symmetry algebras reproduce the chiral algebras studied in [Bee+15]; these are strictly
contained within the full higher Virasoro and Kac–Moody symmetries, and are obtained
from them by a further twist. We also reproduce the correct correspondence between four-
and two-dimensional central extensions of these algebras; this is strong evidence that the
central extensions of the higher algebra correspond precisely to the higher-dimensional central
charges of the physical theory, just as in two dimensions.

Other examples of chiral algebras have been extracted from four-dimensional N = 2
theories, and we expect that the higher Virasoro and Kac–Moody algebras can profitably
be used to understand all of them. Many of these appear from further twists; for example,
the half-holomorphic twist of [Kap06] is implemented by a natural further deformation.
We expect that the recent results of [OY19], producing chiral algebras isomorphic to those
of [Bee+15] from this half-holomorphic twist in the presence of an Ω-deformation, can be
swiftly understood in our setting. The first study of infinite-dimensional symmetry at the
level of the holomorphic twist was performed in [Joh95b], but was restricted to the setting
of a product of Riemann surfaces; for us, the essential geometry for the study of local
operators in four dimensions is that of C2 \0. However, it is worth noting that the formalism
of factorization algebras allows us to think of symmetries by local Lie algebras across all
complex surfaces uniformly.

In addition, we emphasize that the symmetry enhancement in the holomorphic theory
means that many more deformations of the differential are available after the holomorphic
twist. Of course, any appropriate Maurer–Cartan element of the global superconformal
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algebra gives rise to such a deformation, but new deformations appear in the holomorphic
twist which are not visible at the level of the full theory. While we reserve a full analysis
for future work, we explore some of these new deformations briefly in §6.4, arguing that
the higher Virasoro algebra in N = 2 supersymmetric theories admits a deformation that
localizes it to the holomorphic vector fields on any smooth affine curve in C2, not just to
planes. We expect even more interesting behavior in the case of singular or nonreduced
curves, though we do not explore this direction further here.

In §7, we turn to some explicit examples of theories, and in particular to N = 2 super
QCD. We demonstrate that the higher Virasoro symmetry is, in fact, anomalous, and can be
realized in the quantum theory precisely when the familiar condition Nf = 2Nc is satisfied—
i.e., when the full theory is in fact superconformal. The beta function of the full theory is
thus visible as an anomaly in the holomorphic twist—in spite of the fact that the holomorphic
theory itself is automatically scale-invariant. We then offer a precise characterization of the
chiral algebras (or two-dimensional holomorphic theories) that appear upon deforming N = 2
superconformal QCD as above, again reproducing results of [Bee+15] in our formalism.

Acknowledgements. We thank K. Costello, S. Gukov, O. Gwilliam, Si Li, S. Nawata,
K. Nilles, D. Pei, P. Yoo and J. Walcher for conversations and advice that helped lead to
the completion of this work. Special thanks are due to R. Eager for early discussions and
calculations, related to those in §3, that helped spark this project. I.S. thanks the Center
for Quantum Geometry of Moduli Spaces for hospitality during the preparation of this work.
B.W. thanks Ruprecht-Karls-Universität Heidelberg and the Max-Planck-Institut für Math-
ematik for hospitality during the preparation of this work. The work of I.S. was supported in
part by the Deutsche Forschungsgemeinschaft, within the framework of the Exzellenzstrate-
gie des Bundes und der Länder. The work of B.W. was supported by Northeastern University,
the University of Edinburgh, and National Science Foundation Award DMS-1645877.

2. Superconformal algebras and their twists

2.1. The conformal and superconformal symmetry algebras. We here review some
basic notions of conformal and superconformal symmetry in physical theories. Our index
conventions are standard; indices for the vector representation of an orthogonal group are
raised and lowered with the metric. We sometimes use the isomorphism between the vector
representation of so(4) and the tensor product of its two chiral spinors; spinor indices are
raised and lowered with the su(2)-invariant alternating form εαβ.

Definition 2.1. The conformal algebra in dimension d > 2, with signature (p, q), is so(p+
1, q + 1).

Proposition 2.2 (Standard; see for example [FMS12]). The conformal algebra acts by vector
fields on Rp,q.

Proof. This is essentially by definition, since the conformal group is the set of diffeomor-
phisms of Rp,q that act by local rescaling on the metric. We remind the reader that the
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relevant vector fields form a finite-dimensional algebra in dimensions greater than two, and
can be explicitly given as

(3)

Pµ =
∂

∂xµ
,

Mµν = xµ
∂

∂xν
− xν

∂

∂xµ
,

∆ = −E,

Kµ = |x|2 ∂

∂xµ
− 2xµE.

Here E = xµ∂µ is the Euler vector field. It is straightforward to check that these satisfy the
commutation relations

(4)

[D,Pµ] = Pµ,

[D,Kµ] = −Kµ,

[Mµν , Kρ] = gρνKµ − gµρKν ,

[Mµν , Pρ] = gρνPµ − gµρPν ,
[Kµ, Pν ] = 2Mµν + 2gµνE,

[Mµν ,Mρσ] = gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ,

with other commutators vanishing. For a proof that these vector fields span the space of
solutions to the conformal Killing vector field equations, see [FMS12]. �

Remark 2.3. In dimension four, the accidental isomorphism so(6) ∼= su(4) gives rise to a
convenient way of thinking about the vector fields defined above. Let us pass to using
complex coefficients. We can realize the action of the complexified conformal group on
complexified Minkowski space C4 by considering the quotient of GL(4,C) by a particular
parabolic subgroup:

(5) Fl(2; 4) = GL(4,C)/P, P =

[
∗ ∗
0 ∗

]
.

(We choose to use GL(4,C), rather than SL, for the sake of convenience; note, however,
that the unit-determinant condition can be imposed everywhere, and does not affect our
discussion.) Here P consists of two-by-two blocks with the lower left block zero and other
blocks arbitrary. The resulting symmetric space is the space of 2-flags in C4; it has an open
dense subset isomorphic to C4, given by cosets represented by matrices of the form

(6)
[

1 0
xαα̇ 1

]
∈ GL(4,C).

The reader will recall that the chiral (or antichiral) spinor of Spin(6), equivalent to the
fundamental (or antifundamental) representation of SU(4), becomes one chiral and one anti-
chiral spinor of Spin(4) ∼= SU(2)×SU(2), which can be thought of as sitting block-diagonally
inside SU(4). Our index convention in (6) is meant to suggest this. The vector fields
witnessing the natural action of GL(4,C) on Fl(2; 4) from the left become the conformal
vector fields of (3) when restricted to the image of this embedding of Minkowski space
in Fl(2; 4).
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The construction of Remark 2.3 becomes even more important in the context of super-
conformal symmetry. In a limited number of cases classified by Nahm [Nah78]—in particular,
when the spacetime dimension does not exceed six—the conformal algebra can be extended
to supersymmetric theories, which then admit the action of a simple superconformal algebra
c(d,N) containing both the conformal algebra and the N-extended super Poincaré algebra.
A complete list of such algebras for dimension greater than two is

(7) sconf(d,N) =



osp(N|4), d = 3;

su(2, 2|N), d = 4, N 6= 4;

psu(2, 2|4), d = 4, N = 4;

f(4), d = 5, N = 1;

osp(6, 2|N), d = 6.

In each case, the construction relies on an accidental isomorphism of Lie algebras, akin to
that used in Remark 2.3, that allows one to fit the spinor representations of low-dimensional
spin groups into Kac’s classification of simple super Lie algebras [Kac77], where no infinite
families with odd elements in spinor representations appear. 1

We now specialize to four-dimensional theories, and thus to the algebras su(2, 2|N) for
N = 1 and 2, and psu(2, 2|4) in the case N = 4. In our considerations, we will always
complexify, and thus deal with the complex Lie algebras sl(4|N) or psl(4|4). (The change for
N = 4 comes about because sl(k|k) has a one-dimensional center and is therefore not simple;
algebras with N > 4 exist, but are not of physical relevance, as they cannot be represented
on interacting theories [CDI16].) One can helpfully think of the generators of this algebra
as arranged in the following diagram:

(8)

Pαα̇

Qi
α Q̄α̇i

Mαβ ∆, Ri
j M̄α̇β̇

Sαi S̄α̇i

Kαα̇

Here, vertical position in the diagram represents the conformal weight2 of the corresponding
generator, and horizontal position is determined by the difference in number of chiral and an-
tichiral spinor indices. If vertical position is interpreted as a Z-grading, parity is determined
by its value modulo two. The charges Qi

α and S̄α̇i together form a chiral spinor of O(4, 2),
which is equivalent to the antifundamental representation of su(2, 2); they transform in the
fundamental representation of the R-symmetry group. Likewise, Q̄α̇i and Sαi together sit

1We have avoided N = 3 superconformal symmetry, which makes sense and is studied in the physics
literature. However, as far as supersymmetric field theories are concerned, there are no weakly-coupled
N = 3 theories (which are not also N = 4). Since we mostly deal in the pertubartive formalism, we will not
consider such theories.

2Conformal weight is the weight under the scaling operator ∆.
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in the fundamental representation of su(2, 2) and the antifundamental representation of R-
symmetry. (We generally follow the conventions of [DO09].)

The superconformal algebra acts naturally by vector fields on supermanifolds. For
example, the usual superspace for N = 1 supersymmetry in four dimensions is R4|4, with one
odd copy of each chiral spinor representation; it admits an action of su(2, 2|1) by supervector
fields that extends the natural action of super Poincaré by supertranslations. The vector
fields were written explicitly in [Duc77], and shown to arise (as in the bosonic case) from
conjugating super Poincaré transformations by the superspace analogue of the inversion
transformation. This generalizes to extended superconformal symmetry; see [HH95] for
details. Here, a consistent real structure can be imposed, such that the odd part of R4|4 is
the Majorana spinor of SO(3, 1). However, this will play no role in our further considerations.

However, the standard (unconstrained) superspace is not the only superspace where the
superconformal algebra naturally acts. Of particular interest for us will be an action on
superfields satisfying a chiral constraint.

Proposition 2.4. The complexified four-dimensional superconformal algebra sl(4|N) acts
geometrically by supervector fields on the chiral superspace

(9) C4|2N ∼= V ⊕ Π(S+ ⊗R),

where V and S+ denote respectively the fundamental and chiral spinor representations of Spin(4),
and R the defining representation of the U(N) R-symmetry.

Proof. As in Proposition 2.2, this is almost a proof by definition, although the characteri-
zations involved seem to be less well-known in this case. One can in fact define the four-
dimensional superconformal algebra to be the collection of vector fields on unconstrained
superspace, R4|4N, that (after complexification) act compatibly with every possible chiral
constraint. That is,

(10) [X,Dαi] ∼ Dαi, [X, D̄j
α̇] ∼ Dj

α̇.

For general N, this characterization is given, for instance, in [HW97]; see [Osb99] for further
discussion and an explicit treatment of the case N = 1.

Since the superconformal transformations act preserving chiral subspaces, they also act
on each chiral subspace. In the case N = 1, the explicit supervector fields involved are

(11) Pαα̇ = ∂αα̇, Mαβ = xαα̇∂βα̇ + θα∂β + (α↔ β), M̄α̇β̇ = xαα̇∂αβ̇ + (α̇↔ β̇)

for generators of affine transformations, as well as

(12) ∆ = E +
1

2
θα∂α, R = θα∂α, Kαα̇ = |x|2∂αα̇ − 2xαα̇E + θαxβα̇∂β

for dilatations and U(1) R-symmetry, and special conformal transformations, and lastly

(13)
Qα = ∂α,

Q̄α̇ = θα∂αα̇,

Sα = −xαα̇θβ∂βα̇ + θ2∂α,

S̄α̇ = xαα̇∂α

for the fermionic transformations. Here E again denotes the Euler vector field. We further
note that when N = 4, the action factors through the simple quotient psl(4|4). �
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Remark 2.5. Note that the action of the conformal algebra is modified from its purely bosonic
form! While the supervector fields realizing supertranslations remain unaffected, K now
contains fermion-dependent terms. However, under the quotient map from functions on
superspace to functions on (bosonic) C4, the vector fields of Proposition 2.2 are reproduced.

As above in Remark 2.3, it is extremely helpful to justify the existence of such vector
fields by relating the affine superspace that carries this group action to a symmetric space
constructed directly from the superconformal group. In doing this, we follow the excellent
discussion in [HH95]; the interested reader is referred there for more information.

Definition 2.6. Let Cm|n be a supervector space. A flag is a sequence of subobjects in the
category of supervector spaces,

(14) 0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ Cm|n, dimVi = mi|ni,
where each containment is strict. As in the usual case, flags are characterized by their type,
which is the list of dimensions {mi|ni}. These must form a strictly increasing sequence inside
of the poset Z+ × Z+. We will denote the space of flags of a fixed type by Fl(mi|ni;m|n).

Observation 2.7. The flag manifold Fl(mi|ni;m|n) naturally carries an action of GL(m|n,C),
exhibiting it as a symmetric space. As in the usual case, we can see this by exhibiting the
space of flags as the right quotient of GL(m|n,C) by the stabilizer of a standard flag of
appropriate type. We form a standard flag of type m′|n′ by fixing an ordered basis of Cm|n,
considered as a GL(m|n,C) module in the standard way, and taking the flag spanned by
the first m′ even and the first n′ odd basis vectors. The left GL(m|n,C) action on the flag
variety remains unbroken and gives rise to a subalgebra of the vector fields on Fl(mi|ni;m|n)
representing gl(m|n). For example, the parabolic subgroup stabilizing a standard flag of
type m′|n′ consists of block matrices of the form

(15)


∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗



∗
0
∗
0


as a subgroup of GL(m|n,C).

We are now equipped to give supersymmetric analogues of the construction of the con-
formal compactification Fl(2; 4) of four-dimensional affine space in Remark 2.3.

Proposition 2.8 ([HH95]). The left-chiral N-extended superspace in four dimensions is a
dense open subset in Fl(2|0; 4|N). Similarly, the right-chiral superspace is a dense open subset
in Fl(2|N; 4|N), and the full superspace C4|4N admits a compactification to Fl(2|0, 2|N; 4|N).

We note that the map for the chiral superspaces can be represented by matrices of the
form

(16)

 1 0 0
xαα̇ 1 0
θαi 0 0

 ,
 1 0 0
xαα̇ 1 θ̄α̇i

0 0 0


respectively. The reader is referred to [HH95] for the proof and further discussion.
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Remark 2.9. For future use, it is helpful to summarize the correspondence for the reader
between superconformal generators as tabulated above and a matrix presentation of sl(4|N)
with the following diagram:

(17)

 Mα
β Kαβ̇ Sαj

Pαβ̇ M̄ β̇
α̇ Q̄α̇j

Qi
α S̄α̇i Ri

j

 ; ∆ =

 1 0 0
0 −1 0
0 0 0

 , r =
1

N − 4

 N 0 0
0 N 0
0 0 4

 .

2.2. Twisted superconformal symmetry. We now proceed to consider consequences of
superconformal symmetry for holomorphic twists of superconformal theories. Recall that the
four-dimensional (complexified) supertranslation algebra is a super Lie algebra of the form

C4 ⊕ Π (S+ ⊗W ⊕ S− ⊗W ∗)

where S± ∼= C2 are the irreducible two-dimensional semi-spin representations of so(4) and
W is a complex vector space of dimension N = 1, 2, 4. A supercharge Q ∈ Σ satisfying
[Q,Q] = 0 is called a holomorphic supercharge if Im[Q,−] ⊂ C4 is two-dimensional and is
spanned by the anti-holomorphic translations ∂z1 , ∂z2 . We will fix a holomorphic supercharge
Q once and for all.

Given any square-zero supercharge in the supersymmetry algebra the twist of a four-
dimensional supersymmetric field theory is constructed—we refer to [Cos13a; ESW20] for
more details. For a holomorphic supercharge the resulting theory is manifestly holomorphic
in the sense that the anti-holomorphic translations act homotopically trivially.

The supertranslation algebra is a subalgebra of the full superconformal algebra. The
holomorphic twist of the superconformal algebra sconf(4,N) is simply the Q-cohomology
where Q acts by the adjoint, or commutator. By construction, the resulting algebra will act
on the holomorphic twist of any superconformal theory.

Theorem 2.10. Let sconf(4,N) be the complexified superconformal algebra in four dimen-
sions. The cohomology of sconf(4,N) with respect to a holomorphic supercharge is sl(3|N−1)
for N = 1 and 2, or psl(3|3) for N = 4.

We proceed by computing the cohomology directly; it is a quotient of the commutant
of a holomorphic supercharge Q. To begin, we change from Lorentz indices to holomorphic
notation, adapted to the symmetry group left unbroken in Q-cohomology; upon breaking
SO(4) to U(2), the left-chiral spinor index becomes a pair of charged singlets, labeled by
±, and the right-chiral spinor becomes the fundamental of the unbroken SU(2). As for R-
symmetry indices, we break U(N) to U(1)×U(N−1); label the corresponding indices 0 and i,
with position of the index recording fundamental versus antifundamental representations of
the corresponding groups.
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After having done this, we can represent a basis for the algebra using a diagram analo-
gous to (8) above:

(18)

P+
α̇ , P

−
α̇

Qi
+, Q

i
−, Q

0
+, Q

0
− Q̄α̇i, Q̄α̇0

M++,M−−,M+− ∆, Ri
j, R

0
j , R

i
0, R

0
0 M̄α̇β̇

S+
0 , S

−
0 , S

+
i , S

−
i S̄α̇i, S̄α̇0

K α̇
+, K

α̇
−

In this decomposition the holomorphic supercharge is Q = Q0
+. One can then simply use

the commutation relations given above to determine exact pairs; the conclusion is that the
holomorphic momenta P−α̇ and superconformal transformations K α̇

+ survive, together with
M̄α̇β̇ and the traceless R-symmetry Rj

i . The surviving fermions are Q̄i
α̇ and Qi

− from the
Poincaré supercharges, and S̄α̇i and S−i from the conformal supersymmetries. Together with
two additional central generators, these implement the algebra sl(3|N − 1).

We have included this discussion to orient those readers with a physics background,
using relatively standard notation, as to which of the conformal symmetries survive in the
holomorphically twisted theory. However, a proof of the proposition that is both less cumber-
some and more useful can be given by just considering the matrix group GL(4|N) together
with a parabolic subgroup, and computing the holomorphic twist directly. The advantage
is that one directly obtains a description of the twist of the symmetric space GL(4|N)/P ,
with its action of the twisted superconformal algebra. (As above, it is convenient to ignore
the traceless condition for the moment and restore it later on.)

Proof of Theorem 2.10. Identifying the conformal algebra with sl(4|N) as in (17) above, the
holomorphic supercharge corresponds to the elementary matrix generator e0+. (We continue
to use the index set α, α̇, i for a basis of the supervector space C4|N; + and 0, as in the
previous discussion, denote specific values of these indices, and we will use µ for any element
of this basis, chosen without specifying parity or spin.) Using the standard commutation
relations, we see that

(19) [e0+, eµν ] = δ+µe0ν − (−)|µν|δν0eµ+,

which immediately implies that ker(adQ) is spanned by elementary matrices with µ 6= + and
ν 6= 0, together with e00 + e++, and that im(adQ) is spanned by the elementary matrices e0ν

and eµ+ (allowing only the diagonal combination e00 + e++). The cohomology is therefore
isomorphic to sl(3|N− 1); if we follow the parabolic subgroup defining the chiral superspace
through the same computation, we find matrices of the form

(20)


− − − ∗
0 − − ∗
0 − − ∗
0 ∗ ∗ ∗
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Looking just at the bosonic part of this calculation (or, equivalently, setting N = 1), the
reader will recognize the parabolic subgroup defining Fl(1; 3) ∼= CP 2 as a maximally symmet-
ric space for the group SL(3). In general, the resulting coset space is Fl(1|0; 3|N− 1). Very
similarly to the untwisted case, an open dense subset is the holomorphic affine superspace
C2|N−1 = Spec C[z1, z2; εi], where εi (1 ≤ i < N) are fermionic scalars. �

Corollary 2.11. The twisted superconformal algebra sl(3|N− 1) acts geometrically by holo-
morphic supervector fields on C2|N−1.

Indeed, it is easy to describe these vector fields explicitly. In the case N = 1, no fermions
remain, so that we just need to give an action of sl(3) by holomorphic vector fields on C2.
A straightforward calculation shows that the vector fields

(21) pi =
∂

∂zi
, mij = zi

∂

∂zj
, ki = zie

give the desired module structure. Here e = zi∂/∂zi = tr(m) is the holomorphic Euler vector
field.

In the general case, we need to add additional even vector fields to implement the R-
symmetry, as well as fermionic vector fields in the appropriate representations of sl(3) ×
sl(N − 1). We must also modify the vector field implementing the conformal weight to

(22) zi
∂

∂zi
+

1

2
ε
∂

∂ε
,

although this of course just amounts to a change of basis in the Cartan subalgebra. Further,
we must replace the Euler vector field in the definition of the generators ki by ê = zi∂/∂zi +
ε∂/∂ε (in the case N = 2). The needed odd vector fields in this case are

(23)
∂

∂ε
, ε

∂

∂zi

for positive conformal weight, and

(24) zi
∂

∂ε
, εe

for negative conformal weight. In general, we obtain one copy of this for every odd parameter;
the R-symmetry is of course implemented by the vector fields εi∂/∂εj.

3. Derived structures in complex geometry

We will demonstrate that there are natural enhancements of the twisted superconfor-
mal algebras computed above to certain infinite-dimensional Lie algebras. The Lie algebras
will be defined as the derived global holomorphic sections of certain (graded) holomorphic
vector bundles which enlarge the holomorphic tangent bundle. We will use a convenient
model for derived sections given by the Dolbeault resolution of a holomorphic vector bun-
dle. Throughout, the reader should bear in mind the familiar process in two dimensions by
which the holomorphic Möbius transformations are enhanced to the Witt algebra of holo-
morphic vector fields on C× and subsequently centrally extended in the quantum theory to
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the Virasoro algebra; central extensions of higher symmetry algebras will be discussed below
in §5.

In parallel, we introduce a similar enhancement of global symmetry in holomorphically
twisted theories to a local Lie algebra, analogous to Kac–Moody symmetry in two dimensions.
Additionally, we review results on holomorphic twists of supersymmetric field theories in four
dimensions.

3.1. Local Lie algebras and symmetries. A local Lie algebra is a graded vector bundle
L• onX equipped with differential and bi-differential operators which turn the corresponding
sheaf of sections L• into a sheaf of dg Lie algebras. 3 For a precise definition we refer the
reader to [CG17, Definition 6.2.1].

Throughout this section we fix a smooth complex surface X. There are two varieties
of local Lie algebras on X that will be of interest to us: (1) Lie algebras of holomorphic
currents which arise as resolutions of the sheaf of holomorphic g-valued functions on X, and
(2) Lie algebras of holomorphic vector fields on X.

3.1.1. Lie algebras of holomorphic currents. These local Lie algebras are the natural en-
hancements of global (flavor) symmetries in holomorphically twisted theories.

Definition 3.1. Let g be a Lie algebra. The local Lie algebra of N-extended holomorphic
g-currents on a complex surface X is

(25) G•N(X) = Ω0,•(X, g⊗C A),

where A = O(CN−1[1]) = C[ε1, . . . , εN−1], and εi are variables of cohomological degree −1.
The differential is ∂ (which acts by the identity on g⊗A) and the bracket is [α⊗X ⊗ a, β⊗
Y ⊗ b] = (α ∧ β)⊗ [X, Y ]⊗ (ab) where α, β are Dolbeault forms, X, Y ∈ g and a, b ∈ A.

The algebras just mentioned live naturally over a complex manifold X of any dimension.
Indeed, when N = 1, it is simply given as the Dolbeault complex on X with values in g. For
extended supersymmetry, we can also give a geometric interpretation that thinks of them as
objects living over a certain graded space.

Let X be a complex manifold of dimension d. For any m ≥ 0, define the graded space
Xd|m to have graded sheaf of functions

O(Xd|m) = O(X)[ε1, . . . , εm] = O(X)⊗ O(Cm[1]),

where εi are variables of cohomological degree −1. Note that we here treat the odd directions
as completely algebraic, and will persist in this convention. Thus, for instance, when we write
Ωp,q(Xd|m) we mean forms of type (p, q) on X with values in the graded ring C[ε1, . . . , εm].

Another way of describing this operation is to say that we are forming the trivial holo-
morphic bundle with fiber Cm over X, and then defining Xd|m to be its parity shift. Of
course, there are many other supermanifolds with body X—we could, for example, consider
the parity shift of an arbitrary holomorphic bundle—but this family are appropriate for our

3There is also a version of this for L∞-algebras, in which the structure maps are required to be poly-
differential operators.
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present purposes. This is indicated by the fact that, after the holomorphic twist of the
module of chiral superfields in §2, all remaining fermions transformed as scalars under the
structure group.

We can thus interpret the N-extended holomorphic currents as just consisting of the
Dolbeault complex with coefficients in g, but taken on the N-extended space X2|N−1:

(26) G•N(X) = Ω0,•(X, g)⊗C O(CN−1[1]) = Ω0,•(X2|N−1, g).

For us, the Dolbeault complex Ω0,•(X2|N−1) is, by definition, the graded algebra Ω0,•(X)⊗C

O(CN−1[1]). We point out that elements of this graded algebra are not the same as de Rham
forms on a supermanifold (see [Noj21], for example).

3.1.2. Holomorphic vector fields. Let TX be the holomorphic tangent bundle. There is a
natural resolution of this sheaf by vector bundles given by the Dolbeault complex

X•1(X) = Ω0,•(X,TX)

which is equipped with its natural ∂ operator. (The subscript 1 is to be consistent with
notation that we will introduce momentarily.) On a ∂-acyclic open set, this resolution is
quasi-isomorphic to holomorphic vector fields. The Lie bracket of holomorphic vector fields
extends naturally to X•1(X) to give it the structure of a sheaf of dg Lie algebras.

The differential and bracket on X•1(X) are given by differential and bidifferential op-
erators, respectively. Thus, X•1(X) defines a local Lie algebra on X. As a sheaf of dg Lie
algebras, X•1(X) is equivalent to the sheaf of holomorphic vector fields. However, the sheaf of
holomorphic vector fields is not a local Lie algebra since it is obviously not given as the C∞-
sections of a vector bundle. We will refer to X•1(X) as the local Lie algebra of holomorphic
vector fields (and will omit the bullet for cohomological degree unless necessary).

Let us introduce an extended version of this dg Lie algebra. For A a graded commutative
algebra, we denote its graded Lie algebra of derivations by Der(A).

Definition 3.2. The local Lie algebra of N-extended holomorphic vector fields on a complex
surface X is

X•N(X) =
(
Ω0,•(X,TX)⊗C A

)
./
(
Ω0,•(X)⊗C Der(A)

)
where A = O(CN−1[1]) as above. (Note that N = 1 extended holomorphic vector fields
are just holomorphic vector fields again, since no fermions survive the twist of the N = 1
algebra.)

The symbol ./ here denotes a direct sum of dg vector spaces, but equipped with a
different Lie algebra structure. The desired dg Lie structure can be described concretely as
follows:

• the differential is ∂ on both summands in the above decomposition;
• the Lie bracket on Ω0,•(X,TX) ⊗C A is obtained from tensoring the ordinary Lie
bracket on vector fields with the graded commutative product on A. That is, if X⊗a
and X ′ ⊗ a′ are sections, then the bracket is

[X ⊗ a,X ′ ⊗ a′] = [X, Y ]⊗ aa′;
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• the Lie bracket on Ω0,•(X) ⊗C Der(A)) is obtained from tensoring the graded com-
mutative wedge product on differential forms with the Lie bracket on derivations on
A. That is, if ω ⊗D and ω′ ⊗D′ are sections, then the bracket is

[ω ⊗D,ω′ ⊗D′] = (ω ∧ ω′)⊗ [D,D′];

• the remaining brackets are through the Lie derivative of holomorphic vector fields on
X and the natural action of Der(A) on A:

[X ⊗ a, ω ⊗D] = (LXω)⊗ aD − (ω ∧X)⊗ (Da).

Just as in the case of the current algebras associated to a Lie algebra, there is an inter-
pretation of these local Lie algebras of vector fields as vector fields living on a certain graded
manifolds. If X is a complex manifold and N ≥ 1, we have the graded manifold Xd|N−1. Its
holomorphic tangent bundle TXd|N−1 has as its space of sections Γ(Xd|N−1, TXd|N−1) which
splits as a vector space Γhol(X,TX)[ε1, . . . , εN−1]⊕Ohol(X)⊗Der(C[ε1, . . . , εN−1]). The local
Lie algebra XN is a resolution of this sheaf of holomorphic section, where we only resolve by
forms on the manifold, and treat the odd directions as algebraic.

Notation 3.3. When X = C2 we will abbreviate the local Lie algebras GN(C2) and XN(C2)
by GN and XN respectively.

3.2. Holomorphic theories on complex surfaces. In this section we introduce some
classes of holomorphic field theories defined on complex surfaces. We work inside of the BV
formalism so that the space of fields is equipped with a (−1)-shifted symplectic pairing, see
[Cos11a; CG21; Cos13a] for the requisite background. We recall how these theories arise as
holomorphic twists of N = 1, 2, 4 supersymmetric Yang–Mills theory in four dimensions in
the next section.

We start with the simplest holomorphic gauge theory, which is a holomorphic analog of
a familiar topological theory.

Definition 3.4. Let h be a Z-graded Lie algebra 4 and X a complex surface. Holomorphic
BF theory on X with values in h is the BV theory whose fields are

A ∈ Ω0,•(X, h)[1]

B ∈ Ω2,•(X, h∨).

with action functional

S(A,B) =

∫
X

〈B ∧ FA〉h =

∫
X

〈B ∧ ∂A〉h +
1

2

∫
X

〈B ∧ [A,A]〉h

where 〈−,−〉h denotes the graded symmetric pairing between h and h∨.

If h is equipped with a graded skew-symmetric invariant pairing 〈−〉 and X is equipped
with a holomorphic volume form Ω , then there is a different action we can write down

S(A) =

∫
X

Ω ∧ CS(A) =
1

2

∫
X

〈A ∧ ∂A〉+
1

6

∫
X

〈A ∧ [A,A]〉

4A similar definition applies for any L∞ algebra.
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which only depends on the field A. We refer to this as holomorphic Chern–Simons theory
on X with values in h.

In all of these action functionals the only term that survives the integration is the top
class of Dolbeault type (2, 2). Even when X is not compact one should interpret these
expressions as local functionals, or equivalence classes of Lagrangian densities on X.

3.2.1. We now turn to field theories describing holomorphic analogs of matter and linear
σ-models.

Definition 3.5. Let V be a finite dimensional graded vector space and L a line bundle on
a complex surface X. The holomorphic βγ system on X, twisted by L, with values in V, is
the the BV theory whose fields are

γ ∈ Ω0,•(X,L)⊗ V

β ∈ Ω2,•(X,L∨)⊗ V∨[1]

with action functional

S(β, γ) =

∫
X

〈β ∧ ∂γ〉L⊗V.

Here, the braces 〈−,−〉L⊗V denotes the graded symmetric pairing between sections of L⊗ V
and L∨ ⊗ V∨ = (L⊗ V)∨.

The graded vector space V may not be concentrated in a single degree, as this example
indicates.

Example 3.6. A typical example concerns the graded vector space V = V [ε] = V [1] ⊕ V ,
where V is an ordinary vector space and ε is a formal parameter of degree −1. In this case,
we can use the Berezin integral to identify

V∨ ∼= V ∨[ε][−1].

The pairing between V and V∨ is

(v + εv′, φ+ εφ′) 7→
∫

C0|1

〈v + εv′, φ+ εφ′〉V = 〈v, φ′〉+ 〈v′, φ〉

where 〈−,−〉V is the dual pairing between the ordinary vector spaces V and V ∨.

Thus, for this particular V = V [ε] we can think of the βγ system twisted by L as a
theory on the graded manifold X2|1, where the fields are

γ ∈ Ω0,•(X2|1, L)⊗ V
β ∈ Ω2,•(X2|1, L∨)⊗ V ∨

and the action is

S(β, γ) =

∫

X2|1

〈β ∧ ∂γ〉.
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Example 3.7. We can further simplify a special case of this theory when we have made an
additional choice on the complex surfaceX. Suppose we choose a square root of the canonical
bundle on X. Since KX ⊗ K

− 1
2

X = K
1
2
X , the βγ system twisted by L = K

1
2
X with values in

V = V [ε] is equivalent to the theory with complex of fields

ϕ = (γ, β) ∈ Ω0,•(X,K
1
2
X)⊗ T ∗V ⊗ C[ε] = Ω0,•(X2|1, K

1
2
X)⊗ T ∗V

where the action is

S(ϕ) =

∫

X2|1

〈ϕ ∧ ∂ϕ〉.

This example leads us to the following special case of a higher βγ system.

Definition 3.8. Let (U, ω) be a symplectic vector space and K
1
2
X a choice of a square root of

the canonical bundle on the complex surface X. The holomorphic symplectic boson system
on X with values in U is the BV theory whose fields are

ϕ ∈ Ω0,•(X2|1, K
1
2
X)⊗ U

which we write in components as ϕ = ϕ+ εϕ′ ∈ Ω0,•(X,K
1
2
X)⊗ U [ε]. The action is

S(ϕ) =
1

2

∫

X2|1

ω(ϕ ∧ ∂ϕ) =

∫
X

ω(ϕ ∧ ∂ϕ′).

Remark 3.9. More generally, one can consider a σ-model of the form

X → T [−1]U

where (U, ω) is an arbitrary holomorphic symplectic manifold. After twisting by K
1
2
X , the

AKSZ construction endows the (derived) space of maps Map(X,T [−1]U) form with a (−1)-
shifted symplectic structure.

To write the theory in the notation of the βγ system, we simply take the symplectic
vector space Z = T ∗V .

It makes sense to ‘couple’ holomorphic gauge theory to any of these holomorphic the-
ories. For example, if V is a graded h-module then we can consider the BV theory whose
fields comprise of β, γ, B,A as above and whose action is

∫
X

〈B ∧ FA〉h +

∫
X

〈β ∧ ∂γ〉L⊗V +

∫
X

〈β,A · γ〉L⊗V.

The first two terms are the actions of the original uncoupled theories and the last term uses
the h-module structure on V.
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3.3. Holomorphic Noether currents. In the BV formalism the space of local functionals
Oloc is equipped with the BRST operator which can be written as {S,−} with S the classical
BV action. Furthermore, the BV bracket {−,−} endows the cohomological shift by one
Oloc[−1] of the space of local functionals with the structure of a dg Lie algebra. The first
cohomology H1 of this dg Lie algebra encodes infinitesimal deformations of the theory. The
zeroth cohomology H0 encodes infinitesimal automorphism. A symmetry by a Lie algebra g
is given by a map of Lie algebras I : g→ Oloc[−1]. For X ∈ g the local functional IX should
be thought of as a local version of the Noether current associated to the symmetry X. For
more on this perspective we refer to [CG21, Chapters 10-12].

Consider holomorphic BF theory for the graded Lie algebra g[ε1, . . . , εN−1]. This theory
has a symmetry by the Lie algebra XN of holomorphic vector fields on X2|N−1 defined by the
following Noether current

(27) I(ξ) =

∫
X

〈B ∧ LξA〉.

Where Lξ denotes the Lie derivative by the graded vector field ξ ∈ XN.

It is immediate to check that ξ 7→ I(ξ) defines a map of Lie algebras from XN to the
space of local functionals. This is equivalent to the following master equation

dCEI + {S, I}+
1

2
{I, I} = 0

where dCE is the Chevalley–Eilenberg differential for holomorphic vector fields, S is the
classical action of BF theory, and {−,−} denotes the BV bracket.

Abstractly, the existence of this symmetry is manifest. Consider the case N = 1, for
simplicity. Holomorphic BF theory describes the formal moduli space of holomorphic G-
bundles on X near the trivial G-bundle. Deformations of the ∂ operator on the trivial
G-bundle are of the form ∂+A where A is some Ω0,1(X) form satisfying the Maurer–Cartan
equation ∂A + 1

2
[A,A] = 0. We can also consider deformations of the complex structure

which modifies the ∂-operator to ∂ + µ with µ ∈ Ω0,1(X,TX) satisfying the Maurer–Cartan
equation ∂µ + 1

2
[µ, µ] = 0. The space of infinitesimal automorphisms of such a deformation

are holomorphic vector fields on X.

For the βγ system valued in V = V [ε1, . . . , εn] there is a similar formula for the symmetry
by N-extended holomorphic vector fields. Next, suppose that V is a g-representation. Then,
the N-extended holomorphic current algebra GN is also a symmetry with local Noether
currents defined by

(28) I(α) =

∫
〈β ∧ (α · γ)〉.

There is a similar formula for a current algebra symmetry on theory of the holomorphic
symplectic boson.
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4. Derived symmetry enhancement

In this section we reach the main conceptual leap of this work. We show that upon
performing the holomorphic twist of a four-dimensional supersymmetric gauge theory there
is a significant enhancement of symmetries. We focus on two classes of symmetries present
in the (untwisted) supersymmetric theory: global (flavor) symmetries and superconformal
symmetries. Global symmetries are described by a finite dimensional Lie group. Further, in
§2 we have recalled the finite dimensional algebras describing superconformal symmetries.
In both cases we find an enhancement of symmetries to infinite dimensional Lie algebras
which are of a similar spirit to affine and Virasoro algebras in chiral CFT.

4.1. A catalog of results about twisting. We summarize the characterization of the
holomorphic twists of four-dimensional supersymmetric Yang–Mills theories, see [Cos13a;
ESW20] for a formulation of these results in a manner which is closest to our setup.

Recall, the (complexified) supertranslation algebra in four dimensions is the Z/2-graded
Lie algebra

tN = C4 ⊕ Π(S+ ⊗ CN ⊕ S− ⊗ CN)

where C4 is the complexified abelian Lie algebra of translations, and S± are the posi-
tive/negative spin representations of so(4). There is a nontrivial Lie bracket determined
by Clifford multiplication

Γ : S+ ⊗ S− → C4.

For more details on supersymmetry algebras, we recommend [ESW18] or [ES18, §3.1].

In §2.2 we introduced the notion of a a holomorphic supercharge. This is an odd square-
zero element Q ∈ tN such that the image of [Q,−] (which lies in C4) is of rank two. From this
data, one defines the holomorphically twisted theory as in [Cos13a, §15]. It was observed
in [Cos13a; ES18] that such a supercharge always exists in four dimensions, and any two
choices of a holomorphic supercharge give rise to equivalent theories up to conjugation.

We summarize the results of twisting with respect a holomorphic supercharge, starting
with N = 1 supersymmetry.

Proposition 4.1 (Well-known; for various treatments, see [ESW20; Joh95c; Cos13b; Cos13a;
SW19]). The holomorphic twist of N = 1 super Yang–Mills with values in an ordinary Lie
algebra g coupled to the chiral multiplet with values in a representation V is equivalent to
the coupled holomorphic BF -βγ system where h = g and V = V .

Next, we move on to N = 2 supersymmetry.

Proposition 4.2 ([Cos13a; ESW20]). The holomorphic twist of N = 2 super Yang–Mills
with values in an ordinary Lie algebra g coupled to the hypermultiplet with values in a sym-
plectic representation V is equivalent to holomorphic BF theory with values in h = g[ε]
coupled to the holomorphic symplectic boson with values in T ∗V .

Remark 4.3. On affine space X = C2 the canonical bundle is trivial so the theory of the
holomorphic symplectic boson with values in the symplectic vector space V is equivalent to
the βγ system with values in W where W is any subspace satisfying V = T ∗W . Thus, the
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holomorphic twist of the N = 2 hypermultiplet on C2 is equivalent to a particular βγ system
on C2.

Remark 4.4. This is a general remark about a convention that we are taking for the holo-
morphic twist of N = 2. As explained in [Cos13a; ESW20], part of the data one needs to
twist a field theory is that of a twisting homomorphism. This is a group homomorphism

ρ : C× → GR

where GR is the R-symmetry group, with the property that the weight of the twisting
supercharge Q under ρ is +1. For N = 2, the R-symmetry group is GL2(C), so there are
different choices for ρ one can make given a fixed supercharge. Recall, the odd part of the
supertranslation algebra for N = 2 is of the form

S+ ⊗ C2 ⊕ S− ⊗ C2

where S± are the positive and negative irreducible spin representations of so(4,C). The
holomorphic twist corresponds to choosing a Q of the form

Q = q ⊗
[
1
0

]
∈ S+ ⊗ C2.

Up to conjugation, there are two choices for ρ for which such a Q has weight +1. They are

ρ1(t) =

[
t 0
0 t

]
and ρ2(t) =

[
t 0
0 t−1

]
Both ρ1 and ρ2 lead to holomorphic theories, but they differ in their respective presentations
as a BV theory.

One can show that ρ1 leads to the description of twisted N = 2 supersymmetry that
we present here. The choice of ρ2 leads to a very similar holomorphic theory, with the only
difference that the cohomological degree of ε is +1, instead of the −1 that we use.

Finally, we finish with the result of the holomorphic twist of maximal supersymmetry.

Proposition 4.5 ([Bau11; Cos13a; ES19; ESW20]). The holomorphic twist of N = 4 super
Yang–Mills with values in an ordinary Lie algebra g is equivalent to holomorphic BF theory
with values in g[ε1, ε2]. When g is equipped with a non-degenerate symmetric invariant
pairing (for instance, if g is semi-simple) it admits an equivalent description as holomorphic
Chern–Simons theory with values in g[ε1, ε2, ε3].

The isomorphism between holomorphic Chern-Simons for the graded Lie algebra g[ε1, ε2, ε3]
and holomorphic BF theory for the graded Lie algebra g[ε1, ε2] can be seen as follows. Holo-
morphic Chern-Simons on C2|3 has fields

A ∈ Ω0,•(C2, g[ε1, ε2, ε3]).

Recall, in order to construct holomorphic Chern–Simons theory we need a graded skew-
symmetric invariant pairing on the Lie algebra and a holomorphic volume form on the
complex surface. For the graded Lie algebra g[ε1, ε2, ε3] the invariant pairing is defined by

(X1, X2) 7→
∫

C0|3

d3ε 〈X1, X2〉

22



for X1, X2 ∈ g[ε1, ε2, ε3], where 〈−〉 is the symmetric pairing on g. On the complex surface
C2 we choose the holomorphic volume form d2z = dz1dz2. With these choices, the action of
holomorphic Chern–Simons theory on the odd Calabi–Yau space C2|3 can be written as∫

C2|3

d2z d3ε

(
〈A ∧ ∂A〉+

1

6
〈(A ∧ [A,A])〉

)
.

The invariant pairing identifies g with g∗. Thus, we can write the fields of holomorphic
BF theory as

(A,B) ∈ Ω0,•(C2, g[ε1, ε2])[1]⊕ Ω2,•(C2, g[ε1, ε2])

A+ δB ∼= Ω0,•(C2, g[ε1, ε2])[1][δ]

where δ is a parameter of degree one. The correspondence between fields of holomorphic
Chern-Simons and BF theory can be realized by ε1 ↔ ε1, ε2 ↔ ε2, and ε3 ↔ δ.

4.2. Holomorphic symmetry enhancement. There are two type of symmetries of su-
persymmetric theories that we focus on. The first is a global (or flavor) symmetry by a Lie
algebra g. For instance, any supersymmetric theory of matter in some g-representation has
such a symmetry. The other is superconformal symmetry, which makes sense in N = 1, 2 or
4 supersymmetry. In this section we see how the twists of the supersymmetric theories we
have just cataloged have enhanced symmetries by enlargements of the (twists) of a global g
symmetries and a superconformal symmetry.

For instance, if a classical supersymmetric theory has a classical global symmetry by
a Lie algebra g, then the holomorphically twisted theory has a symmetry by the local Lie
algebra GN. Likewise, the superconformal algebra gets enchanced to a symmetry by the Lie
algebra of (graded) holomorphic vector fields XN.

The precise statement for N = 1 is the following.

Proposition 4.6. Suppose we start with a theory on R4 with N = 1 supersymmetry and a
classical global symmetry by a Lie algebra g which commutes with the supersymmetry algebra.
Then, for any holomorphic supercharge Q, the twisted theory has a classical symmetry by the
following local Lie algebras:

• holomorphic g-currents: G1 = Ω0,•(C2, g);
• holomorphic vector fields: X1 = Ω0,•(C2, TC2).

Proof. By Proposition 4.1, the twist of a general N = 1 theory is equal to holomorphic BF
theory coupled to a holomorphic βγ system. Since the global g symmetry commutes with Q,
it follows that g is a symmetry of the twisted theory. In particular, the action of g commutes
with ∂ and hence extends to an action by the local Lie algebra Ω0,•(C2, g) in such a way
that the original global symmetry by the Lie algebra g is compatible with the embedding
g ↪→ Ω0,•(C2, g) by the constant functions. We wrote the explicit local Noether current for
G1 in Equation (28), in the case N = 1.
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For the second part, we recall that local Lie algebra of holomorphic vector fields X1 acts
on the fields of the BF −βγ system by Lie derivative. The local Noether current for X1 was
constructed in Equation (27), in the case N = 1. �

There is an anomaly to quantizing the G1 symmetry, see [GW18], and an anomaly to
quantizing the X1 symmetry, see [Wil].

The statement for N = 2 is similar.

Proposition 4.7. Suppose is a theory on R4 with N = 2 supersymmetry and a classical global
symmetry by a Lie algebra g which commutes with the supersymmetry algebra. Then, for
any holomorphic supercharge Q, the twisted theory has a classical symmetry by the following
local Lie algebras:

• holomorphic g-currents on C2|1: G2 = Ω0,•(C2, g[ε]);
• holomorphic vector fields on C2|1: X2.

Proof. By Proposition 4.2 the holomorphic twist is equivalent to holomorphic BF theory for
the Lie algebra g[ε] coupled to the holomorphic symplectic boson valued in a symplectic
vector space (U, ωU). We wrote the explicit local Noether current for G2 in Equation (28),
in the case N = 2 (this used a description in terms of the βγ system).

For the second part, we observe that holomorphic vector fields X2 act on the fields of
the BF theory and the symplectic boson by Lie derivative. The local Noether current for
X1 was constructed in Equation (27), in the case N = 2. �

There is no anomaly to quantizing the symmetry by G2. We will see that there is an
anomaly to quantizing the symmetry by X2 in Section 7. We leave a full characterization of
the anomaly to future work.

The case N = 4 is slightly more subtle due to the two equivalent descriptions we just
discussed. Firstly, we ignore any global (flavor) symmetries and focus just on symmetries
by graded holomorphic vector fields. On one hand, the holomorphic twist of N = 4 can
be described by holomorphic BF theory for the Lie algebra g[ε1, ε2]. On the other hand,
after choosing a holomorphic volume form on C2 it admits a description as holomorphic
Chern–Simons theory for the Lie algebra g[ε1, ε2, ε3].

The presentation in terms of holomorphic BF theory endows the theory with a similar
symmetry as in the N = 1, 2 cases above. The holomorphic twist of N = 1, 2, 4 pure gauge
theory is BF theory valued in a Lie algebra with one, two, or three parameters which admits a
symmetry by X1,X2,X3 respectively. On the other hand, holomorphic Chern–Simons theory
has a larger symmetry algebra.

Consider C2|3 equipped with its odd holomorphic volume form d2zd3ε. The action of
holomorphic Chern–Simons theory is only invariant under graded vector fields which preserve
this odd holomorphic volume form:{

ξ ∈ Vecthol(C2|3) | Lξ(d2zd3ε) = 0

}
.
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Just as with all sheaves of holomorphic vector fields, this is not a local Lie algebra. To
present it as a local Lie algebra we resolve the conditions that the vector be holomorphic
and (super) divergence-free. We have constructed X4 as the local Lie algebra which resolves
the sheaf of holomorphic vector fields on C2|3.

Definition 4.8. Let Xdiv
4 be the following local Lie algebra on C2. As a bundle of cochain

complexes it is
0 1

X4 Ω0,•(C2|3)∂

where
∂ =

∑
i=1,2

∂

∂zi

∂

∂(∂zi)
−
∑

a=1,2,3

∂

∂εa

∂

∂(∂εa)

is the super divergence operator. The Lie bracket extends the bracket on X4 by declaring
that graded vector fields act on Ω0,•(C2|3) by Lie derivative.

Proposition 4.9. Consider N = 4 superymmetric Yang–Mills theory on R4. For any holo-
morphic supercharge Q, the twisted theory has a classical symmetry by the local Lie algebra
Xdiv

4 of super divergence-free holomorphic vector fields on C2|3.

Proof. By Proposition 4.5 the twist of N = 4 super Yang–Mills theory with gauge algebra g
is given by the holomorphic Chern–Simons theory whose fields are

(29) A ∈
(
Ω0,•(C2, g)[ε1, ε2, ε3]

) ∼= Ω0,•(C2|3, g),

The action of Xdiv
4 is the obvious geometric one by graded Lie derivative. The local Noether

current for Xdiv
4 is

1

2

∫

C2|3

d2zd3ε 〈ALξA〉

where ξ ∈ X4. �

From this symmetry by Xdiv
4 we can restrict to a symmetry by the smaller local Lie

algebra X3 which most obviously acts on the description in terms of holomorphic BF theory.
Indeed, there is an embedding of local Lie algebras

X3 ↪→ Xdiv
4

defined by

ζ 7→ ζ + (∂ζ)ε3
∂

∂ε3

.

In this expression ζ is a graded vector field on C2|2 and ∂ denotes the graded divergence
operator on this space. The graded vector field on the right hand side is automatically
graded divergence-free.

Remark 4.10. We expect the algebra Xdiv
4 to play a role for other holomorphic twists of

theories with N = 4 supersymmetry. However, these all contain gravitational multiplets.
We restrict our considerations in this work to theories with rigid supersymmetry, deferring
consideration of holomorphically twisted supergravity to future work.
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5. Factorization algebras and holomorphic symmetries

One of the central ideas of [CG17; CG21] is that the observables of a quantum field
theory form a factorization algebra. In essence, the structure maps of a factorization algebra
generalize the notion of the ‘operator product expansion.’ For instance, in complex dimension
one, holomorphic factorization algebras recover the notion of a vertex algebra [CG17, §5].
Likewise, there is a precise sense in which the symmetry algebra of a theory also forms a
factorization algebra. So far, we have described symmetries using (sheaves of) Lie algebras.
The associated factorization algebra is called the enveloping factorization algebra; see below
for a recollection.

There is a sense in which one can ‘twist,’ or deform, an enveloping factorization algebra.5
For quantum phenomena it is necessary to take these twists into account. Like central
extensions of Lie algebras, local cocycles of a local Lie algebra parametrize such twists.
We will be most concerned with cocycles of degree +1, as these correspond to ordinary
central extensions at the level of Lie algebras or vertex algebras that we get back to in the
later sections. We characterize certain local cocycles in the local Lie algebras GN and XN

introduced in the last section.

5.1. Enveloping factorization algebras. The local cohomology of a local Lie algebra L
is version of Lie algebra cohomology where the cochains are required to satisfy a locality
axiom. Such a local cochain is a functional L⊗k → C which must be given as the integral of
a Lagrangian density involving differential operators applied to the sections of L. We denote
by C•loc(L) the local Chevalley–Eilenberg cochain complex which computes local Lie algebra
cohomology. For a precise definition see [CG17, §3.4].

The (twisted) enveloping factorization algebra is defined from the following two pieces
of data:

• a local Lie algebra L, and
• a local cocycle φ ∈ C•loc(L) of cohomological degree +1.

The value of the enveloping factorization algebra on an open set U associated to this
data is defined as a deformation of the Chevalley–Eilenberg cochain complex computing Lie
algebra homology of Lc(U):

C•(Lc(U)) = (Sym (Lc(U)[1]) , dCE + φ) .

We denote the enveloping factorization algebra by Uφ(L). For more detailed definition we
refer to [CG17, §6.3]. This construction is simultaneously a generalization of the enveloping
algebra of a Lie algebra and the chiral enveloping algebra of a Lie? algebra as in [BD04].

There is a very natural reason for considering central extensions in the context of field
theory. Local Lie algebras, such as GN and XN, exist as classical symmetries of a field
theory, as we saw above in the twists of four-dimensional N = 1, 2, 4. A natural question
is whether or not these symmetries persist at the quantum level. In general, there are two
possible scenarios. The first scenario occurs when there is an internal anomaly present in the

5We are not referring to a twist by a supercharge.
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symmetry. This can arise when the local Lie algebra acts on some interacting field theory
(such as a gauge theory). In order for the symmetry to exist at the quantum level, it must
be the case that all internal anomalies vanish. Second, even if internal anomalies vanish, it
may be the case that the symmetry algebra only acts projectively. This means that while
the original algebra does not act at the quantum level, a central extension does.

We remark that in field theory all anomalies and central extensions that we study are
local. So it is necessary to characterize the local cohomology of the local Lie algebras which
act as symmetries.

5.2. Extensions in complex dimension one. As a warm-up, we review the types of
central extension present for local Lie algebras on Riemann surfaces. For any Riemann
surface Σ, and Lie algebra g, we have the current algebra

G2d = Ω0,•(Σ, g)

as introduced in §3. Given an invariant pairing κ ∈ Sym2(g∗)g on obtains a local cocycle
φ1(κ) ∈ C•loc(G2d) of degree +1 defined by

φKM(κ) : (α, β) 7→ 1

2πi

∫
Σ

κ(α∂β).

It is shown in [CG17, §5.4, Theorem 5.4.2] that the vertex algebra corresponding to the
twisted factorization enveloping algebra Uφ1(κ)(G2d) on Σ = C is equivalent to the Kac–
Moody vertex algebra at level κ. The global sections of the twisted factorization enveloping
algebra over a general surface Σ recovers the conformal blocks of the affine Kac–Moody
algebra.

For vector fields, one proceeds similarly. Look at the local Lie algebra

X2d = Ω0,•(Σ, TΣ)

where TΣ is the holomorphic tangent bundle. Up to scale, there is one nontrivial cocycle of
degree +1:

H1
loc(X2d) ∼= C

generated by the cocycle ψVir ∈ C•loc(X2d) defined by the formula

(30) ψVir :

(
α(z)

∂

∂z
, β(z)

∂

∂z

)
7→ 1

24

1

2πi

∫
Σ

∂zα(z)∂(∂zβ(z)).

It is shown in [Wil17] that the vertex algebra corresponding to the twisted factorization
enveloping algebra UcψVir

(X2d) is equivalent to the Virasoro vertex algebra of central charge
c. The global sections of the twisted factorization enveloping algebra over a general surface
Σ recovers the conformal blocks of the Virasoro algebra.

5.3. Extensions of Kac–Moody type. We turn our attention to factorization algebras
associated to the local dg Lie algebra GN on a complex surface X introduced in §3.
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5.3.1. The case N = 1. We have G1 = Ω0,•(X, g). Twisted enveloping algebras in this case
have been studied in [GW18]. It is shown that any invariant polynomial of degree three
θ ∈ Sym3(g∗)g gives rise the local cocycle

(α0, α1, α2) 7→ 1

(2πi)2

∫
X

θ(α1∂α2∂α3)

on G1.

Definition 5.1. The (N = 1) higher Kac–Moody factorization algebra on X is the twisted
factorization enveloping algebra Uθ (G1) .

In [GW18] it is shown that on X = C2 \ 0 the twisted factorization enveloping algebra
gives rise to the two-variable Kac–Moody algebra [FHK19].

5.3.2. The case N = 2. Let’s move on to the case N = 2, so we are looking at Dolbeault
forms valued in the graded Lie algebra g[ε], where ε is of degree −1. As above we write
α + εα′ ∈ Ω0,•(X, g[ε]) where α, α′ are Dolbeault forms with no ε-dependence.

Lemma 5.2. Let ω ∈ Ω1,hol(X) be a ∂-closed holomorphic one-form. There are maps of
cochain complexes

(31)
φ

(2)
ω : Sym2(g∗)g[−1] → C•loc (G2)

κ 7→
(

(α, εα′) 7→ 1

(2πi)2

∫
κ(α ∧ ∂α′) ∧ ω

)
and

(32)
φ(3) : Sym3(g∗)g[−1] → C•loc (G2)

θ 7→
(

(α0, α1, α2) 7→ 1

(2πi)2

∫
θ(α0 ∧ ∂α1 ∧ ∂α2)

)
.

Proof. The result for φ(3) follows from the result for N = 1 in [GW18]. So, all we need to
check is that for each κ ∈ Sym2(g∗)g that dφ

(2)
ω (κ) = 0 where d is the differential on the local

Chevalley–Eilenberg complex. This differential splits into two parts d = ∂ + dCE where ∂ is
the usual ∂-operator on X extended to functionals in the natural way, and dCE encodes the
Lie bracket on g[ε]. The term dCEφ

(2)
ω (κ) vanishes since κ is invariant. The term ∂φ

(2)
ω (κ)

vanishes by the following:

(∂φ(2)
ω (κ))(α, εα′) =

1

(2πi)2

∫
X

∂ (κ(α ∧ ∂α′)) ∧ ω

=
1

(2πi)2

∫
X

∂ (κ(α ∧ ∂α′) ∧ ω)

=
1

(2πi)2

∫
X

ddR (κ(α ∧ ∂α′) ∧ ω)

= 0.
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In the second line we used the fact that ω is holomorphic. In the third line we have used the
fact that ∂ω = 0. �

Remark 5.3. One can write these local cocycles as an integrals over superspace C2|1. For
instance φ(2)

ω (κ) can be written as
1

(2πi)2

∫

C2|1

κ(α ∧ ∂β) ∧ ω.

where α = α + εα′ ∈ G2 = Ω0,•(C2|1, g).

We arrive at the following definition.

Definition 5.4. Fix a ∂-closed holomorphic one-form ω on X and invariant polynomials
κ, θ on g of degree 2, 3 respectively. The N = 2 higher Kac–Moody factorization algebra on
X is the twisted factorization enveloping algebra

Uω,κ,θ (G2) .

In Theorem 1.1 we parametrized this factorization algebra on C2 with respect to a single
‘level’ κ. In this notation this corresponds to taking ω = dz2.

5.4. Extensions of Virasoro type. We now describe some local cocycles of the local Lie
algebra of (possibly graded) holomorphic vector fields on a complex manifold.

5.4.1. Holomorphic vector fields. Recall that X(X), introduced in Section 3.1.2, is the local
dg Lie algebra given by the Dolbeault resolution of holomorphic vector fields on X. The
local cohomology was computed in [Wil].

Theorem 5.5. [Wil, §4.5] There is an isomorphism of graded vector spaces

H•loc(X(X)) ∼= H•dR(X)⊗H•GF (w2)[4].

Here w2 is the Lie algebra of formal vector fields on the formal 2-disk, and H•GF (w2) is its
(reduced) Gelfand–Fuks cohomology.

In particular, this result implies that on X = C2, the local cohomology of X(C2) is
isomorphic to a shift of the Gelfand–Fuks cohomology of the Lie algebra of formal vector
fields w2.

Remark 5.6. For any graded vector bundle E there is an embedding of local functionals inside
of all functionals Oloc(E) ↪→ Ored(E). This translates to an embedding of sheaves of cochain
complexes C∗loc(L) ↪→ C∗red(Lc) for any local Lie algebra L. In the case of vector fields, there
is a related cochain complex that has been studied extensively in the context of characteristic
classes of foliations [Fuk86; Gui73; Los98; BR73], and more recently in [HK18]. Suppose,
for simplicity, that X is a compact manifold. The (reduced) diagonal cochain complex is the
subcomplex

C•∆,red(X(X)) ⊂ C•red(X(X))

consisting of cochains ϕ : X(X)⊗k → C satisfying ϕ(X1, . . . , Xk) = 0 if
⋂k
i=1 Supp(Xi) = ∅.

That is, the cocycle vanishes unless all of the supports of the inputs overlap nontrivially.
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The inclusion of the local cochain complex C∗loc(X(X)) ⊂ C∗red(X(X)) factors through this
subcomplex to give a sequence of inclusions

C•loc(X(X)) ↪→ C•∆,red(X(X)) ↪→ C•red(X(X)).

The theorem implies that local cohomology classes on any complex manifold are char-
acterized by a pair of a de Rham cohomology class on X together with a Gelfand–Fuks class.
On C2 there is an explicit formula for generating local cocycles of this cohomology. If ξ is
a holomorphic vector field on C2, its Jacobian is the function valued 2× 2 matrix whose ij
entry is ∂ziξj(z), where ξi(z) is the ith component of the vector field ξ. Similarly, if

ξ = ξ1(z, z)
∂

∂z1

+ ξ2(z, z)
∂

∂z2

∈ X(C2)

is a Dolbeault valued vector field, then its Jacobian Jξ is the 2× 2 Dolbeault valued matrix
whose ij entry is

L∂ziξj ∈ Ω0,•(C2).

In degree one, the local cohomology of holomorphic vector fields on C2 is two-dimensional

H1
loc(X(C2)) ∼= H3

GF (w2) ∼= C〈[K1], [K2]〉,
spanned by the cocycles K1, K2 which have the following explicit descriptions:

K1(ξ) =

∫
C2

Tr(Jξ) ∧ Tr(∂Jξ) ∧ Tr(∂Jξ)

K2(ξ) =

∫
C2

Tr(Jξ) ∧ Tr(∂Jξ ∧ ∂Jξ)−
∫
C2

Tr(Jξ ∧ Jξ) ∧ Tr(∂Jξ).

These two cocycles are the holomorphic analogs of the so-called a and c cocycles which
describe conformal anomalies for theories on R4 [Wil].

5.4.2. Graded vector fields. Next, we turn to local cohomology classes for the local Lie algebra
X(X2|N−1), which in §3 we understood as the local dg Lie algebra of holomorphic vector fields
on the graded manifold X2|N−1. The graded generalization of Theorem 5.5 is:

Theorem 5.7. Let X be a complex manifold of dimension 2 and suppose N ≥ 1 is an integer.
There is an isomorphism of graded vector spaces

H•loc(X(X2|k)) ∼= H•dR(X)⊗H•GF,red(w2|N−1)[4].

where w2|N−1 is the graded Lie algebra of formal vector fields on the formal graded 2|N−1-disk

w2|N−1 = Der (C[[z1, z2, ε1, . . . , εN−1]]) .

Here εi have cohomological degree −1.

We will not prove, or explicitly use, this result. We postpone its proof to future work.

Just as in the non-graded cases, the local cohomology of graded holomorphic vector fields
is whittled down to an understanding of the Gelfand–Fuks cohomology of the corresponding
graded Lie algebra of formal vector fields.
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• We do not know of a computation of the full cohomology of w2|1. The existence of
the cocycle we introduce below in Definition 5.8 implies dimH5

GF (w2|1) ≥ 1. The
claim that it represents a nontrivial class follows from the fact that it localizes to the
ordinary Virasoro cocycle, see Section 6.
• When N = 3 a result of [AF93] implies H•GF (w2|2) = H•−4

dR (U(2)).
• For N ≥ 4 one has H•GF (w2|N−1) ∼= H•dR(S5) by [AF93].
• There is a completely similar version of this theorem in complex dimension one. It
is shown in [AF93] that H•(w1|N−1) ∼= H•dR(S3) for all N ≥ 1. This agrees with the
well-known fact [Kac77] that up to scale there is a unique central extension of vector
fields on the graded punctured disk giving rise to the super Virasoro Lie algebras.

We will only be concerned with the case N = 2 from hereon. In fact, there is just one
class of cocycles we need to pay attention to. A complete characterization like in the case of
N = 1 will be the subject of future work.

The definition is the following.

Definition 5.8. For i = 1, 2 define the local cocycle ψi ∈ C•loc(X2) by the formula

ψi (ξ, εξ
′) =

1

(2πi)2

∫
tr(Jξ) ∧ ∂ tr(Jξ′) ∧ dzi

where ξ, ξ′ ∈ Ω0,•(C2, T 1,0) are Dolbeault valued vector fields on C2. The cochain ψi is
independent of odd vector fields of the form f(z1, z2, ε)

∂
∂ε
.

The verification that ψi is a cocycle is a direct calculation similar to the Kac–Moody
case above, and the details are left to the reader. We remark that as ψi is a cocycle we can
then form the twisted factorization enveloping algebra.

Definition 5.9. The N = 2 higher Virasoro factorization algebra on C2 is the twisted
factorization enveloping algebra

Uc1ψ1+c2ψ2 (X2) .

where c1, c2 ∈ C.

In Theorem 1.1 we parametrized this algebra with respect to a single ‘central charge’
c ∈ C. In this notation this is c = c1.

6. Superconformal localization and holomorphic factorization algebras

In this section we study instances of deformations of the higher dimensional holomorphic
factorization algebras introduced in §4. These deformation arise from a class of Maurer–
Cartan elements of XN (N = 1, 2, 4) which, in turn, define deformations of the Lie algebra
of holomorphic currents, holomorphic vector fields, and holomorphic field theories such as
those arising from twists of supersymmetry. The algebra XN is the Dolbeault resolution
of some graded extension of holomorphic vector fields; for any N there is a familiar class
of Maurer–Cartan elements describing deformations of complex structure on the underlying
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complex manifold X. We focus mostly on the case N = 2 and deformations that are not of
this type.6

One such deformation, which in the untwisted superconformal algebra arises from a
special supersymmetry, is given by the holomorphic vector field

(33) z2
∂

∂ε
∈ X2(C2).

This is the supercharge considered by Beem et al. [Bee+15]; we will show in this section that
the chiral algebras they consider agree precisely with the corresponding truncations of our
higher symmetry algebras.

In Definition 5.4 we have defined a factorization algebra on X = C2 for any choice of a
closed holomorphic one-form on C2 and invariant polynomials κ, θ of degree 2, 3 on g. We fix
such polynomials once and for all and also consider the holomorphic one-form dz2. For any
k4d ∈ C we have an associated twisted enveloping factorization algebra Udz2,k4dκ,θ(G2) on C2.
Here, k4d is the four-dimensional avatar of the level, it simply scales the fixed symmetric
bilinear form κ.

In §6.2, we will see how the Maurer–Cartan element (33) determines a deformation of
this enveloping factorization algebra to a factorization algebra that we will denote by Fk4d(g).
Theorem 6.1. The factorization algebra Fk4d(g) is trivial away from {z2 = 0} ↪→ C2. The
localized factorization algebra Fk4d(g)|Cz1 is holomorphic and its associated vertex algebra is
isomorphic to the Kac–Moody vertex algebra of level −k4d

2
.

We point out that the dependence on the cubic polynomial θ has completely disappeared
upon deforming by (33). The point is that the local cocycle (32) determined by θ is rendered
homotopically trivial upon performing this deformation.

The result for the Virasoro algebra is similar in spirit. We consider the deformation
Fc4d of the N = 2 Virasoro factorization algebra on C2 associated to the cocycle c4dψ2 (see
notation from Section 5.4 by the Maurer–Cartan element z2∂ε.
Theorem 6.2. The factorization algebra Fc4d is trivial away from {z2 = 0} ↪→ C2. The
localized factorization algebra Fc4d |Cz1 is holomorphic and its associated vertex algebra is
isomorphic to the Virasoro vertex algebra of central charge −12c4d.

This localization phenomena can also be used to see the conformal blocks of the Kac–
Moody and Virasoro vertex algebras. In terms of factorization algebras this amounts to
studying the factorization algebras not on affine space C2 but on the complex surface Σz1×Cz2

where Σz1 is some arbitrary genus Riemann surface. The results we have stated go through
without much more difficulty to show that these factorization algebras localize to the Kac–
Moody and Virasoro factorization algebras on Σz1 . The global sections, or factorization
homology, along Σ1 recover the conformal blocks of the respective vertex algebras.

We remark that there are new classes of deformations available from the point of view
of factorization algebras that did not exist in the symmetry algebras of untwisted N = 2

6Tautologically, any Maurer–Cartan element describes a deformation of the complex structure on the
graded complex manifold X2|1, however.
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supersymmetric field theories. For instance, as a generalization of the above example, for
any holomorphic polynomial f ∈ C[z1, z2], one can consider the graded vector field

(34) f(z1, z2)
∂

∂ε
∈ X2(C2).

This is a Maurer–Cartan element in the dg Lie algebra X2(C2), and hence determines a
deformation (at least at the classical level) of any holomorphic twist of a four-dimensional
N = 2 theory. While we do not consider these new deformations explicitly in great detail
here, we will offer some remarks on them in §6.4 below.

6.1. Localization for factorization algebras. Suppose X ↪→ Y is a closed embedding.
A factorization algebra on a manifold Y can be restricted to any open subset. We say
a factorization algebra on Y is trivial away from X if F|Y \X is equivalent to the trivial
factorization algebra which takes value C on every open subset. One can think of the
factorization algebra F as being “localized" along the submanifold X.

We will define an explicit model for such a factorization algebra on Y as a factorization
algebra on the closed submanifold X. Of course, factorization algebras do not “restrict" to
closed submanifolds in a naive sense. To define the localized factorization algebra on the
closed submanifold X we will utilize a tubular neighborhood. Let NX → X be the normal
bundle. For concreteness, we restrict to the case Y = Rn and will fix a neighborhood of the
zero section in NX which is diffeomorphic to a tubular neighborhood Tub(X) of X in Rn.

Definition 6.3. Suppose X ↪→ Rn is a closed submanifold with tubular neighborhood
π : Tub(X) → X. The restriction of a (pre)factorization algebra F on Rn to X is the
(pre)factorization algebra

F|X = π∗

(
F|Tub(X)

)
on X.

In the case that F is trivial away fromX ⊂ Rn, we say that F localizes to the factorization
algebra F|X .

Remark 6.4. Generally, the notion of restriction will depend on the choice of a tubular
neighborhood. When the factorization algebra localizes the restriction is independent of this
choice. Since we only consider the restriction of factorization algebras which localize to a
closed submanifold we set aside the issue of dependence on the tubular neighborhood.

6.2. A deformation of the current algebra. We focus on the case N = 2, but similar
constructions work for any N ≥ 2. We deform the holomorphic current algebra G = G2 =
Ω0,•(C2,C[ε]) by modifying the differential using the the Maurer–Cartan element z2

∂
∂ε
. Define

the local Lie algebra on C2:

(35) G′ =

(
Ω0,•(C2, g[ε]) , ∂ + z2

∂

∂ε

)
.
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Leaving the internal ∂ differential implicit, we can view this deformation as a two-term
complex

(36)

−1 0

ε Ω0,•(C2, g) Ω0,•(C2, g)
z2

∂
∂ε

The Lie bracket remains unmodified, identical to that on Gg[ε]. This deformation is clearly
given by a differential operator on C2, and hence this deformation remains a local Lie algebra
on C2.

At the level of sheaves, the two-term complex (36) is a Dolbeault resolved version of
the usual Koszul resolution of the pushforward of the structure sheaf OCz1

along the map
i : Cz1 ↪→ C2 which is the embedding of Cz1 at z2 = 0:

(37)

(
−1 0

ε O(C2)⊗ g
z2

∂
∂ε−−→ O(C2)⊗ g

)
'−→ i∗O(Cz1)⊗ g

The quasi-isomorphism is the restriction map that takes a holomorphic function on C2 to
its restriction along Cz1 ; an explicit quasi-inverse is given, for example, by pulling back a
holomorphic function on Cz1 along the obvious projection map π : C2 → Cz1 and placing the
result in degree zero.

As with any local Lie algebra, we can consider both its sheaf of sections G′ and its
cosheaf of compactly supported sections G′c. Just as in the case of the sheaf of sections, in
cohomology there is an isomorphism of graded cosheaves on C2:

(38) H∗ (G′c)
∼= i∗H

∗ (Ω0,•
c (Cz1 , g)

)
.

This statement for cosheaves follows formally from the result about sheaves, but only at the
level of cohomology. We are interested in a cochain level of this localization result—not only
at the level of cosheaves of Lie algebras, but at the level of the corresponding factorization
algebras.

In the notation of Theorem 6.1 the factorization algebra of study is the enveloping
factorization algebra F0(g) = U(G′). This factorization algebra is trivial away from the
z1-plane.

Lemma 6.5. The factorization enveloping algebra U(G′) is trivial away from Cz1×{0} ↪→ C2.

Proof. This follows from a statement just about cosheaves of Lie algebras. Indeed, the
cosheaf G′c, when restricted to the large open stratum, is equivalent to the trivial cosheaf:

G′c|C2\Cz1
' 0

To see this, it suffices to notice that restricting to z2 6= 0 amounts to inverting z2 in the
ring of holomorphic functions on C2, over which Ω0,•(C2) is a module. Multiplication by
an invertible element acts by an isomorphism on the module, so that the complex (37) is
obviously acyclic after localization at z2. �
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Next, we would like to characterize the factorization algebra U(G′) on the stratum Cz1 .
As explained in the previous section, the general idea is to use an open tubular neighbor-
hood of the small stratum, and then to push forward the restriction of the factorization
algebra U(G′) to Cz1 along the projection map. In the case at hand, there is already an
obvious projection map π : C2 → Cz1 , but we want to emphasize that our considerations
likely generalize to arbitrary curves in C2, as considered below in §6.4.

We consider the restricted factorization algebra U(G′)|Cz1 defined by

π∗

(
U(G′)|Tub(Cz1 )

)
In this example, it suffices to take the tubular neighborhood to the entire affine space C2.

Our goal is to find the explicit relationship between this restricted factorization algebra
and the factorization algebra C• (Ω0,•

c (Cz1 , g)). In order to do this, we must fix some addi-
tional data. Let ρ : C2 → C be a smooth function on C2 and U1 ⊂ U1 ⊂ U2 ⊂ U be open
tubular neighborhoods of Cz1 × {0} satisfying the following two conditions:

• ρ|U1 ≡ 1, and
• ρ|C2\U2

≡ 0.

We will refer to ρ as a bump function along z2 = 0; it can be taken to have image in [0, 1] ⊂ C,
but this does not play a role.

Using ρ, define the following map of cosheaves of cochain complexes on Cz1

sρ : Ω0,•
c (Cz1 , g) → π∗G

′
c

α 7→ ρ π∗α− ε∂(ρ)

z2

∧ π∗α.

Note that, by assumption ∂(ρ) ≡ 0 along z2 = 0, so the expression above is well-defined.

Proposition 6.6. For every choice of ρ as above, the map

sρ : Ω0,•
c (Cz1 , g)

'−→ π∗G
′
c

is a quasi-isomorphism of cosheaves of cochain complexes on Cz1.

Remark 6.7. One can view sρ as an approximation to the map which “pulls back” a compactly
supported Dolbeault form along the map π : C2 → C. The first problem is that since π is
not proper, pulling back does not preserve compact support. So, in order to make sense of
the pulled back map we must weight it with the function ρ. The second problem arises due
to the fact that ρ is not holomorphic, and so the assignment α 7→ ρ π∗α is not compatible
with the ∂-operator. It is, however, compatible up to a term proportional to z2. Hence we
can add the ε-dependent term to correct this naive assignment to a cochain map.

Remark 6.8. The map sρ is independent of the bump function ρ up to homotopy. Indeed, a
different choice of a bump function ρ′ will result in homotopy equivalent maps sρ ∼ sρ′ .
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Proof of Proposition 6.6. First, we check that sρ is a cochain map. Since the statement is
independent of the Lie algebra g, we will assume g = C is the trivial Lie algebra for this
proof.

For α ∈ Ω0,•
c (Cz1), note(

∂ + z2
∂

∂ε

)
(sρ(α)) = ∂(ρ) ∧ π∗α + ρπ∗∂(α)− ε∂(ρ)

z2

∧ π∗∂(α)− ∂(ρ) ∧ π∗α

= ρπ∗∂(α)− ε∂(ρ)

z2

∧ π∗∂(α)

This is precisely sρ(∂α), as desired.

We now compute the cohomology of the cosheaf π∗G′c. On an open set U ⊂ Cz1 , the
value of this cosheaf is Ω0,•

c (U × Cz2). Using Serre duality, we can identify

Ω2,•(U × Cz2)
∨ ∼= Ω

0,•
c (U × Cz2)[2].

This leads to an embedding

(π∗G
′
c)(U) ↪→

(
Ω2,•(U × Cz2)

∨[ε][−2], ∂ + z2
∂

∂ε

)
.

Since the operator ∂ + z2
∂
∂ε

is elliptic, we can apply the Atiyah–Bott Lemma [AB67] to see
that this embedding is a quasi-isomorphism.

Thus, it suffices to compute the cohomology of(
Ω2,•(U × Cz2)

∨[ε][−2], ∂ + z2
∂

∂ε

)
.

By the ∂-Poincaré lemma, this is a equivalent to two-term cochain complex(
Ω2,hol(U × Cz2)

∨[ε][−2], z2
∂

∂ε

)
.

where Ω2,hol denotes the sheaf of holomorphic sections of the canonical bundle on C2. We
recognize this cochain complex as being linear dual to the ordinary Koszul resolution (37)
of Ω1,hol(U)[−1]. Thus, we can identify the cohomology of π∗G′c(U) with

Ω1,hol(U)∨[−1]

where Ω1,hol(U) is the holomorphic sections of the canonical bundle on U . Finally, by one-
dimensional Serre duality on Cz1 and by applying Atiyah-Bott Lemma again, this is precisely
the ∂-cohomology of Ω0,•

c (U), as desired. �

A simple observation reveals that sρ is certainly not compatible with the Lie brackets,
hence is not a map of precosheaves of dg Lie algebras. However, the failure for sρ to be
compatible with the Lie brackets is exact for the differential. In other words, sρ can be
corrected to an L∞ map of precosheaves of dg Lie algebras. This L∞-map will be enough
to deduce the statement about factorization algebras, as any L∞ map induces a map on the
Chevalley-Eilenberg cochain complexes.
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In what follows, we set s(1)
ρ = sρ. Define the 2-ary map of degree (−1):

s
(2)
ρ : i∗Ω

0,•
c (Cz1 , g)× i∗Ω0,•

c (Cz1 , g) → G′c[−1]

(α, β) 7→ ε
ρ(ρ− 1)

z2

[π∗α, π∗β].

Note that the expression is well-defined since 1− ρ ≡ 0 along z2 = 0.

Proposition 6.9. The pair of maps (s
(1)
ρ , s

(2)
ρ ) determine an L∞ quasi-isomorphism of pre-

cosheaves of dg Lie algebras on Cz1:

(s(1)
ρ , s(2)

ρ ) : Ω0,•
c (Cz1 , g) π∗G

′
c.

Proof. By Proposition 6.6, all we need to check is that the pair define a L∞-morphism. The
L∞ relation we need to check is of the form

(39) [s(1)
ρ (α), s(1)

ρ (β)]−s(1)
ρ ([α, β]) =

(
∂ + z2

∂

∂ε

)
s(2)
ρ (α, β)−s(2)

ρ (∂α, β)− (−1)|α|s(2)
ρ (α, ∂β)

for α, β ∈ Ω0,•
c (Cz1 , g). We prove this relation directly. For sake of reducing clutter, we omit

the pullback along π notation: α↔ π∗α ∈ Ω0,•(C2, g).

On one hand, the left hand side of (39) is[
ρα− ε∂(ρ)

z2

∧ α, ρβ − ε∂(ρ)

z2

∧ β
]
−
(
ρ[α, β]− ε∂(ρ)

z2

∧ [α, β]

)
.

Combining terms, we see this is equal to

ρ(ρ− 1)[α, β]− ε∂(ρ)(2ρ− 1)

z2

∧ [α, β].

Now, the right hand side of (39) is(
∂ + z2

∂

∂ε

)(
ε
ρ(ρ− 1)

z2

[α, β]

)
− ερ(ρ− 1)

z2

[∂α, β]− (−1)|α|ε
ρ(ρ− 1)

z2

[α, ∂β]

which matches with the left-hand side by inspection. �

Corollary 6.10. Let π : C2 → Cz1 and ρ be as above. The L∞ map (s
(1)
ρ , s

(2)
ρ ) of Proposition

6.9 defines a quasi-isomorphism of factorization algebras on Cz1:

C•(sρ) : C•
(
Ω0,•
c (Cz1 , g)

) '−→ U(G′)|Cz1 .

Proof. This is a formal consequence of Proposition 6.9 and the fact that pushing forward
commutes with taking Chevalley–Eilenberg chains. Indeed, if f : X → Y is any map and L

is a local Lie algebra on X, then there is a natural isomorphism of cosheaves

C•(f∗Lc)
∼=−→ f∗C•(Lc).

�
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6.2.1. Central extensions. We now consider the case where we turn on some non-trivial cen-
tral extension of the deformed local Lie algebra G′ and consider the full deformed factorization
algebra Fk4d = Udz1,k4dκ,θ(G

′).

Recall that G′ is a deformation of the current algebra G = G2. In §5.3 we introduced
classes in the local cohomology of the undeformed algebra G. We are interested in the classes

φ
(2)
dz1

(k4dκ), φ(3)(θ).

Explicitly, these local cocycles are defined by

φ
(2)
dz2

(k4dκ) : (α, εα′) 7→ k4d

(2πi)2

∫
C2

κ(α∂α′)dz2

φ(3)(θ) : (α0, α1, α2) 7→ 1

(2πi)2

∫
θ(α0 ∧ ∂α1 ∧ ∂α2)

where α, α′, αi ∈ Ω0,•(C2, g).

Upon deforming G  G′ each of these remain cocycles in the local cohomology of the
deformed algebra. However, only the first cocycle remains to be nontrivial.

Lemma 6.11. The local cohomology class of φ(3)(θ) is trivial in C•loc(G
′) for any θ as above.

Recall from §5.2 that an invariant pairing κ also defines a local cocycle on for the g-
valued holomorphic currents on Cz1 . This is the local cocycle that gives rise to the ordinary
affine algebra.

We have already checked the level zero version of localization. Theorem 6.1 follows from
the following computation.

Proposition 6.12. Under the pull-back along sρ = (s
(1)
ρ , s

(2)
ρ ) we have

(40) s∗ρφ
(2)
dz1

(k4dκ) = −k4d

2
φ2d(κ) = φ2d(−k4dκ/2).

Remark 6.13. Recalling that the scale of κ plays the role of the level, this matches with the
result in [Bee+15] that k2d = −k4d/2.
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Proof. For type reasons, only the pullback along the component s(1)
ρ will contribute a non-

trivial class in the cohomology of Ω0,•
c (Cz1 , g). Let α, β ∈ Ω0,•

c (Cz1 , g), then

(s(1)
ρ )∗φ

(2)
dz1

(α, β) = φ4d
κ (s(1)

ρ (α), s(1)
ρ (β))

= φ4d
κ

(
ρπ∗α− ε∂(ρ)

z2

∧ π∗α, ρπ∗β − ε∂(ρ)

z2

∧ π∗β
)

= − 1

(2πi)2

∫
C2

dz2 ∧ κ
(
∂(ρ)

z2

∧ π∗α ∧ ∂ (ρπ∗β)

)

= − 1

(2πi)2

∫
C2

dz2
∂(ρ2)

2z2

∧ κ (π∗α ∧ ∂(π∗β))− 1

(2πi)2

∫
C2

dz2
∂(ρ)∂(ρ)

z2

∧ κ (π∗α ∧ π∗β)

= − 1

4πi

∫
Cz1

κ(α∂β)

= −1

2
φ2d
κ (α, β).

In the fifth line, we have applied Stokes’ theorem on an annulus, followed by the residue
theorem, in the z2-direction. But the integral over Cz2 is also simple to compute by elemen-
tary methods, and this is perhaps more illuminating. We imagine that our bump function
depends only on the radial direction in Cz2 ; that is, ρ = f(r2) = f(z2z2) for some appropriate
function f . (The result remains true even if ρ is a more generic bump function.) It is then
easy to see that ∫

Cz2

dz2 ∧ dz̄2
ρ

z2

∂ρ

∂z̄2

=

∫
dz2 ∧ dz̄2 ff

′(41)

= −2i

∞∫
0

πd(r2) · 1

2

df 2

d(r2)

= −πi (f 2)
∣∣∞
0

= +πi,

independent of the choice of f . �

Remark 6.14. On G there are the local cocycles φ(2)
dzi

(k4dκ) for i = 1, 2. Upon making our
deformation by z2∂ε, only the cocycle i = 1 remains nontrivial since the deformation has the
effect of localizing to the plane {z2 = 0}. Without much more difficulty one can generalize
this result to a general hyperplane. Consider the localization of the factorization algebra to
the complex plane

P : {c1z1 + c2z2 = 0}
which is implemented by the Maurer–Cartan element c1z1∂ε+c2z2∂ε. Denote by projP : C2 →
P the orthogonal projection along P . We can then consider the twisted enveloping factoriza-
tion algebra of G′ (where the prime now indicated deformation by this new Maurer–Cartan
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element) in the presence of the local cocycle

(a1φ
(2)
dz1

+ a2φ
(2)
dz2

)(k4dκ).

Upon localizing to the plane P , in the same sense as above, one finds the ordinary Kac–
Moody factorization algebra supported on P of level

−|projP (a)|k4d

2
κ

where a =
(
a1 a2

)
.

6.3. A deformation of the higher Virasoro algebra. As above, we deform the local Lie
algebra of N = 2 holomorphic vector fields X2 by the element z2

∂
∂ε
. So, consider the local

Lie algebra

(42) X′ =

(
Ω0,•(C2|1, TC2|1), ∂ +

[
z2
∂

∂ε
,−
])

.

Here z2∂ε is acting via the adjoint, or commutator, action.

Consider the map of sheaves

r : X→ i∗
(
Ω0,•(Cz1 , TCz1)

)
which sends a graded vector field to the restriction of the z1-component to the plane z2 = 0.
That is, if we write a graded vector field as

ξ = ξ1(z1, z2, ε)
∂

∂z1

+ ξ2(z1, z2, ε)
∂

∂z2

+ ξε(z1, z2, ε)
∂

∂ε

then r(ξ) = ξ1(z1, z2 = 0, ε = 0) ∂
∂z1

. The map r commutes with the Lie bracket with the
graded vector field z2

∂
∂ε
, so r also defines a map from the deformed N = 2 holomorphic

vector fields

r : X′ → i∗
(
Ω0,•(Cz1 , TCz1)

)
that we denote by the same letter.

Proposition 6.15. Applied to the deformed N = 2 holomorphic vector fields, the map

r : X′
'−→ i∗

(
Ω0,•(Cz1 , TCz1)

)
defines a quasi-isomorphism of sheaves on C2.
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Proof. The proof is a simple calculation. We can represent the complex X′N=2 by the following
diagram:

(43)

−1 ε Ω0,•(C2) ∂
∂z1

ε Ω0,•(C2) ∂
∂z2

0 Ω0,•(C2) ∂
∂z1

Ω0,•(C2) ∂
∂z2

ε Ω0,•(C2) ∂
∂ε

1 Ω0,•(C2) ∂
∂ε

z2
∂
∂ε

z2
∂
∂ε

−ιdz2
∂
∂ε

−ιdz2
∂
∂ε

z2
∂
∂ε

The key observation is that the right quadrilateral forms an acyclic sheaf. Indeed, both the
top right and bottom left diagonal maps are isomorphisms of sheaves of dg vector spaces.
We thus conclude that the deformed sheaf X′ is quasi-isomorphic to the sheaf

(44) ε Ω0,•(C2) ∂
∂z1

Ω0,•(C2) ∂
∂z1

z2
∂
∂ε

appearing at the top left of (43) in degrees −1 and 0. From here, the argument is identical
to that in the previous section, since we are once more dealing with the Dolbeault resolution
of the Koszul complex representing Cz1 ; only the Lie structure is different. �

For the cosheaf version of the deformation, we proceed as we did with the current algebra
in the previous section. Let ρ : C2 → C be a bump function along z2 = 0 as in §6.2. Define
the map of cosheaves

(45)

sρ : Ω0,•
c (Cz, TCz)→ π∗ X′c|U

ξ
∂

∂z
7→ (ρ π∗ξ)

∂

∂z1

− ε
(
∂(ρ)

z2

∧ π∗ξ
)

∂

∂z1

.

Proposition 6.16. The map sρ is a quasi-isomorphism of cosheaves of cochain complexes.
It can be corrected to an L∞ morphism of precosheaves of dg Lie algebras.

Proof. We first check that sρ is a cochain map. For simplicity of notation, we omit the
pullback symbol π∗. Observe that

(46)

[(
∂ + z2

∂

∂ε

)
, sρ(ξ∂z)

]
=

[(
∂ + z2

∂

∂ε

)
,

(
ρξ − ε∂ρ

z2

∧ ξ
)

∂

∂z1

]
=

((
∂ + z2

∂

∂ε

)(
ρξ − ε∂ρ

z2

∧ ξ
))

∂

∂z1

,

so that the computation reduces to that done for Dolbeault forms in the proof of Proposi-
tion 6.6.
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We proceed further by showing that the cohomologies on each side agree. This is
sufficient, since sρ has an obvious one-sided inverse given by the restriction map. But the
argument of Proposition 6.15 is then enough to reduce the computation of the cohomology
in this case to that done for Dolbeault forms in the proof of Proposition 6.6.

The L∞ correction term takes a familiar form:

(47)

s(2)
ρ : Ω0,•

c (Cz1 , TCz1)⊗ Ω0,•
c (Cz1 , TCz1)→ X′c[−1](
ξ
∂

∂z1

, λ
∂

∂z1

)
7→ ε

ρ(ρ− 1)

z2

[
ξ
∂

∂z1

, λ
∂

∂z1

]
.

The proof that (s
(1)
ρ , s

(2)
ρ ) together define an L∞ map proceeds by a straightforward calcula-

tion identical to that given above in the Kac–Moody case; the key fact is that ∂ also obeys
a Leibniz rule with respect to the Lie bracket of Dolbeault-valued vector fields. �

6.3.1. Central extensions. We now consider the case where we turn on some non-trivial cen-
tral extension of the deformed local Lie algebra X′ and consider the full deformed factorization
algebra Fc4d = Uc4dψ2(X

′).

Given the result for c4d = 0 in the last section, this will follow from the analogue
of Proposition 6.12 in the Virasoro case. We again will find agreement with the result
of [Bee+15]. Recall from Definition 5.8 above that the relevant cocycle takes the form

(48) ψi(ξ, εξ
′) =

1

(2πi)2

∫
tr(Jξ) ∧ ∂ tr(Jξ′) ∧ dzi.

We have already checked the central charge zero version of localization in the previous
subsection. Theorem 6.2 follows from the following computation.

Proposition 6.17. Pulling back along the L∞ map sρ, we have that

(49) s∗ρψ2 = −1

2
ψ2d, s∗ρψ1 = 0.

Accounting for a factor of 24 related to the normalization of ψ2d and discussed in §5.2, this
matches the claim in [Bee+15] that c2d = −12c4d.

Proof. Just as in the previous case, the calculation amounts to computing the pullback of this
cohomology class along sρ, which can be done as follows: Let ξa(z1)∂1 be a Dolbeault-valued
vector fields on Cz1 for a = 1, 2. Then

s∗ρψi(ξ1(z1), ξ2(z1)∂1) = ψ2(sρξ1(z1)∂1, sρξ2(z1))

= ψi

(
ρπ∗ξ1

∂

∂z1

− ε
(

1

z2

∂̄ρ ∧ π∗ξ1

)
∂

∂z1

, ρπ∗ξ2
∂

∂z1

− ε
(

1

z2

∂̄ρ ∧ π∗ξ2

)
∂

∂z1

)
.(50)

Setting the arguments equal to λa + ελ′a, and omitting the pullback symbol π∗ for simplicity
of notation, we can now directly compute that

(51) Jλa =

[
L∂1(ρξa) 0
L∂2(ρξa) 0

]
=

[
ρL∂1ξa 0
ρ̇ξa 0

]
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and

(52) Jλ′a = −

L∂1 ( 1
z2
∂̄ρ ∧ π∗ξa

)
0

L∂2

(
1
z2
∂̄ρ ∧ π∗ξa

)
0

 =

[
z2
−1∂ρ ∧ L∂1ξa 0(

z2
−2∂ρ− z2

−1 ∂
∂z2

)
∧ ξa 0

]
.

Taking traces, applying the ∂ operator, and multiplying, we obtain

(53) tr(Jλ1) ∧ ∂ tr(Jλ′2) = ρL∂1ξ1 ∧ z2
−1∂ρ ∧ ∂ (L∂1ξ2) .

We now note that L∂1ξa = ∂ξa/∂z1, so that the cocycle reduces to

(54)

s∗ρψi(ξ1∂z, ξ2∂z) =
1

(2πi)2

∫
C2

1

2z2

∂ξ1

∂z1

∧ ∂(ρ2) ∧ ∂
(
∂ξ2

∂z1

)
∧ dzi

= −1

2

1

(2πi)2

∫
C2

(
dz2 ∧

∂(ρ2)

z2

)(
∂ξ1

∂z1

∧ ∂ ∂ξ2

∂z1

)
.

Since ξa is a Dolbeault form on Cz1 , it is clear just by reasons of form degree that ψ1 pulls
back to the trivial cocycle. Performing the integral over Cz2 as in Proposition 6.12 above,
we obtain

(55) s∗ρψ2(ξ1∂z, ξ2∂z) = −1

2

1

2πi

∫
Cz1

∂ξ1

∂z1

∧ ∂ ∂ξ2

∂z1

= −12ψ2d(ξ1∂z, ξ2∂z),

reproducing precisely the description of the familiar Virasoro cocycle in one complex dimen-
sion given in [Wil17] and recalled above in §5.2. �

6.4. Exotic deformations of higher symmetry algebras. In the preceding subsections,
we have shown that the deformation considered by Beem and collaborators (which originates
in the global superconformal algebra) appears naturally in our context, taking the form of a
Koszul differential, and that their chiral algebras arise from the corresponding deformation
of our higher symmetry algebras. However, we wish to emphasize that there are additional
possible deformations of our algebras, which are not visible at the level of global supercon-
formal symmetry. While we reserve detailed study of such exotic deformations for future
work, we will offer a few remarks below to demonstrate their interest, and will argue in
particular that there exist deformations of X2 that localize to the holomorphic vector fields
on any affine algebraic curve in C2, and not just to planes. Our remarks are schematic; in
particular, we do not here discuss the correct statements at the level of cosheaves.

Consider the following general setup: Let A denote a commutative differential graded
algebra, or more generally a sheaf of such objects. We will ask that A be nonnegatively
graded with cohomological differential, and will denote a basis of Der(A), the degree-zero
derivations of A, as a left A-module with the symbols ∂i. For example, if A = C[z1, z2], then
∂i = ∂/∂z1 or ∂/∂z2.

We then form the tensor product A ⊗ C[ε], with ε an odd variable of degree −1. A
priori, this is a bigraded cdga, when equipped only with the internal differential on A. We
are interested in the dg-Lie algebra of its (super) derivations, which was described above
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in the example of holomorphic vector fields on superspace. As a left A-module, graded by
ε-degree, we can describe its content with the following table:

(56)

−1 0 1

A · ε ∂
∂ε

A · ε∂i A · ∂
∂ε

A · ∂i
Now, we ask for deformations of the differential, of total cohomological degree +1, that
arise from the adjoint action of an element of this dg-Lie algebra on itself. Any Maurer–
Cartan element gives rise to such a deformation of the differential. The simplest class of such
elements consist of odd derivations that have vanishing self-bracket and also anticommute
with the internal differential on A, so that both terms of the Maurer–Cartan equation are
independently zero. In this case, for degree reasons, there are two possible choices:

• an element of the form f ∂
∂ε
, where f is a closed element of degree zero in A; or

• an element of the form fi ∂i, where fi are degree-one elements of A, such that the
result commutes with the internal differential.

Both types of deformation are interesting; for example, if A is the Dolbeault complex, we
can generate the deformation of the ∂̄ differential to the de Rham differential by an operator
of the second type. However, such deformations have essentially only to do with A itself, and
so we will be interested in the first class of deformations here; these include the deformations
made possible by extended superconformal symmetry.

The adjoint action of such an element generates the following differentials (which are
maps of left A-modules) on our diagram from above:

(57)

A · ε ∂
∂ε

A · ε∂i A · ∂
∂ε

A · ∂i

f

f

∂if

−∂if

Observation 6.18. The cohomology of (57), in ε-degree −1, is the left A-module

(58)
⊕
i

{x ∈ A : f · x = (∂if) · x = 0} · ε∂i.

In particular, when f is not a zerodivisor in A, there is no cohomology in this degree.
Furthermore, the cohomology in ε-degree +1 is the left A-module

(59) A/〈f, ∂if〉 ·
∂

∂ε
.

Thus, when A is (for example) a polynomial ring in degree zero, the cohomology is precisely
the coordinate ring of the singular locus of the affine hypersurface f = 0, and vanishes
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when f is a smooth and reduced hypersurface. When, on the other hand, f = pn for some
irreducible (smooth) polynomial p, the cohomology will be the quotient of the polynomial
ring by the ideal pn−1; this is a typical example of behavior in the unreduced case.

Let us now consider the cohomology in degree zero. We can describe it as the set of
elements of the form

(60) gi∂i + gεε
∂

∂ε
,

where the g’s are elements of A and a summation over i is understood. These elements are
subject to the single relation

(61) gεf = gi∂if,

and are considered modulo the ideal consisting of elements of the form

(62) gi = fhi, gε = hi∂if,

which are the image of the differential on elements hiε∂i of degree −1.

Let us simplify now to the case where A = C[z1, . . . , zd] is the coordinate ring of affine
d-space. We can analyze the cohomology of stratum by stratum, as we did previously,
according to whether we are on the zero locus of f or in its complement. If we assume
that f is invertible, it is clear that the cohomology is trivial. As a sheaf, the cohomology
is therefore supported only along the stratum f = 0. However, if we restrict to this locus
(under the assumption that f is smooth and reduced), it is easy to see that the gi are subject
to the single linear relation gi∂if = 0, so that the vectors appearing in cohomology resolve
the tangent sheaf to f = 0. gε is subject to no relation, but the image of the differential is
generated by ∂if , so that—by the Jacobian criterion for smoothness—it contributes nothing
in cohomology. In general, the gi contribute a copy of the naive tangent space to the
hypersurface, and gε contributes a copy of functions on the singular locus, accompanied
by ∂

∂ε
.

6.5. More supersymmetry. Instead deforming the N = 2 version of the current and
graded algebras of holomorphic vector fields, it is natural to consider similar deformations
for the N = 4 versions. We do not include the detailed calculation here, but we survey the
approach.

Consider the version of holomorphic vector fields with two odd directions, which we
called X3. This is a resolution of the sheaf of holomorphic vector fields on C2|2. For the odd
directions introduce the degree −1 variables ε1, ε2. We consider the deformation

X′3 =

(
Ω0,•(C2|2, TC2|2), ∂ +

[
z2

∂

∂ε2

,−
])

.

From Theorem 5.7 and the discussion afterwards, we know that classes in H5(U(2)) ∼= C give
rise to local cocycles of degree +1 on X3. So, up to scale and homotopy there is a unique
such local cocycle that we will denote by ψ̃. For the present depth of the discussion the
explicit form of ψ̃ will not be used.
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Consider the associated enveloping factorization algebra Uψ̃(X′3) on C2 (or Σ × C). As
above, this localizes to the z1-plane and defines a holomorphic factorization algebra on Cz1 .
The following result follows from a similar analysis as above.

Theorem 6.19. The factorization algebra Uψ̃(X′3) is trivial away from {z2 = 0} ↪→ C2. The
localized factorization algebra is holomorphic and its associated vertex algebra is isomorphic
to the N = 2 topological Virasoro vertex algebra.

Recall that the ordinary Virasoro vertex algebra arises from the factorization enveloping
algebra of the sheaf of holomorphic vector fields on C. The N = 2 topological Virasoro vertex
algebra arises from the sheaf of holomorphic vector fields on C2|1.

The Lie algebra X3 is a symmetry of the holomorphic twist of N = 4 supersymmetric
Yang–Mills theory. Recall that this symmetry enlarges to a symmetry by the local Lie algebra
that we denoted Xdiv

4 ; this is a resolution for the sheaf of divergence-free holomorphic vector
fields on C2|3. Call the three odd directions ε1, ε2, ε3. Notice that the graded vector field
z2∂ε1 is divergence-free so it makes sense to deform Xdiv

4 by this element. With the proper
choice of a twisting cocycle we expect this deformation to localize to a twisted version of the
small N = 4 superconformal vertex algebra. We leave a proof of this for later work.

7. Deformations of N = 2 theories

In the previous section we have focused on deformations of symmetry algebras present
in twists of four dimensional supersymmetric theories. We now turn to deformations of four-
dimensional quantum field theories themselves from the point of view of the holomorphic
twist. We choose to focus on the holomorphic twist of theories with N = 2 supersymmetry,
and a specific deformation which arises from the N = 2 superconformal algebra.

Classically, we start with a holomorphic gauge theory on C2 which consists of a pure
gauge sector and a holomorphic matter (or σ-model) sector. This is the holomorphic twist
of N = 2 QCD with hypermultiplets valued in a (complex) symplectic representation, see
Proposition 4.2. In other words, the theory we consider is the holomorphic twist of N = 2
supersymmetric QCD with Lie algebra g and matter valued in a representation V .

The free limit of the equations of motion of the theory require that all fields be ∂-closed.
Like in the previous section, we consider deforming this ∂ operator via ∂  ∂ + z2

∂
∂ε
. For

a more explicit description of the deformation see Equation (67) below. The existence of
this deformation is manifest from our results of §4. Indeed, we know by Proposition 4.7
that the N = 2 symmetry algebras G2, X2 act on the holomorphic twist of any N = 2
theory. Furthermore, the deformed symmetry algebras G′2, X′2 we considered in §6 act on this
deformation of the holomorphic twist of any N = 2 theory.

We stress that at the classical level, the theory we start with makes sense for any
such N = 2 gauge theory, but at the quantum level we find an anomaly in the deformed
theory which agrees with the condition that the theory we started with be superconformal.
Specifically, we will show the following.
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Proposition 7.1. The holomorphic twist of N = 2 supersymmetric QCD on C2 with Lie
algebra g and matter valued in the symplectic representation T ∗V , exists at the quantum
level. There is an anomaly to quantization of N = 2 QCD in the presence of the holomorphic
deformation we will introduce in Equation (67) below. This anomaly vanishes if and only if

(63) Trgad(X
2)− TrV (X2) = 0

for all X ∈ g.
Remark 7.2. This condition can be rewritten in terms of the quadratic Casimir invariant
and the dimension of the given representations; it then takes the form
(64) c2(g) dim(g) = c2(V ) dim(V ).

For semisimple gauge algebras of type A and matter in fundamental hypermultiplets, this
can be rewritten simply using the typical physics parameters Nf and Nc, which indicate
gauge algebra su(Nc) and matter representation V = fund⊕Nf . Using familiar expressions
for the quadratic Casimir invariants [Sla81], the condition becomes

(65) Nc(N
2
c − 1) =

N2
c − 1

2Nc

·NfNc ⇒ Nf = 2Nc,

which reproduces the well-known condition for N = 2 QCD to be superconformal. One
can thus interpret the theorem as indicating that the failure of the original theory to be
superconformal is manifested as an anomaly that prevents realization of the higher symmetry
algebra at the quantum level.

Like the deformed symmetry algebras we met above, the factorization algebra of ob-
servables of the deformed theory localizes to the Cz1 plane.
Theorem 7.3. Suppose the anomaly condition (63) is satisfied and let Obs(g, V ) be the
factorization algebra of quantum observables on C2 associated to the holomorphic theory.
Then, Obs(g, V ) is equivalent to a stratified factorization algebra on C2, which is trivial
away from Cz1 ⊂ C2, and equivalent to a holomorphic translation invariant factorization
algebra Obsz1(g, V ) on Cz1.

The final goal is to characterize the factorization algebra Obsz1(g, V ) in a more familiar
algebraic description. By [CG21, Theorem 2.2.1], a holomorphic translation invariant fac-
torization algebra F on C (satisfying some natural conditions) defines a vertex algebra that
we will denote V[F]. We then utilize results of [Li16; CG21] which will allow us to relate
solutions of the QME, which we have produced by the method of renormalization, and vertex
algebras. The conclusion is the following.
Proposition 7.4. As a vertex algebra, V [Obsz1(g, V )] is equivalent to the g-BRST reduction
of the βγ system valued in V .

7.1. A holomorphic deformation of N = 2. The holomorphic theory we start with is a
coupled holomorphic BF−βγ system, as we introduced in §3.2. We assume the holomorphic
BF theory has underlying Lie algebra h = g[ε] where g is an ordinary Lie algebra7 and ε is

7Taking g to be an ordinary Lie algebra as opposed to a dg or L∞ algebra is for simplicity here, and to
match with the familiar situation in the N = 2 untwisted theory. What is important is that we have this
extra odd direction labeled by ε.
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a parameter of degree −1. The βγ system we consider is valued in the graded vector space
V = V [ε] where V is a g-representation, and ε is as above.

Physically, as we recollected in Proposition 4.2, this theory is equivalent to the holo-
morphic twist of N = 2 supersymmetric QCD with Lie algebra g and matter transforming
in the symplectic g-representation T ∗V .

The coupled theory is abstractly summarized by thinking about it as the holomorphic
BF theory for the semi-direct product graded Lie algebra

gV
def
= g[ε] n V [ε][−1]

where the semi-direct product is induced by the g representation V . With this notation, the
fields of the theory can be written succinctly as

Ω0,•(C2)⊗ gV [1]⊕ Ω2,•(C2)⊗ g∗V .

In the first component lives the pair of fields (A, γ) and in the second component are the
conjugate fields (B, β).

The full action can be written as

(66) S(A,B, γ, β) =

∫

C2|1

〈B,FA〉g +

∫

C2|1

〈β, ∂Aγ〉V

where FA = ∂A+ 1
2
[A,A] and ∂Aγ = ∂γ+[A, γ]. More explicitly, in terms of the components

α = α + εα′, we can expand the action as

S =

∫
C2

〈B′, ∂A+
1

2
[A,A]〉g +

∫
C2

〈B, ∂A′ + [A,A′]〉g

L +

∫
C2

〈β′, ∂γ + [A, γ]〉V +

∫
C2

〈β, ∂γ′ + [A, γ′] + [A′, γ]〉V

The first and second lines correspond to the first and second terms in (66). Note that due
to the nature of the pairing between fields and anti-fields, the primed fields (−)′ appear
precisely once in each term in the action.

We turn on the following deformation of the holomorphic twist of the free hypermultiplet

(67) IS(β′, γ′) =

∫
C2

z2〈B′ ∧ A′〉g +

∫
C2

z2〈β′ ∧ γ′〉V .

Equivalently, as an integral over the graded space C2|1 we can write this action as

IS(β, γ) =

∫

C2|1

〈B ∧ z2
∂

∂ε
A〉g +

∫

C2|1

〈β ∧ z2
∂

∂ε
γ〉V .

The deformed theory is completely described by a local Lie algebra that we denote by
L(g, V ). In other words, the Maurer-Cartan elements of L(g, V ) are equivalent to solutions
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to the classical equations of motion of the deformed theory S + IS. The underlying graded
Lie algebra is of the form

(68) L(g, V ) = Ω0,•(C2)⊗ gV [1] n Ω2,•(C2)⊗ g∗V .

The differential has two components ∂ + z2
∂
∂ε
.

7.2. An exact quantization and the QME. Holomorphic field theories admit very well-
behaved one-loop quantizations in any dimension. The approach to renormalization for
holomorphic theories in the BV formalism that we take is developed in [Wil18]. We refer to
this work for the notation and conventions used below.

There are two approaches to producing a renormalized BV action in the case of the
deformed holomorphic theory we study here:

(1) Treat the deformation z2
∂
∂ε

as part of the kinetic term in the action. This amounts
to deforming the linear BV operator

∂  ∂ + z2
∂

∂ε
.

Since this deformation does not commute with the gauge fixing operator QGF = ∂
∗,

the approach of [Wil18] does not directly apply, and some extra work must be done
in producing the renormalized action.

(2) Consider the deformation as a particular background of the theory. This means that
we treat the deformation as prescribing a one-parameter family of theories over the
ring C[c], where the deformed action has the additional interaction term

c

∫
z2〈β′γ′〉.

In general, treating quadratic terms as deformations of the interacting part of theory
is ill-posed since RG flow can produce connected diagrams of infinite size. Due to the
particular form of this deformation, however, the graph expansion is still well-defined
even in the presence of this quadratic term.

In principle, by the general formalism to constructing BV theories developed in [Cos11a],
both approaches to quantization will yield equivalent results. However, one approach may
involve significantly more complicated analysis in order to evaluate the respective Feynman
diagrams. We will take approach (2) to studying the quantization of the deformed holomor-
phic theory, since we can most directly borrow the calculations performed in [Wil18].

In doing this, it is convenient to split up the action in the following way:

(69) S + IS = Sfree + I + IS

where Sfree is the free part of the action in (66), I is the interacting part of the action in (66),
and IS is the deformation in (67).

The gauge fixing condition we choose is given by the operator

QGF = ∂
∗ ⊗ 1

which acts on the fields of the theory Ω0,•(C2)⊗ gV [1].
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There is a simple combinatorial observation of the allowable Feynman diagrams that can
appear in the graph expansion of the holomorphic theory in the presence of the deformation.
Without the deformation the theory admits a quantization that is exact at one-loop. Even
in the presence of the deformation, at one-loop the only possible diagrams that can appear
must have external edges labeled by the fields A = A+ εA′ or γ = γ + εγ′. Moreover, since
the propagators trade a A for a B and a γ for a β, this means that the holomorphic gauge
still provides an exact quantization at one-loop.

The next thing we need to know is that the renormalization group flow acts trivially at
one-loop in the presence of the deformation. Indeed, by a slight variant of [Wil18, Lemma
3.12], we have the following:

Lemma 7.5. The limit

I[L] + IS[L]
def
= lim

ε→0
W (Pε<L, I + IS)

exists. Here, the right hand side denotes the ε → 0 limit of the sum over weights of all
Feynman diagrams whose edges are labeled by the cutoff propagator Pε<L and whose vertices
are labeled by I + IS—see [Cos11a] for further details. Thus, there exists a one-loop finite
prequantization of holomorphic theory, even in the presence of the deformation IS.

Proof. The first observation is algebraic. Ordinarily, for the weight expansion to be well-
defined one must look at graphs with vertices of valence ≥ 3. See [Cos11b, Chapter 2].
The interaction IS is only quadratic in the fields, but it is nilpotent: {IS, IS} = 0. Thus,
the weight expansion over graphs with bivalent vertices labeled by IS, and trivalent vertices
labeled by I is well-defined.

The remainder of the proof is analytic. In fact, the proof is nearly identical to the anal-
ysis performed in the proof of [Wil18, Lemma 3.12], so we only point out the key additional
argument necessary to handle this case.

For finite ε and L, a general term in the weight of a wheel diagram will be of the form
∫

(C2)k

(
k∏

α=1

dzα1 dzα2

)
Φ(z1, . . . , zk)

(
k∏

α=1

Pε<L(zα, zα+1)znα2

)
.

This integral corresponds to taking the weight of a wheel diagram with k vertices. Here:

• Φ is a compactly supported smooth function on (C2)k;
• Pε<L is the propagator on C2 obtained from the holomorphic gauge fixing condition;
• nα ∈ {0, 1} for α = 1, . . . , k.

For the situation considered in [Wil18], it is assumed that the interactions (or vertex labels)
are translation invariant; this corresponds to taking nα = 0 for each α = 1, . . . , k in the
above formula. In the general case, we simply observe that we can absorb the factors of znα2

into the compactly supported function Φ:

Φ(z1, . . . , zk)→ Φ′(z1, . . . , zk) =

(
k∏

α=1

znα2

)
Φ(z1, . . . , zk).
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Figure 1. The anomaly

The new function Φ′ is still compactly supported, and so we can apply an identical analysis
carried out in [Wil18]. �

In order for the effective family {I[L]}L>0 to define a quantum field theory it must
satisfy the quantum master equation (QME). The renormalized QME exists at each fixed
L > 0 and is of the form

∂I[L] +
1

2
{I[L], I[L]}L + ~∆LI[L] = 0.

Since our theory is one-loop exact, and satisfies the classical master equation, the only
possible anomaly appears at one-loop. Thus, if the equation is not satisfied, then the effective
family is said to be anomalous and the scale L anomaly is given by

Θ[L] = ~−1

(
∂(I[L] + IS[L]) +

1

2
{I[L] + IS[L], I[L] + IS[L]}L + ~∆L(I[L] + IS[L])

)
By general manipulations of RG flow and the QME, we know that the limit L → 0 of

Θ[L] exists
Θ = lim

L→0
Θ[L]

Moreover, the functional Θ is local and since Θ is an obstruction, it is also a cocycle. We
now turn to computing this cocycle.

7.3. Anomaly cocycle. The quantization I[L] + IS[L] is defined as a sum over graphs of
genus ≤ 1. It is clear that the anomaly Θ[L] is also given as a sum over graphs. In fact, as
L→ 0, for the holomorphic theories we consider it is shown in [Wil18, Proposition 4.4] that
this sum concentrates over graphs given by wheels with a particular number of vertices.

Proposition 7.6 (see [Wil18, Proposition 4.4]). The anomaly Θ = limL→0 Θ[L] is given as
the sum over wheels with precisely three vertices:

~Θ = lim
L→0

lim
ε→0

∑
Γ∈Wheel3,e

WΓ,e (Pε<L, Kε, I + IS) .

Here, the sum is over wheels with 3 vertices equipped with a distinguished edge e. A general
term in the sum is depicted in Figure 1.

For a wheel Γ with distinguished internal edge e, the weight WΓ,e(Pε<L, Kε, I) is the
graph integral where the heat kernel Kε is placed on the distinguished edge and the propa-
gators Pε<L are placed on the other internal edges. The vertices are labeled by I as usual.
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Figure 2. The anomaly. The trivalent vertices are labeled by the cubic in-
teraction I. The bivalent vertices labeled by • are labeled by IS.

The anomaly Θ is thus given by a sum over weights associated to one-loop wheel dia-
grams. By a simple observation on allowable diagrams that can appear, we see that Θ is only
a function of the A-field. Thus, it is represented by a cocycle in the local Chevalley–Eilenberg
complex

Θ ∈ C•loc(Ω
0,•(C2, g[ε])) = C•loc(GN=2).

We characterized the relevant classes in this local cohomology in §5.3.

Proposition 7.7. The anomaly cocycle Θ is a nonzero multiple of the local cocycle φ(2),2
N=2(κ(g, V )) ∈

C•loc(GN=2) where κ(g, V ) is the invariant polynomial

κ(g, V ) = chg
2(gad)− chg

2(V ) ∈ Sym2(g∗)g.

In particular, the anomaly vanishes if and only if κ(g, V ) = 0.

Proof. This is a direct calculation applying the formula for the anomaly given in Proposition
7.6. We will be short in our calculation of the anomaly, and will emphasize the structural
features of the calculation.

By Proposition 7.6, the anomaly is given by evaluating the weight of a wheel where we
place the interactions I or IS on the vertices and the propagator on the edges (and the heat
kernel on a distinguished edge).

Note that for type reasons (since IS is nilpotent) at most one of the vertices in the
3-vertex wheel can be labeled by IS, the remaining vertices are labeled by I. The propagator
depends just on the free theory, which has the form Sfree =

∫
β∂γ +

∫
B∂A. Thus, the

propagator splits into two parts:
P = Pβγ + PBA

Enumerating the possible 3-vertex wheels that can appear, we find the following four
cases, depicted in Figure 2:

(I) All vertices labeled by I and all internal edges labeled by Pβγ;
(II) All vertices labeled by I and all internal edges labeled by PBA;
(III) Two vertices labeled by I, one vertex labeled by IS and all internal edges labeled by

Pβγ;
(IV) Two vertices labeled by I, one vertex labeled by IS and all internal edges labeled by

PBA;
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By general considerations, the anomaly evaluated on A = α⊗X ∈ Ω0,•(C2)⊗g[ε] where
α is a Dolbeault form and X = X + εX ′ ∈ g[ε], will have the form

Θ(A) = Θan(α)Θalg(X).

Here, Θan is a local functional of the abelian local Lie algebra α ∈ Ω0,•(C2) and Θalg is an
algebraic function of the graded Lie algebra X = X + εX ′ ∈ g[ε].

We can read off the algebraic factor directly in each of the cases (I)-(IV). Note that for
type reasons cases (I) and (II) yield functionals that are independent of ε and hence are just
functions of the ordinary Lie algebra g. For the algebraic factor in case (1), the value on an
element X ∈ g is

TrV [ε](X
3) = TrV (X3)− TrV (X3) = 0.

Hence, case (I) does not contribute to the anomaly. Similarly, the contribution to the
algebraic factor in case (II) is

Trg[ε](X
3) = Trg(X

3)− Trg(X
3) = 0.

So, case (II) also does not contribute to the anomaly.

In the last two cases (III), (IV), note that the number of external edges is two (since
there is a bivalent vertex). Thus the algebraic factor is quadratic as a polynomial on g[ε].
Moreover, it must be linear in X ∈ g and in εX ′ ∈ εg. We can identify such polynomials
as quadratic polynomials just on the ordinary Lie algebra g. Doing this, we see that the
algebraic factor for case (III) is TrV (X2) and for case (IV) is −Trgad(X

2). Notice the sign
difference since V appears shifted by cohomological degree one relative to g in the complex
of fields.

The only thing left to compute is the analytic factor in cases (III) and (IV). The analytic
factor will again be quadratic, since one of the vertices in bivalent. We can therefore assume
that we have an abelian Lie algebra, and simply compute the weight of the wheel Γ with
3-vertices where two of the external edges are labeled by elements α ∈ Ω0,∗

c (C2) and one is
labeled by the linear function z2. In fact, the general formula for the analytic weight of a
wheel of this shape for any holomorphic theory on C2 has been computed in [GW18, Appendix
B] (there, a formula for the weight in any dimension is given). For general differential form
inputs α, β, γ the formula is a symmetric sum of terms of the form∫

α0 ∂α1 ∂α2.

In our case, we see that the analytic weight is
∫
α0 ∂α1 ∂(z2) =

∫
α0 ∂α1 dz2 as desired. �

Remark 7.8. The odd vector field z2
∂
∂ε

that we are deforming the theory by sits inside of the
graded Lie algebra of holomorphic vector fields X2 on C2|1, see Definition 3.2. We argued
in §2 that graded Lie algebra X2 is the enhancement of the twist of the N = 2 superconformal
algebra. Moreover, in Proposition 4.7 we showed that this enhanced algebra is a classical
symmetry of the holomorphic twist of any four-dimensional N = 2 theory on R4.

A more general problem than the one we study in this section is whether we can quantize
the symmetry by the full algebra XN=2 acting on the classical theory. Of course, we will see
the same anomaly as above, but a natural question is whether there are other anomalies.
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If the Lie algebra g and the representation V are traceless (that is, Trgad(X) = 0 and
TrV (X) = 0 for all X ∈ g), for instance when g is semi-simple, then it turns out that there
are no other anomalies. That is, so long as the condition

0 = κ(g, V ) = chg
2(gad)− chg

2(V ) ∈ Sym2(g∗)g

is satisfied then the full algebra XN=2 is a symmetry of the theory at the quantum level.

We have just computed the anomaly to quantizing the holomorphic theory in the pres-
ence of the deformation IS. If we assume that the anomaly is trivial then we obtain a QFT
described by the effective family {I[L]+IS[L]}L>0. So long as g is semi-simple, this quantiza-
tion is the unique one-loop exact quantization (up to homotopy) which preserves translation
invariance and is U(2)-invariant.

By the general formalism of [CG21], this QFT defines a factorization algebra of observ-
ables which we will denote by Obs(g, V ). This is a factorization algebra on C2 defined over
C[[~]] whose ~ → 0 limit is the factorization algebra Obs(g, V )/~ which assigns to an open
set U ⊂ C2 the cochain complex

(Obs(g, V )/~) (U) ∼= C• (L(g, V )(U))

where L(g, V ) is the local Lie algebra describing the classical theory as introduced in (68).
In other words (Obs(g, V )/~) (U) is the cochain complex of classical observables, which are
given by functions on the fields supported on U ⊂ C2 equipped with the classical BRST
differential.

7.4. Localization. The idea of localization is very similar to our analysis of the deformed
symmetry factorization algebras in §6. We will show that in the presence of the deformation
IS, the factorization algebra of observables becomes equivalent to a stratified factorization
algebra which is trivial away from the plane Cz1 . Along the plane Cz1 , in the next section
we will characterize the complex one-dimensional factorization algebra in terms of a vertex
algebra.

Our main tool will be a spectral sequence converging to the cohomology of Obs(g, V ),
similar to the one considered in [Guk+16]. This filtration also appears in [EGW21] where
it is used in the context of 4d N = 4 supersymmetric Yang–Mills theory. The key property
of this spectral sequence is that the first page computes the cohomology of the observables
where we turn off the interactions which are of cubic order and higher. That is, it is simply
the cohomology of the free theory in the presence of the deformation. We will find that the
cohomology of the free theory localizes to the Cz1 plane; see Lemma 7.9. Upstairs, on C2

the spectral sequence converges to the cohomology of the interacting quantum field theory.
By the fact the the theory localizes at the E1-page, we conclude that the final page of the
spectral sequence also localizes to an interacting theory on Cz1 . Schematically, the picture
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is the following:

(70)

{Free theory on C2} {Interacting theory on C2}

{Free chiral theory on Cz1} {Interacting chiral theory on Cz1}

localize localize

Now, we get into the proofs of the above assertions. As a graded factorization algebra,
the Obs(g, V ) is given by C•(L(g, V ))[[~]], where we recognize C•(L(g, V )) is the factorization
algebra of classical observables Obs(g, V )/~. The underlying graded factorization algebra of
C•(L(g, V )) is of the form ∏

n≥0

Symn (L(g, V )∨[−1])

where (−)∨ denotes the continuous linear dual. Define the following filtration on Obs(g, V )
by

F p Obs(g, V ) =
∏

2m+n≥k

C~m ⊗ Symn (L(g, V )∨[−1]) .

The spectral sequence associated to this filtration has first page given by the cohomology
with respect to the linear part of the differential. This is the free limit of the classical theory.
The linear term in the differential has two terms: ∂ + z2

∂
∂ε
, so the E1-page is given by the

following factorization algebra

(71) F1 := H•
(

Sym
(
L(g, V )#∨[−1]

)
, ∂ + z2

∂

∂ε

)
.

Here, the # notation L(g, V )# indicates that we are completely forgetting the Lie structure
and only remembering the underlying cochain complex.

At this page, we see the factorization algebra localizes to the z1-plane. The proof is
completely similar to that of Lemma 6.5.

Lemma 7.9. The factorization algebra F1 from (71) restricted to C2 \ Cz1 is equivalent to
the constant factorization algebra with stalk C:

F1|C2\Cz1
' C.

Proof. It suffices to prove that the sheaf of cochain complexes
(
L(g, V )#, ∂ + z2

∂
∂ε

)
restricted

to C2 \Cz1 is quasi-isomorphic to the trivial sheaf. This follows from the familiar short exact
sequence (37). �

Just as in §6, we define the factorization algebra F′1 on Cz1 by the pushforward of F1

along π : C2 → Cz1 :

(72) F′1 = π∗F1.

The next page in the spectral sequence involves the interacting part of the theory, and
its quantization. Instead of analyzing the full quantization on C2, we will only characterize
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the quantization of the localized theory on Cz1 . This is sensible, by our analysis of the first
page in the spectral sequence, since we know the factorization algebra becomes completely
trivial away from the z1-plane.

7.5. BRST reduction. To study the quantization of the chiral theory on Cz1 we make use
of an elegant result of [Li16] which sets up a correspondence between quantizations of chiral
theories and vertex algebras. First, we recall the definition of BRST reduction of a vertex
algebra.

Suppose that V is any Z-graded conformal8 vertex algebra, and a field JBRST(z) of
conformal weight one, cohomological degree one, and has trivial OPE with itself

JBRST(z)JBRST(w) ∼ 0.

One then defines the following endomorphism (of cohomological degree one) of the vertex
algebra

QBRST =

∮
dz

2πi
JBRST(z),

which is called the BRST charge. The condition that JBRST(z) has trivial OPE with itself
implies that (QBRST)2 = QBRST◦QBRST = 0 acting on V, and hence we can form the complex
(V, QBRST). This object is a dg vertex algebra. Its cohomology

H∗ (V, QBRST)

is a graded vertex algebra, known as the BRST reduction of V with respect to JBRST(z).

Remark 7.10. To match with the physics literature it is customary to look at a slightly
different cohomology than we study here. This is obtained by not considering the full bc
ghost system which appears above, but a smaller cochain complex where one omits the zero
mode part of the c-ghost and instead takes the strict invariants of the compact group G where
the ghost takes values. Mathematically, this is obtained by replacing (at least classically)
the Lie algebra cohomology that appears above with a relative version.

Remark 7.11. The use of terminology is potentially confusing here. In the physics literature,
“BRST” typically refers to the familiar homological technique for quantizing gauge theories
by introducing ghosts, closely connected to the Chevalley–Eilenberg construction. What is
called “BRST reduction” here is essentially a deformation of the differential, which in most
examples imposes the gauge symmetry, but can also be totally unrelated to any Lie algebra
action. The terminology follows typical usage in the vertex algebra literature; a special case
of the procedure is sometimes referred to as “Drinfeld–Sokolov reduction,” especially in parts
of the literature more closely connected to physics.

Throughout this article, we have used the term “twist” to describe precisely the proce-
dure of deforming the differential, but this term is normally restricted to cases where the
origin of the deformation is in the action of the physical supersymmetry algebra on the full
theory; this is not necessarily the case for the deformations at hand here. The physical origin
of the BRST reduction at hand lies in passing from the free to the interacting theory, as we
have tried to make clear in (70) and related discussion above. At the four-dimensional level

8The same definition holds for quasi-conformal vertex algebra, where we do not demand an action by the
full Virasoro, just {Ln}n≥−1.
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this is, in typical physics usage, neither a BRST nor a twisting differential, but a general
deformation of the differential which induces the interaction spectral sequence of [Guk+16].

There is, however, a somewhat askew sense in which BRST is, perhaps, an appropriate
name even with respect to physics conventions. Recall that any BRST theory determines
a BV theory in canonical fashion, but not all BV theories arise in this fashion. (Physicists
would probably think of such theories as being ones for which the BV formalism can be safely
ignored; except for supergravity theories, this is usually the case.) In such a theory, the base
of the shifted cotangent bundle is the BRST theory, in which antifields are not present; when
it carries an internal differential, usually due to the presence of gauge symmetry, this is called
the BRST differential.

However, in the twist of such a theory, part of the BRST differential originates in the
twisting supercharge. (This is one origin of the overlap in nomenclature.) When super-
symmetry is realized off-shell through the use of an auxiliary-field formalism, the twisted
theory still arises from a BRST theory, and twisting can be performed just at the BRST
level. The auxiliary fields may then be eliminated via their equations of motion. However,
after eliminating auxiliary fields, the BRST differential (really, the twisting supercharge)
may depend on interaction terms—in particular, on superpotential terms—in its action on
the component fields. This is the sense in which the introduction of interactions may be
thought of as a deformation of the differential, even without passing to the BV formalism
(where the action functional is encoded in the BV differential in any case).

We see no possible choice of nomenclature that does not lead to some confusion or break
with tradition, and hope that this remark makes readers sufficiently aware of the existing
semantic burden. However, the specific example of two-dimensional BRST reduction we
consider below is an example both of a free-to-interacting deformation and of a Chevalley–
Eilenberg differential; the theory is the twist of a two-dimensional (0,2) theory with purely
gauge interactions.

There is a useful characterization, due to Li [Li16], of the quantum master equation for
chiral theories on C in terms of vertex algebras.

Theorem 7.12 ([Li16]). Suppose E is a free chiral theory on C with corresponding vertex
algebra V[E]. Then, an ~-dependent field of the vertex algebra Ihol(z) of cohomological degree
one satisfies the OPE in V[E]:

Ihol(z) · Ihol(w) ∼ 0

if and only if the corresponding family of functionals

I[L] = lim
ε→0

W

(
Pε<L,

∫
dz Ihol

)
satisfies the renormalized QME.

We see that the condition on Ihol(z) in the theorem above is nearly identical to the
condition of the field JBRST(z) in the general definition of BRST reduction. On the other
hand, since the resulting family of renormalized functionals {I[L]} satisfies the QME, we
know by the abstract formalism of [CG17; CG21] that it defines a quantum field theory and
hence a factorization algebra ObsE,I on C.

57



It is automatic that this factorization algebra is holomorphic and satisfies the conditions
of [CG17, Theorem 2.2.1]. Thus, by this theorem, it defines a graded vertex algebra

V[ObsE,I ].

Combining this with Theorem 7.12, Li dentifies the current Ihol(z) with the standard BRST
current JBRST (z) at the level of vertex algebras. This is a characterization of the vertex
algebra associated to the observables of the quantization of the chiral theory.

Remark 7.13. The factorization algebras we consider are all defined over C[~]. When we take
the associated vertex algebra we adhere to the convention to specialize ~ = 2πi.

We now wish to apply this to the factorization algebra F′1 as in (72) associated to
the localized free chiral theory on Cz1 and the factorization algebra of the resulting chiral
deformation obtained from the localization of the interacting theory on C2.

First off, we note that the factorization algebra F′1 is equal to the cohomology of a
factorization algebra associated to a free chiral theory on Cz1 . This is a free chiral theory
consisting of a g-valued ghost a, its antifield b, and an ordinary βγ system valued in V whose
fields we denote γ2d and β2d to not confuse them with the higher dimensional βγ system.
The action functional of the free chiral theory on Cz1 is

∫
Cz1

(b∂a+ β2d∂γ2d).

The factorization algebra of this free chiral theory will be denoted Obsfreez1
(g, V ). The co-

homology of this factorization algebra is precisely the factorization algebra F′1. The vertex
algebra corresponding to Obsfreez1

(g, V ) is generated by the free fields a(z), b(z), γ2d(z), β2d(z)
has nontrivial OPE’s given by

a(z)b(w) ∼ 〈a, b〉g
z − w

γ2d(z)β2d(w) ∼ 〈γ, β〉V
z − w

.

Denote this vertex algebra by Vfree[g, V ].

The spectral sequence with E1-pages F1 converges to the cohomology of the factorization
algebra Obs(g, V ) on C2. For the factorization algebra on Cz1 this amounts to taking a further
cohomology of F′1 which depends on the interacting part of the field theory.

This can be realized by deforming the free chiral theory Obsfreez1
(g, V ) by the chiral

deformation

I2d =

∫
Cz1

〈β2d, [a, γ2d]〉V + 〈b, [a, a]〉g.

The resulting theory is simply the BF βγ system on Cz1 .
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By the discussion above, the associated vertex algebra is given by the cohomology of
the graded vertex algebra Vfree[g, V ] with respect to the differential Q =

∮
dzIhol(z):

V[Obsz1(g, V )] = H•
(

Vfree[g, V ], Q =

∮
〈β(z), [a(z), γ2d(z)]〉V +

∮
〈b(z), [a(z), a(z)]〉g

)
.

This is the description of the BRST reduction of the βγ system by the affine Kac–Moody
Lie algebra generated by the fields a(z), see, for instance, [KS90].

Remark 7.14. The results of this section can be interpreted as a proof, in our formalism, of
the descriptions of two-dimensional chiral algebras associated to Lagrangian theories given
in [Bee+15, §3], and in particular of the case of N = 2 super QCD [Bee+15, §5.1–2].
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