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with an invariant symmetric form. We associate to this data 
a holomorphic prefactorization algebra Fg,π on X in the 
formalism of Costello-Gwilliam. When X = C, g is simple, 
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vertex algebra which is a vacuum module for the universal 
central extension of the Lie algebra g ⊗ H0(F, O)[z, z−1]. As 
a special case, when F is an algebraic torus (C∗)n, we obtain 
a vertex algebra naturally associated to an (n + 1)–toroidal 
algebra, generalizing the affine vacuum module.
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1. Introduction

Affine Kac-Moody Lie algebras [10] are a class of infinite-dimensional Lie algebras 
which play a central role in representation theory and conformal field theory. Given a 
finite-dimensional complex Lie algebra with invariant form (g, 〈, 〉), the corresponding 
affine Lie algebra ĝ is a central extension of the loop algebra g[z, z−1] = g ⊗ C[z, z−1]
by a one-dimensional center Ck. It is well-known (see e.g. [7]) that for each K ∈ C, the 
vacuum module

VK(ĝ) = Indĝ

ĝ+ CK

(where ĝ+ = g[z] ⊕ Ck ⊂ ĝ, and CK denotes its one-dimensional representation on 
which the first summand acts trivially and k acts by K) has the structure of a vertex 
algebra. The representation theory of ĝ and VK(ĝ) are inextricably linked - VK(ĝ) picks 
out interesting categories of representations of ĝ, and provides tools for studying these. 
VK(ĝ) can also be realized geometrically on a smooth complex curve X (see [2,4,7]), and 
tied closely to the geometry of the moduli space BunG(X) of principal G-bundles on X.

More generally, for a commutative C-algebra R, one can consider the Lie algebra 
gR = g ⊗CR, and its universal central extension ĝR. The case R = C[z, z−1] corresponds 
to the affine Kac-Moody algebra, and when R = C[z±1, z±1 , · · · , z±n ], ĝR is known as the 
(n +1)-toroidal algebra. It is a natural question whether one can associate to ĝR a vertex 
algebra analogous to VK(ĝ), and if so, whether it has a “geometric” realization. Our goal 
in this paper is to show that the answer is affirmative in the case when R = A[z, z−1] for 
a commutative C-algebra A. Connections between toroidal algebras and vertex algebras 
have also been explored in [1,6,14,16].

When R = A[z, z−1], ĝR contains a subalgebra ĝ+
R corresponding to non-negative 

powers of z. By analogy with the affine case, we may form the induced module

V (ĝR) := IndĝR

ĝ
+
R

C

where C denotes the trivial representation of ĝ+
R. We prove the following:

Theorem 1.1 (Theorem 2.9 and Proposition 2.10). When R = A[z, z−1], V (ĝR) has the 
structure of a vertex algebra. Moreover, this structure is functorial in A.

The bulk of the paper is devoted to giving a geometric realization of V (ĝR) in the 
language of factorization algebras, which we briefly recall.
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1.1. (Pre)factorization algebras

The formalism of (pre)factorization algebras was developed by Kevin Costello and 
Owen Gwilliam in [4] to describe the algebraic structure of observables in quantum field 
theory, as well as their symmetries. Roughly speaking, a prefactorization algebra F on 
a manifold X assigns to each open subset U ⊂ X a cochain complex F(U), and to each 
inclusion

U1 � U2 � · · · � Un ⊂ V

of disjoint open subsets Ui of V , a map

mU1,··· ,Un

V : F(U1) ⊗ · · · · · · F(Un) 	→ F(V ) (1)

subject to some natural compatibility conditions. If F is the prefactorization algebra 
of observables in a quantum field theory, the cohomology groups Hi(F(U)) can be in-
terpreted as the observables of the theory on U as well as their (higher) symmetries. 
This structure is reminiscent of a multiplicative cosheaf, and just as in the theory of 
sheaves/cosheaves a gluing axiom distinguishes factorization algebras from mere prefac-
torization algebras.

An important source of prefactorization algebras are factorization enveloping algebras. 
Let L be a fine sheaf of dg (or L∞ algebras) on X. Denoting by Lc the cosheaf of 
compactly supported sections of L, we have maps

⊕n
i=1Lc(Ui) ∼= Lc(U1 ∪ · · · ∪ Un) 	→ Lc(V ) (2)

for disjoint opens Ui ⊂ V , where the map on the right is extension by 0. Applying the 
functor CLie

∗ of Chevalley chains to (2) yields maps

⊗n
i=1CLie

∗ (Lc(Ui)) 	→ CLie
∗ (Lc(V ))

The argument just sketched shows that the assignment

U 	→ CLie
∗ (Lc(U)) (3)

defines a prefactorization algebra. It is called the factorization enveloping algebra of L
and denoted UL.

Costello-Gwilliam showed that there is a close relationship between a certain class of 
prefactorization algebras on X = C and vertex algebras. The following result from [4]
(paraphrased for the sake of brevity) is central to our construction:

Theorem 1.2 ([4], Theorem 5.3.3). Let F be a unital, S1-equivariant, holomorphically 
translation invariant prefactorization algebra on C satisfying certain natural conditions. 
Then the vector space
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V (F) :=
⊕
l∈Z

H∗(F (l)(C)) (4)

has the structure of a vertex algebra, where F (l)(C) denotes the l-th eigenspace of S1 in 
F(C).

1.2. Prefactorization algebras from holomorphic fibrations

In this paper we construct prefactorization algebras starting with two pieces of data:

• A locally trivial holomorphic fibration π : E → X of complex manifolds with fiber 
F .

• A Lie algebra (g, 〈, 〉) with invariant bilinear form.

We begin with a sheaf of dg Lie algebras (DGLA’s) on X

gπ = (g⊗ π∗Ω0,∗
E , ∂)

with bracket

[J ⊗ α, J ′ ⊗ β] = [J, J ′] ⊗ α ∧ β, J, J ′ ∈ g, α, β ∈ π∗Ω0,∗
E .

gπ has an L∞ central extension ĝπ whose underlying complex of sheaves is of the form

ĝπ = gπ ⊕Kπ,

with Kπ a certain three-term complex. Our prefactorization algebra is

Fπ,g := CLie
∗ (ĝπ,c),

where ĝπ,c denotes the cosheaf of sections with compact support. This is an instance of 
the factorization enveloping algebra as in Equation (3) described above.

When F is a smooth affine complex variety, and E = X × F is a trivial fibration, we 
obtain a chain of inclusions of factorization enveloping algebras

Galg
π,g ⊂ Gπ,g ⊂ Fπ,g

corresponding to the inclusion of sheaves of DGLA’s

(g⊗H0(F,Oalg
F ) ⊗ Ω0,∗

X , ∂) ⊂ (g⊗ Γ(F,Ω0,∗
F ) ⊗ Ω0,∗

X , ∂) ⊂ gπ

which extends to the central extensions. Here, Oalg
F denotes the sheaf of algebraic func-

tions on F .
When X = C (and E is necessarily trivial), we may attempt to extract from Galg

g,π a 
vertex algebra using Theorem 1.2. Our main result is the following:
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Theorem 1.3 (Theorem 5.2). Let F be a smooth complex affine variety, and π : C×F →
C the trivial fibration with fiber F . Then

(1) The toroidal prefactorization algebra Galg
g,π satisfies the hypotheses of Theorem 1.2.

(2) The vertex algebra V (Galg
g,π) is isomorphic to the toroidal vertex algebra V (ĝR), with 

R = H0(F, Oalg
F )[t, t−1].

We may view these results as follows. When X is a (arbitrary) Riemann surface, and 
p ∈ X a point, we may choose a coordinate z centered at p, and a local trivialization of 
E near p. The cohomology prefactorization algebra H∗(Fπ,g) is then locally modeled by 
the vertex algebra V (ĝF ) via the dense inclusion Galg

π,g ⊂ Fπ,g.
Most of the work in this paper goes into proving Theorem 1.3, which involves two 

main steps. First, we verify that the various technical hypotheses of Theorem 1.2 are 
satisfied. The second step is a somewhat lengthy direct calculation following the ap-
proach taken in [19] for the Virasoro factorization algebra and in [4] (Section 5.5.5) 
for the affine factorization algebra. This involves constructing explicit representatives in 
H∗(Galg

π,g), and verifying that operator product expansions match those of V (ĝR), where 
R = H0(F, Oalg

F )[t, t−1].

1.3. Outline of paper

In section 2 we recall universal central extensions, the construction of ĝR, and vertex 
algebras. We construct an L∞ model of ĝR which is later used to build our prefac-
torization algebra Fπ,g. We also show how to associate to the algebra R = A[z, z−1], 
where A is a commutative C–algebra, a vertex algebra generalizing the affine vacuum 
module. Our later geometric construction will be a special case of this. In section 3 we 
recall some basic facts about prefactorization algebras. The construction of Fg,π and the 
related prefactorization algebra Galg

g,π happens in section 4. Finally, in section (5) we con-
sider the special case when X = C, and prove Theorem 1.3 using the approach outlined 
above.

Acknowledgments: M.S. would like to thank Kevin Costello and Owen Gwilliam for 
patiently answering a number of questions and making several valuable suggestions. He 
also gratefully acknowledges the support of a Simons Collaboration Grant No. 359558 
during the course of this project. B.W. was partially supported by the National Science 
Foundation Award DMS-1645877.

2. Lie algebras and vertex algebras

We begin by recalling some aspects of toroidal Lie algebras, then move towards a 
slight variant that will be useful for our purposes.
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2.1. Central extensions

Let g be a complex Lie algebra equipped with an invariant bilinear form 〈•, •〉. Also, 
fix a commutative C-algebra R. Then, gR := g ⊗CR carries a natural complex Lie algebra 
structure with bracket

[J ⊗ r, J ′ ⊗ s] = [J, J ′] ⊗ rs

where J, J ′ ∈ g and r, s ∈ R. It is shown by Kassel [11] that there exists a universal 
central extension of the form

0 → HLie
2 (gR) → ĝR → gR → 0.

Furthermore, when g is simple and 〈•, •〉 the Killing form, there is an isomorphism of the 
Lie algebra homology H2(gR) ∼= Ω1

R/dR where Ω1
R is the R-module of Kähler differentials 

of R/C and d : R → Ω1
R is the universal derivation. The bracket on

ĝR
∼= g⊗R⊕ Ω1

R/dR, (5)

is given by

[J ⊗ r, J ′ ⊗ s] = [J, J ′] ⊗ rs + 〈J, J ′〉rds

= [J, J ′] ⊗ rs + 1
2 〈J, J

′〉(rds− sdr)

where ω denotes the class of ω ∈ Ω1
R in Ω1

R/dR. We will find the second form of the 
central cocycle more convenient to use.

Example 2.1. Let n ≥ 0 be an integer. An important class of examples is obtained by 
taking

R := C[t±1
0 , · · · , t±1

n ].

This is the algebra of functions on the (n + 1)-dimensional algebraic torus.
When n = 0, the vector space Ω1

R/dR is one-dimensional with an explicit isomorphism 
given by the residue

Res : Ω1
R/dR

∼=−→ C.

The resulting Lie algebra ĝR is the ordinary affine Kac-Moody algebra usually denoted 
by ĝ. For n ≥ 1, the vector space Ω1

R/dR is infinite dimensional. Indeed, let us denote 
ki = t−1

i dti. The space Ω1
R/dR is generated over the ring C[t±1

0 , . . . , t±1
n ] by the symbols 

k0, . . . , kn subject to the relation
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n∑
i=0

mit
m0
0 · · · tmn

n ki = 0

where (m0, . . . , mn) is any n-tuple of integers. The Lie algebra ĝR is called the (n + 1)-
toroidal Lie algebra associated to g.

It will be useful for us to have a model for the Lie algebra ĝR as an L∞ algebra. We 
recall the definition (see Section 3.2.3 of [12], or Section 10.1.6 of [15] for instance).

Definition 2.2. An L∞ structure on a graded vector space h is the data of cohomological 
degree 1 coderivation D of the cofree cocommutative coalgebra

Sym(h[1])

satisfying D2 = 0. We may write D =
∑∞

m=1 lm, where

lm : h⊗m → h[2 −m]

and the l′ms are extended to the symmetric coalgebra as coderivations.

Given such a square zero coderivation D the cochain complex

CLie
∗ (g) = (Sym(h[1]), D)

is called the Chevalley-Eilenberg chain complex. In what follows, we usually denote the 
differential by D = dCE .

An ordinary Lie algebra corresponds to the case where lm = 0 for m �= 2, and l2 is the 
Lie bracket. For an ordinary Lie algebra, the differential dCE is given on generators by 
dCE(xy) = [x, y]. In this case, the complex computes Lie algebra homology with trivial 
coefficients.

The linear dual of CLie
∗ (h) is

C∗
Lie(h) =

(
Sym(h∗[−1]) , d∗CE

)
.

Here, d∗CE is the linear dual of the map dCE . This cochain complex computes Lie algebra 
cohomology of h with trivial coefficients.

Suppose (M, dM ) is a cochain complex with the structure of an h-module. This means 
that underlying graded vector space M has an h-module structure and this h-action 
commutes with the differential dM . Then, the complex

C∗
Lie(h;M) =

(
Sym(h∗[−1]) ⊗M , d∗CE + dM + dg,M

)
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is defined. Here, the additional differential dg,M encodes the module structure, for a 
precise formula we refer to [15]. This complex computes the Lie algebra cohomology 
H∗(h; M) of h with coefficients in M .

If M is a trivial module, concentrated in cohomological degree zero, then it is a 
standard fact that cohomology classes in H2(h; M) correspond to central extension of h
by M . Similarly, if M is a trivial dg h-module, then degree two cocycles in C∗

Lie(h; M)
give rise to extensions of h by M as an L∞ algebra.

We return to the Lie algebra ĝR. The L∞ model for the central extension amounts to 
replacing the vector space Ω1

R/dR appearing as the central term by the cochain complex

KR = Ker(d)[2] → R[1] d−→ Ω1
R.

Just as the Lie algebra ĝR is a central extension of gR = g ⊗ R by the trivial module 
Ω1/dR, the L∞ model we to construct is a central extension of gR by the cochain complex 
KR, thought of as a trivial dg module for gR.

The central extension is determined by a cocycle in the Chevalley–Eilenberg cochain 
complex

C∗
Lie(gR,KR) =

(
Sym(g∗R[−1]) ⊗KR , dCE + dK

)
of total degree two. Here dCE is the Chevalley–Eilenberg differential for gR and dK is 
the differential induced from the differential on the complex KR.

The cocycle is of the form φ = φ(0) + φ(1) where

φ(1) : (gR)⊗2 → Ω1
R

(J ⊗ r) ⊗ (J ′ ⊗ s) 	→ 1
2 〈J, J ′〉(rds− sdr)

and

φ(0) : (gR)⊗3 → R

(J ⊗ r) ⊗ (J ′ ⊗ s) ⊗ (J ′′ ⊗ t) 	→ 1
2 〈[J, J ′], J ′′〉rst

Lemma 2.3. The functional φ defines a cocycle in C∗(gR, KR) of total degree two.

Proof. The differential in the cochain complex C∗(gR, KR) is of the form dCE + dK
where d is the de Rham differential defining the complex KR, and dCE is the Chevalley-
Eilenberg differential encoding the Lie bracket of gR. It is immediate that dKφ(1) =
0, dCEφ

(0) = 0 by the Jacobi identity for g and invariance of the pairing 〈•, •〉, and 
dKφ

(0) + dCEφ
(1) = 0 by direct calculation. Thus (dCE + dK)φ = 0 as desired. �

The cocycle φ defines an L∞ central extension

KR → g̃R → gR.
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As a vector space, g̃R = gR ⊕ KR, and the L∞ operations are defined by �1 = d, �2 =
[·, ·]gR

+ φ(1), and �3 = φ(0). The following is immediate from our definitions:

Lemma 2.4. There is an isomorphism of Lie algebras H∗(g̃R, �1) = ĝR.

Proof. The cohomology of g̃R is concentrated in degree zero, and isomorphic to

gR ⊕H0(KR) = gR ⊕ Ω1
R/dR

as a vector space. Our definition of φ implies that

φ(0)((J ⊗ r) ⊗ (J ′ ⊗ s)) = 1
2 〈J, J

′〉(rds− sdr) = rds mod dR

so that the resulting Lie bracket is the same as that of ĝR. �
2.2. Vertex algebras

We proceed to briefly recall the basics of vertex algebras and discuss an important 
class of examples, which will later be constructed geometrically via factorization algebras. 
We refer the reader to [7,9] for details.

Definition 2.5. A vertex algebra (V, |0〉, T, Y ) is a complex vector space V along with the 
following data:

• A vacuum vector |0〉 ∈ V .
• A linear map T : V → V (the translation operator).
• A linear map Y (−, z) : V → End(V )�z±1� (the vertex operator). We write Y (v, z) =∑

n∈ZAv
nz

−n where Av
n ∈ End(V ).

satisfying the following axioms:

• For all v, v′ ∈ V there exists an N � 0 such that Av
nv

′ = 0 for all n > N . (This says 
that Y (v, z) is a field for all v).

• (vacuum axiom) Y (|0〉, z) = idV and Y (v, z)|0 ∈ v + zV �z� for all v ∈ V .
• (translation) [T, Y (v, z)] = ∂zY (v, z) for all v ∈ V . Moreover T |0〉 = 0.
• (locality) For all v, v′ ∈ V , there exists N � 0 such that

(z − w)N [Y (v, z), Y (v′, w)] = 0

in End(V )�z±1, w±1�.
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In order to prove that a given (V, |0〉, T, Y ) forms a vertex algebra, the following 
“reconstruction” or “extension” theorem is very useful. It shows that any collection of 
local fields generates a vertex algebra in a suitable sense.

Theorem 2.6 ([7], [5]). Let V be a complex vector space equipped with: an element |0〉 ∈ V , 
a linear map T : V → V , a set of vectors {as}s∈S ⊂ V indexed by a set S, and fields 
As(z) =

∑
n∈ZAs

nz
−n−1 for each s ∈ S such that:

• For all s ∈ S, As(z)|0〉 ∈ as + zV �z�;
• T |0〉 = 0 and [T, As(z)] = ∂zA

s(z);
• As(z) are mutually local;
• and V is spanned by {As1

j1
· · ·Asm

jm
|0 } as the j′is range over negative integers.

Then, the data (V, |0〉, T, Y ) defines a unique vertex algebra satisfying

Y (as, z) = As(z).

Remark 2.7. The version stated above appears in [5], and is slightly more general than 
the version stated in [7].

2.3. The vertex algebras V (ĝ) and V (ĝR)

A number of vertex algebras are constructed from vacuum representations of affine 
Lie algebras and their generalizations. We proceed to review the vertex algebra structure 
on the affine Kac-Moody vacuum module V (ĝ) and extend the construction to vacuum 
representations of ĝR, where R = A[t, t−1] for some C-algebra A.

2.3.1. V (ĝ)
Let ĝ = g[t, t−1] ⊕Ck be the affine Kac-Moody algebra, ĝ+ = g[t] denote the positive 

sub-algebra, and C denote the trivial representation of ĝ+. For J ∈ g, denote J ⊗ tn by 
Jn, and 1 ∈ C by |0〉.

It is well-known (see for instance [7]) that the induced vacuum representation

V (ĝ) := Indĝ

ĝ+ C := U(ĝ) ⊗U(g[t]) C

has a C[k]-linear vertex algebra structure, which is generated, in the sense of the above 
reconstruction theorem, by the fields

J i(z) := Y (J i
−1|0〉, z) =

∑
n∈Z

J i
nz

−n−1,

where {J i} is a basis for g. These satisfy the commutation relations
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[J i(z), Jk(w)] = [J i, Jk](w)δ(z − w) + 〈J i, Jk〉k∂wδ(z − w)

where

δ(z − w) =
∑
m

zmw−m−1

The translation operator T is determined by the properties

T |0〉 = 0, [T, J i
n] = −nJ i

n−1.

Remark 2.8. The construction above produces a generic version of the affine Kac-Moody 
vacuum module, in the sense that k is not specialized to be a complex number. In the 
vertex algebra literature one typically specifies a level K ∈ C, and defines

VK(ĝ) := Indĝ

g[t]⊕Ck C,

where C denotes the one-dimensional representation of g[t] ⊕Ck on which the first factor 
acts by 0 and k acts by K. We have an isomorphism

V (ĝ)/I � VK(g)

where I is the vertex ideal generated by K|0〉 − k|0〉. V (g) can therefore be viewed as a 
family of vertex algebras over spec(C[k]), with fiber VK(g) at k = K.

2.3.2. The generalized toroidal vertex algebra
In this section we generalize the construction of the affine Kac-Moody vacuum module 

above to the Lie algebra ĝR, for R = A[t, t−1], where A is a commutative C–algebra. 
The construction specializes to V (ĝ) for A = C.

Let A be a commutative C-algebra, R = A[t, t−1] := A ⊗ C[t, t−1], and ĝR the Lie 
algebra (5). We have a Lie subalgebra

ĝ
+
R := g⊗A[t] ⊕ Ω1

A[t]/dA[t] ↪→ ĝR.

Let

V (ĝR) := IndĝR

ĝ
+
R

C (6)

where C denotes the trivial representation of ĝ+
R. Our goal is to define the structure of 

a vertex algebra on V (ĝR).
The vacuum vector is simply |0〉 := 1 ∈ C. The fields of the vertex algebra split into 

three classes and are defined as follows.
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Ju(z) := Y (J ⊗ ut−1|0〉, z) :=
∑
n∈Z

(J ⊗ utn)z−n−1, (7)

Ku dt
t
(z) := Y (t−1udt|0〉, z) :=

∑
n∈Z

(utn−1dt)z−n, (8)

Kt−1ω(z) := Y (t−1ω|0〉, z) :=
∑
n∈Z

(tnω)z−n−1 (9)

where J ∈ g, u ∈ A, ω ∈ Ω1
A.

The commutation relations between these fields are easily checked to be

[J1
u(z), J2

v (w)] =
(
[J1, J2]uv(w) + 〈J1, J2〉Kt−1udv(w)

)
δ(z − w)

+ 〈J1, J2〉Kuv dt
t
(w)∂wδ(z − w) (10)

with all other commutators 0.
The operator T , corresponding to the Lie derivative L−∂t

, is defined by

T |0〉 = 0, [T, J i ⊗ utn] = −nJ i ⊗ utn−1, [T, utndt] = −nftn−1dt, [T, tnω] = −ntn−1ω.

Theorem 2.9. The above field assignments, together with T equip V (ĝR) with the structure 
of a vertex algebra.

Proof. We begin by checking that the field assignment above is well-defined. This 
amounts to verifying that Y (d(t−1u)|0〉, z) = 0. We have

Y (d(t−1u)|0〉, z) = Y (t−1du|0〉, z) − Y (ft−2udt|0〉, z)
= Y (t−1du|0〉, z) − Y ([T, t−1udt]|0〉, z)
= Y (t−1du|0〉, z) − ∂zY (t−1udt|0〉, z)

=
∑
n

(tndu + ntn−1u)z−n−1 =
∑
n

d(tnu)z−n−1 = 0

To obtain the structure of a vertex algebra, we apply the reconstruction Theorem 2.6
to V (ĝR) and the fields {Ju(z), Ku dt

t
(z), Kt−1ω(z)} for J ∈ g, f ∈ A, ω ∈ Ω1

A. The only 
nontrivial axiom to check is mutual locality for the J(z)-fields, which follows from the 
explicit commutator (10). �
2.4. Some properties of V (ĝR)

The map sending a C-algebra A to V (ĝR), with R = A[t, t−1] has a number of pleasing 
properties. While these are not used in the remainder of this paper, they are simple to 
establish and useful for the study of the representation theory of V (ĝR) and its conformal 
blocks, which we plan to pursue in future work.
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Denote by C−Alg the category of commutative C-algebras and Vert the category of 
vertex algebras. We have the following result:

Proposition 2.10. The map

C-Alg → Vert

A 	→ V (ĝA[t,t−1])

defines a functor.

Proof. We must check that a homomorphism of C-algebras ψ : A → B induces a vertex 
algebra homomorphism ψ̃ : V (ĝA[t,t−1]) → V (ĝB[t,t−1]). We begin by constructing a Lie 
algebra homomorphism

ψ : ĝA[t,t−1] → ĝB[t,t−1].

Recall that a C-algebra homomorphism σ : R → S induces a map on Kahler differentials 
(as vector spaces) σ∗ : ΩR → ΩS given by σ∗(rdr′) = σ(r)dσ(r′), which sends exact 
elements to exact elements, inducing a map

σ∗ : ΩR/dR → ΩS/dS

Extending ψ : A → B to a homomorphism (abusively also denoted ψ) ψ : A[t, t−1] →
B[t, t−1], and taking σ = ψ yields a map

ψ∗ : ΩA[t,t−1]/dA[t, t−1] → ΩB[t,t−1]/dB[t, t−1]

Now, ψ : ĝA[t,t−1] → ĝB[t,t−1] is defined by

ψ(Jutn + ω) = Jψ(u)tn + ψ∗ω where J ∈ g, u ∈ A, ω ∈ ΩA[t,t−1]/dA[t, t−1]

and easily checked to be a Lie algebra homomorphism. Finally,

ψ̃ : V (ĝA[t,t−1]) → V (ĝB[t,t−1])

may be defined on the generating fields Ju(z), Ku dt
t
, Kt−1ω in the obvious way by:

ψ̃(Ju(z)) :=
∑
n∈Z

(J ⊗ ψ(u)tn)z−n−1,

ψ̃(Ku dt
t
(z)) := Kψ∗(u dt

t )(z) =
∑
n∈Z

(ψ(u)tn−1dt)z−n,

ψ̃(Kt−1ω(z)) := Kψ∗(t−1ω)(z) =
∑
n∈Z

(tnψ∗ω)z−n−1
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where u ∈ A, ω ∈ ΩA. One easily checks that

ψ̃([Ju(z), J ′
v(w)]) = [ψ̃(Ju(z)), ψ̃(J ′

v(w))],

which shows that ψ̃ respects the only non-trivial OPE among the generating fields. It 
follows that ψ̃ is a vertex algebra homomorphism. �

If A is any C-algebra, we may apply this result to the structure map C → A, to 
obtain:

Corollary 2.11. The structure map C → A induces an embedding of vertex algebras

V (ĝ) → V (ĝA[t,t−1]).

Remark 2.12. As explained in Remark 2.8, we have

VK(g) � V (ĝC[t,t−1])/I,

where VK(g) denotes the “usual” affine vacuum module at level K ∈ C, and I is the 
vertex ideal generated by k|0〉 −K|0〉. When K �= −h∨ (where h∨ denotes the dual Cox-
eter number of g), VK(g) is a conformal vertex algebra with conformal Segal-Sugawara 
vector

S = 1
2(K + h∨)

d∑
i=1

(Ji ⊗ t−1)(Ji ⊗ t−1)|0〉,

where {Ji}di=1 an orthonormal basis of g with respect to the invariant pairing 〈•, •〉. It 
follows that when K �= −h∨, S defines a conformal vector in V (ĝA[t,t−1])/I ′, where I ′ is 
the vertex ideal generated by dtt |0〉 −K|0〉.

As another consequence of Proposition 2.10, we note that any algebra automorphism 
ψ : A → A induces a vertex algebra automorphism of V (ĝA[t,t−1]):

Corollary 2.13. There is a natural group homomorphism

Aut(A) → Aut(V (ĝA[t,t−1]))

ψ → ψ̃.

3. (Pre)factorization algebras and examples

In this section we recall basic notions pertaining to pre-factorization algebras. We 
refer the reader to [4] for details.

Let X be a smooth manifold, and C⊗ a symmetric monoidal category.
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Definition 3.1. A prefactorization algebra F on X with values in C⊗ consists of the 
following data:

• for each open U ⊂ M , an object F(U) ∈ C⊗,
• for each finite collection of pairwise disjoint opens U1, . . . , Un and an open V con-

taining every Ui, a morphism

mU1,··· ,Un

V : F(U1) ⊗ · · · ⊗ F(Un) → F(V ), (11)

and satisfying the following conditions:

• composition is associative, so that the triangle

⊗
i

⊗
j F(Tij)

⊗
i F(Ui)

F(V )

commutes for any disjoint collection {Ui} contained in V , and disjoint collections 
{Tij}j ⊂ Ui

• the morphisms mU1,··· ,Un

V are equivariant under permutation of labels, so that the 
triangle

F(U1) ⊗ · · · ⊗ F(Un) F(Uσ(1)) ⊗ · · · ⊗ F(Uσ(n))

F(V )




commutes for any σ ∈ Sn.

In this paper, we will take the target category C⊗ to be Vect, dg-Vect, or their smooth 
enhancements DVS described below.

Remark 3.2. A factorization algebra is a prefactorization algebra satisfying a descent (or 
gluing) axiom with respect to a class of special covers called Weiss covers. As Theorem 1.2
connecting the Costello-Gwilliam formalism to vertex algebras does not require this 
axiom, it will not play a role in this paper. We refer the interested reader to [4] for more 
details on descent..

Example 3.3 ([4], Section 3.2). Given an associative algebra over C, one can construct a 
prefactorization algebra FA in Vect on R by declaring FA(I) = A for a connected open 
interval I ⊂ R, and defining the structure maps in terms of the multiplication on A. For 
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instance, if I = (a, b), J = (c, d), K = (e, f), with e < a < b < c < d < f , the structure 
map is

FA(I) ⊗FA(J) 	→ FA(K)

a⊗ b 	→ ab

FA has the property that it is locally constant, in the sense that if I ⊂ I ′ are connected 
intervals, then FA(I) 	→ FA(I ′) is an isomorphism. It is shown in Section 3.2 of [4] that 
locally constant prefactorization algebras on R in Vect correspond precisely to associative 
algebras.

Prefactorization algebras can be pushed forward under smooth maps as follows. Sup-
pose f : X 	→ Y is a smooth map of smooth manifolds, and F a prefactorization algebra 
on X. One then defines the prefactorization algebra f∗F on Y by

f∗F(U) := F(f−1(U))

The structure maps of f∗F are defined in the obvious way.
If F , G are prefactorization algebras on X with values in C⊗, then a morphism φ :

F → G is the data of maps

φU : F(U) → G(U) ∈ HomC⊗(F(U),G(U))

for each open U ⊂ X, compatible with all structure maps (11).

3.1. Prefactorization enveloping algebras

We will define a prefactorization algebra associated to the data of a holomorphic 
fibration. Such a factorization algebra is an instance of a prefactorization enveloping
algebra, which we proceed to briefly review following Section 3.6 of [4].1

Let L be a fine sheaf of L∞ algebras, and Lc its associated cosheaf of sections with 
compact support. The prefactorization enveloping algebra of L, UL is the complex of 
Chevalley chains of Lc. In other words, for each open U ⊂ X

UL(U) := CLie
∗ (Lc(U)) (12)

The structure maps are given explicitly as follows. Let U1, · · · , Uk be disjoint open subsets 
of an open V ⊂ X. The cosheaf Lc induces a map of L∞–algebras

⊕k
i=1Lc(Ui) 	→ Lc(V )

1 In [4] this is called the “factorization enveloping algebra” but as we mentioned above, we will not use 
the gluing axiom.
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Applying the Chevalley chains functor (which sends sums to tensor products) to this 
sequence yields structure maps

⊗k
i=1CLie

∗ (Lc(Ui)) 	→ CLie
∗ (Lc(V )).

See Section 6.6 of [4] for more details.

Theorem 3.4. If L is a fine cosheaf of L∞ algebras, then UL is a prefactorization algebra 
in dg-Vect. The cohomology H∗(UL) is a prefactorization algebra in Vect.

Example 3.5 (Section 3.4 [4]). Let X = R, and gdR := (g ⊗ Ω∗
R, ddR) the sheaf of 

DGLA’s on R obtained by tensoring g with the de Rham complex. The prefactorization 
enveloping algebra U(gdR) is locally constant, and the cohomology factorization algebra 
H∗(U(g ⊗Ω∗

R), ddR) is a locally constant prefactorization algebra in Vect, corresponding 
to the enveloping algebra U(g) as in Example (3.3).

Example 3.6 (Section 5.4 [8]). Let X = Cn, and (g ⊗ Ω0,∗
Cn , ∂) the sheaf of DGLA’s on 

Cn obtained by tensoring g with the Dolbeault complex of forms of type (0, q), q ≥ 0. 
As explained below, when n = 1, the factorization algebra U(g ⊗ Ω0,∗

C , ∂) allows one to 
recover the affine vertex algebra V (ĝ) (at level 0).

3.2. Differentiable vector spaces

The prefactorization algebras considered in this paper typically assign to each open 
subset U ⊂ X a cochain complex of infinite-dimensional vector spaces. This is apparent 
already in the Example 3.5 above, where the graded components of U(gdR) = U(g ⊗
Ω∗
R)(U) for U ⊂ R are tensors in g ⊗Ω∗

R(U)c. The structure maps (11) are thus multilinear 
maps between such complexes. In order to formulate the notion of translation-invariance 
for prefactorization algebras in the next section, we will have to discuss what it means 
for these to depend smoothly on the positions of the open sets Ui ⊂ X. This raises some 
functional-analytic issues, which in turn complicate homological algebra involving these 
objects.

In [4] these technical issues are resolved by introducing the category DVS of Dif-
ferentiable Vector Spaces together with certain sub-categories. DVS provides a flexible 
framework within which one can discuss smooth families of smooth maps between 
infinite-dimensional cochain complexes parametrized by auxiliary manifolds, and carry 
out homological constructions. We briefly sketch this category below, and refer to ap-
pendices B and C in [4] for all details.

Definition 3.7. Let C∞ denote the sheaf of rings on the site of smooth manifolds sending 
each manifold M to the ring of smooth functions C∞(M), and assigning to each smooth 
map f : M → N the pullback f∗ : C∞(N) → C∞(M). A C∞-module F is a sheaf of 
modules over C∞. In other words, F assigns to each M a C∞(M)-module F(M), and to 



18 M. Szczesny et al. / Advances in Mathematics 386 (2021) 107799
f : M → N a pullback map F(f) : F(N) → F(M) of C∞(N)-modules. A differentiable 
vector space is a C∞-module equipped with a flat connection. Explicitly, this amounts 
to assigning a flat connection

∇ : F(M) → F(M) ⊗C∞(M) Ω1(M)

for each manifold M , compatible with pullbacks. The objects of the category DV S are 
differentiable vector spaces, and the morphisms HomDV S(F , G) maps of C∞-modules 
intertwining the connections.

Any locally convex topological vector space V gives rise to a differentiable vector space 
as follows. There is a good notion of a smooth map from any manifold M to V introduced 
by Kriegl and Michor (see [13]), and we denote by C∞(M, V ) the space of such. The 
space C∞(M, V ) is naturally a C∞(M)-module, and carries a natural flat connection 
whose horizontal sections are constant maps M → V . The assignment M → C∞(M, V )
thus produces an object of DVS. Multi-linear maps

F1 ×F2 × · · · × Fr 	→ G Fi,G ∈ DVS (13)

equip DVS with the structure of a multi-category (or equivalently, a colored operad) 
by inserting the output of a multilinear map into another. We denote the space of such 
maps by DVS(F1, · · · , Fr|G).

The multicategory DVS allows us to formulate the notion of a smooth family of 
multilinear operations parametrized by an auxiliary manifold M . For F ∈ DVS, one first 
defines the mapping space C∞(M, F) ∈ DVS as the differentiable vector space given by 
the assignment N 	→ F(N × M). As explained in [4], it has a natural flat connection 
along N .

Definition 3.8. Let F1, · · · , Fr, G ∈ DVS. A smooth family of multilinear operations 
F1 × · · · Fr 	→ G parametrized by a manifold M is by definition an element of

DVS(F1, · · · ,Fr|C∞(M,G))

where C∞(M, G) is as explained in the preceding paragraph.

DVS has several good properties. Among these are:

• DVS is complete and co-complete.
• DVS is a Grothendieck Abelian Category.

The second property ensures that all standard constructions in homological algebra 
behave well in DVS. This is in contrast to the category of topological vector spaces, which 
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is not even Abelian. As the authors explain in [4], this is because DVS has essentially 
been defined as the category of sheaves on a site.

Finally, we review some examples of differentiable vector spaces which will be useful 
to us.

Example 3.9. The following is an important example from [4]. Suppose p : W → X

is a vector bundle over the manifold X. Then V = Γ(X, W ) is naturally a Frechet 
space, and so locally convex. C∞(M, V ) is then identified with Γ(M ×X, π∗

XE), where 
πX : M × X → X is the projection on X. In particular, taking W to be the trivial 
bundle, we have C∞(M, C∞(X)) = C∞(M ×X). The same line of reasoning shows that 
the space of compactly supported sections of W , V ′ = Γc(X, W ) has a DVS structure.

Example 3.10. The following generalization of the previous example will be useful in 
Sections 4, 5. Let π : E → X be a smooth map, and p : W → E a vector bundle on E. 
Denote by W the sheaf of smooth sections of W on E. Then V = Γ(X, π∗W) yields a 
differentiable vector space, with C∞(M, V ) = Γ(M×X, ̃π∗W̃), where π̃ : E×M → X×M

is defined by π̃(e, m) = (π(e), m), and W̃ denotes the sheaf of sections of π∗
EW on E×M , 

with πE : E×M → E the projection on the first factor. The connection is determined by 
the condition that the horizontal sections are those constant in the M direction. When 
E = X and π = idX , this example reduces to the previous one. We may similarly equip 
V ′ = Γc(X, π∗W) with a DVS structure.

Example 3.11. Suppose that F ∈ DVS, and V is any vector space (note that we don’t 
specify a topology on V ). Then the assignment M 	→ F(M) ⊗R V , with the connection 
acting trivially on the V factor, yields an object of DVS which we denote FV . When V
is finite-dimensional, this amounts to a finite direct sum of F .

3.2.1. Monoidal structures on DVS
To discuss prefactorization algebras with values in DVS, we must specify a symmetric 

monoidal structure, which is used in defining the structure maps (11). Certain subtleties 
arise on this point, typical of the issues one encounters when trying to define tensor 
products of infinite-dimensional topological vector spaces. We restrict ourselves to a few 
brief remarks, and refer the interested reader to appendices B and C of [4] for details.

• Given F , G ∈ DVS, we can define F ⊗ G as the sheafification of the presheaf X 	→
F(X) ⊗C∞(X) G(X), equipped with the flat connection ∇F ⊗ Id + Id ⊗∇G . When 
F = C∞(M), G = C∞(N), and X = pt is a point, this yields F⊗G(pt) = C∞(M) ⊗R

C∞(N). We call this symmetric monoidal structure the naive tensor product in DVS.
• The naive tensor product has certain shortcomings. Most importantly, it does not 

represent the space of multilinear maps (13). In order to remedy this situation, a 
certain completed tensor product ⊗̂β has to be introduced. This operation is only 
defined on a certain sub-category of DVS however. In the last example, we would 
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obtain F⊗̂βG(pt) = C∞(M × N). We will refer to this operation as the completed 
tensor product.

Using ⊗̂β rather than ⊗ is important if one wishes to obtain a factorization, rather 
than merely a prefactorization algebra. As we work with prefactorization algebras in 
this paper, the naive tensor product is adequate, and will be the symmetric monoidal 
structure on DVS throughout.

3.3. Translation-invariant prefactorization algebras

Our construction in Section 4, when applied to the trivial fibration E = F×Cn 	→ Cn, 
produces a prefactorization algebra which is holomorphically translation-invariant. This 
property will be used when extracting a vertex algebra in Section 5 in the case n = 1. 
We proceed to briefly review this notion and refer the interested reader to Sections 4.8 
and 5.2 of [4] for details.

3.3.1. Discrete translation-invariance
Suppose now that F is prefactorization algebra on Cn in the category of complex 

vector spaces. Cn acts on itself by translations. For an open subset U ⊂ Cn and x ∈ Cn, 
let

τxU := {y ∈ Cn|y − x ∈ U}

Clearly, τx(τyU) = τx+yU . We say that F is discretely translation-invariant if we are 
given isomorphisms

φx : F(U) → F(τxU) (14)

for each x ∈ Cn compatible with composition and the structure maps of F . We refer to 
section 4.8 of [4] for details.

Example 3.12. For any Lie algebra g, U(g ⊗Ω0,∗
Cn) in Example 3.6 is discretely translation-

invariant.

3.3.2. Smooth and holomorphic translation-invariance
A refined version of translation-invariance expresses the fact that the maps φx, and 

hence the structure maps mU1,··· ,Un

V depend smoothly/holomorphically on the positions 
of the open sets Ui. This notion is operadic in flavor.

For z ∈ Cn and r > 0 let PD(z, r) denote the polydisk

PDr(z) = {w ∈ Cn||wi − zi| < r, 1 ≤ i ≤ n}

and let
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PD(r1, · · · , rk|s) ⊂ (Cn)k

denote the open subset (z1, · · · , zk) ∈ (Cn)k such that the polydisks PDri(zi) have dis-
joint closures and are all contained in PDs(0). The collections PD(r1, · · · , rk|s) form an 
R>0–colored operad in the category of complex manifolds under insertions of polydisks.

Suppose that F is a discretely translation-invariant prefactorization algebra on Cn

with values in DVS. We may then identify F(PDr(z)) � F(PDr(z′)) for any two z, z′ ∈
Cn using the isomorphisms (14), and denote the corresponding complex simply by Fr. 
For each p ∈ PD(r1, · · · , rk|s), we have a multilinear map

m[p] : Fr1 × · · · × Frk 	→ Fs (15)

As explained in Section 3.2, we say that m[p] depends smoothly on p if

m ∈ DVS(Fr1 , · · · ,Frk ,C∞(PD(r1, · · · , rk|s),Fs)).

To formulate the definition of smooth translation-invariance, we will need the notion of 
a derivation of a prefactorization algebra.

Definition 3.13 ([4], Definition 4.8.2). A degree k derivation of a prefactorization algebra 
F is a collection of maps DU : F(U) 	→ F(U) of cohomological degree k for each open 
subset U ⊂ M , with the property that for any finite collection U1, · · · , Un ⊂ V of disjoint 
opens and elements αi ∈ F(Ui), the following version of the Leibniz rule holds

DV m
U1,··· ,Un

V (α1, · · · , αn)

=
n∑

i=1
(−1)k(|α1|+···+|αi−1)|mU1,··· ,Un

V (α1, · · · , αi−1, DUi
αi, · · · , αn)

The derivations of F form a DGLA, with bracket [D, D′]U = [DU , D′
U ] and differential 

d given by dDU = [dU , DU ], where dU is the differential on F(U).
The notion of smoothly translation-invariant prefactorization algebra F on Cn can 

now be formulated as follows:

Definition 3.14 ([4], Definition 4.8.3). A prefactorization algebra F on Cn with values 
in DVS is (smoothly) translation-invariant if:

(1) F is discretely translation-invariant.
(2) The maps (15) are smooth as functions of p ∈ PD(r1, · · · , rk|s)
(3) F carries an action of the complex Abelian Lie algebra Cn by derivations compatible 

with differentiating m[p].

We can further refine the notion of translation-invariance to consider the holomorphic 
structure. We say that F is holomorphically translation invariant if
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• F is smoothly translation invariant.
• There exist degree −1 derivations ηi : F → F such that

– [d, ηi] = ∂
∂z̄i

(as derivations of F)
– [ηi, ηj ] = [ηi, ∂

∂z̄j
] = 0

for i = 1, · · · , n, and where d is the differential on F .

This condition means that anti-holomorphic vector fields act homotopically trivially 
on F .

As explained in Section 5.2 of [4], if F is a holomorphically translation-invariant 
prefactorization algebra, then upon passing to cohomology, the induced structure maps

m[p] : H∗(Fr1) × · · · ×H∗(Frk) 	→ H∗(Fs) (16)

are holomorphic as functions of p ∈ PD(r1, · · · , rk|s). In other words, m can be viewed 
as a map

m : H∗(Fr1) × · · · ×H∗(Frk) 	→ Hol(PD(r1, · · · , rk|s), H∗(Fs)) (17)

where Hol denotes the space of holomorphic maps in DVS.

Example 3.15. For any Lie algebra g, the prefactorization enveloping algebra U(g ⊗
Ω0,∗
Cn) of Example 3.6 is holomorphically translation-invariant. The action by translation 

invariant vector fields is simply by Lie derivative. The homotopy for anti-holomorphic 
translations is ηi = ι∂/∂zi

the contraction by the anti-holomorphic vector field ∂/∂zi. 
The fact that this is a homotopy as above follows from Cartan’s formula for operators 
on the Dolbeault complex [

∂̄, ι∂/∂zi

]
= L∂/∂zi

.

4. Prefactorization algebras from holomorphic fibrations

In this section, we describe our main construction of prefactorization algebras from 
locally trivial holomorphic fibrations.

Our starting point is the following data:

• Complex manifolds F, X.
• (g, 〈, 〉) a Lie algebra with an invariant bilinear form.
• A locally trivial holomorphic fibration π : E → X with fiber F .

From this data we will construct a sheaf of L∞ algebras on the total space E of the 
fibration. In turn, we obtain a prefactorization algebra on E upon taking its prefactor-
ization enveloping algebra.
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4.1. A sheaf of Lie algebras

Let Ω0,∗
E be the sheaf of dg vector spaces given by the Dolbeault complex of the 

complex manifold E, equipped with the ∂ operator. For any Lie algebra g, we can define 
the sheaf of dg Lie algebras

gE = g⊗ Ω0,∗
E

which on an open set U ⊂ E assigns g ⊗ Ω0,∗
E (U). The differential is again given by the 

∂ operator, and the Lie bracket is defined by

[X ⊗ α, Y ⊗ β] = [X,Y ] ⊗ (α ∧ β)

where X, Y ∈ g, α, β ∈ Ω0,∗(U).
Let KE be the bigraded complex of sheaves

C[2] → Ω0,∗
E [1] ∂→ Ω1,∗

E

where the first arrow is an inclusion, and the second is given by the holomorphic de Rham 
operator ∂. We view KE as a bigraded complex with ∂ acting as vertical differential on 
Ωp,∗

E , p = 0, 1. Let KE = Tot(KE) be the totalization of this bigraded complex.
We consider the complex of sheaves KE as a trivial dg module for the sheaf of dg Lie 

algebras gE . We will construct a cocycle on gE with values in this trivial dg module. To 
this end, define the following maps of sheaves

φ(1) : (gE)⊗2 → Ω1,∗
E

φ(1)((X ⊗ α) ⊗ (Y ⊗ β)) = 1
2 〈X,Y 〉(α ∧ ∂β − (−1)|α|∂α ∧ β),

and

φ(0) : (gE)⊗3 → Ω0,∗
E [1]

φ(0)((X ⊗ α) ⊗ (Y ⊗ β) ⊗ (Z ⊗ γ)) = 1
2 〈[X,Y ], Z〉(α ∧ β ∧ γ)

The sum φ = φ(0) + φ(1) is a cochain in the Chevalley-Eilenberg complex

φ ∈ C∗(gE ,KE)

of total degree 2.
By an identical calculation as in Lemma 2.3 we obtain the following.

Lemma 4.1. φ defines a cocycle in C∗
Lie(gπ, KE) of total degree 2.
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The cocycle φ defines a central extension ĝE of the sheaf gE as a sheaf of L∞ algebras 
which has non-vanishing �1, �2 and �3. More directly, we can define the cochain complex 
computing the Lie algebra homology of this sheaf of L∞ algebras.

Definition 4.2. Define the sheaf of dg vector spaces

CLie
∗ (ĝE) := (Sym(gE [1] ⊕KE [1]), d + dCE + φ)

where

• d = ∂ + dKE
is the sum of the differentials on gE and KE .

• dCE is the Chevalley-Eilenberg differential of the original Lie algebra gE .
• the linear map φ is extended to Sym(gE [1] ⊕KE [1]) as a co-derivation.

The fact that (d + dCE + φ)2 = 0 follows from the fact that φ is a cocycle.

4.1.1. Relation to local cocycles
There is a relationship between our construction and the theory “twisted” factorization 

enveloping algebras given in Section 4.4 of [3] when the complex dimension dimC(E) = 1. 
There, the data one uses to twist is that of a local cocycle which lives in the local 
cohomology of a sheaf of Lie algebras. We don’t recall the precise definition, but if L
is a sheaf of Lie algebras obtained from a bundle L, the local cohomology C∗

loc(L) is a 
subcomplex

C∗
loc(L) ⊂ C∗

Lie(Lc)

where Lc denotes the cosheaf of compactly supported sections. The condition for a 
cochain in C∗

Lie(Lc) to be local is that it is given by integrating a “Lagrangian density”. 
Such a Lagrangian density is a differential form valued cochain which only depends on the 
∞-jet of the sections of L, that is, it is given by a product of polydifferential operators.

We have defined the cocycle φ as an element in C∗
Lie(gE , KE). The complex 

C∗
Lie(gE , KE) is neither a sheaf or a cosheaf, however, the object

C∗
Lie(gE,c,KE)

is a sheaf. Here, we restrict to cochains defined on compactly supported sections of 
gE . The cocycle φ is a section of this sheaf, meaning it is compatible with the natural 
restriction maps.

The cocycle φ is not just any section of this sheaf. For any open U ⊂ E, it actually 
lies in the subcomplex

φ(U) ∈ C∗
Lie(gE,c(U),KE,c(U)) ⊂ C∗

Lie(gE,c,KE)(U).
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In other words, φ preserves the condition of being compactly supported.
Now, the cosheaf KE,c admits a natural integration map

∫
: KE,c → C[−1]

where C[−1] is the constant cosheaf concentrated in degree +1. (Integration is only 
nonzero on the Ω1,1

c , which accounts for the shift above) Thus, for every U ⊂ E, we 
obtain a cocycle

φ(U) ∈ C∗
Lie(gE,c(U)).

The cocycle φ is clearly built from differential operators, which implies that φ(U) is 
actually a element of the local cochain complex

φ(U) ∈ C∗
loc(gE)(U).

In conclusion, upon integration, we see that φ determines a degree one cocycle in the 
local cohomology of the sheaf of Lie algebras gE .

In higher dimensions, there is a similar relationship to local functionals which hence 
determine one dimensional central extensions of Kac-Moody type algebras in any dimen-
sion. This class of cocycles is studied in detail in the context of “higher dimensional” 
Kac-Moody algebras in [8].

4.2. The prefactorization algebra Fg,π

We proceed to construct a prefactorization algebra on X — the base of the holomor-
phic fibration π : E → X.

Let ĝπ := π∗(ĝE) - a sheaf of L∞ algebras on X, and let ĝcπ denote the cosheaf of 
sections of ĝπ with compact support. Explicitly, for an open subset U ⊂ X we have

ĝcπ(U) = Γc(U, ĝπ)
= Γc(U, π∗gE) ⊕ Γc(U, π∗KE).

(18)

Remark 4.3. Though the assignment U 	→ gcπ(U) is a cosheaf of dg vector spaces, it is 
just a precosheaf of L∞ algebras on X (with L∞ structure defined by the cocycle φ in 
the previous subsection). This subtle issue arises since direct sum is not the categorical 
coproduct in the category of Lie algebras, but it will play no essential role for us.

Definition 4.4. Define the cosheaf

Fg,π := CLie
∗ (ĝcπ) (19)
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as the Chevalley-Eilenberg complex for Lie algebra homology for the precosheaf of L∞
algebras ĝcπ. For each open U ⊂ X this cosheaf assigns the complex

Fg,π(U) = CLie
∗ (ĝcπ(U)) = (Sym(Γc(U, π∗gE)[1] ⊕ Γc(U, π∗KE)[1]), d + dCE + φ) (20)

Remark 4.5. The cosheaf ĝcπ is equipped with a DVS structure as in Example 3.10, and 
therefore so is Fg,π, being constructed from algebraic tensor product.

Proposition 4.6. Fg,π has the structure of a prefactorization algebra on X valued in 
dg − DVS. When X = Cn, Fg,π is holomorphically translation-invariant.

Proof. Note that if π : E → X is a locally trivial fibration and W is a smooth vector 
bundle on E, then π∗W̃ is a fine sheaf. The smooth translation-invariance of Fg,π is es-
tablished just as in the example of the free scalar field in Section 4.8 of [4]. To see that the 
prefactorization algebra is holomorphically translation-invariant we choose holomorphic 
coordinates {zi} for Cn. Then, the operators ηi = ι∂/∂zi

, i = 1, . . . , n given by contrac-
tion with the vector fields ∂/∂zi, i = 1, . . . n are degree (−1) derivations satisfying the 
conditions in Definition 3.14, see Example 3.15. �
4.3. The prefactorization algebra Gg,π

In this section we discuss some prefactorization algebras closely related to Fg,π, which 
are both more convenient from a computational standpoint and more closely related to 
the class of toroidal algebras we have introduced previously. Concretely we will construct 
a sequence of prefactorization algebras on X

Galg
g,π → Gg,π → Fg,π (21)

with the property that each map above is an inclusion at the level of graded vector spaces. 
(Strictly speaking, the final map requires a choice of trivialization of the fibration - see 
Lemma 4.11.) While the definition of Fg,π is reasonably simple, explicit calculations 
of H∗(Fg,π(U)) for an open subset U ⊂ X require the ∂-cohomology of the complex 
Γc(U, π∗(ĝE)) in Equation (18). This complex involves forms with compact support along 
the base X and arbitrary support along the fiber F , and its ∂-cohomology even when E is 
a trivial fibration is a certain completion of H0,∗

c (U) ⊗H0,∗(F ) whose explicit description 
involves non-trivial analytic issues, due to the failure of naive Kunneth-type theorems for 
Dolbeault cohomology. As a hint of the types of issues involved, we note that the space 
of holomorphic functions on C2 = C × C is not simply the algebraic tensor product of 
holomorphic functions on the factors C, though the latter forms a dense subspace.

The advantage of the prefactorization algebra Gg,π is that its cohomology is simple 
to describe, as the Kunneth formula holds at this level. The use of the even smaller 
prefactorization Galg

g,π is that it is closely related to vertex algebras and the toroidal 
algebras we have met earlier in the paper.
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Let us first suppose that E = X × F is a trivial fibration. For each p, q, p′, q′ we have 
a map of cosheaves

Ωp,q
X,c ⊗ Γ(F,Ωp′,q′

F ) → (π∗Ωp+p′,q+q′

E )c

where the subscript c denotes sections with compact support and we use the ordinary 
(algebraic) tensor product. Explicitly, for an open subset U ⊂ X, this map is just the 
wedge product

Ωp,q
X,c(U) ⊗ Γ(F,Ωp′,q′

F ) → Γc(U, π∗Ωp+p′,q+q′

E )

α⊗ β → α ∧ β

It is injective provided all three factors are non-zero.
Our first definition uses this injection to split off the dependence of the fiber F in the 

definition of the cosheaf gcπ.

Definition 4.7. Define a sub cosheaf ĝ#c
π of ĝcπ by

ĝ#c
π := g⊗ Ω0,∗

X,c ⊗ Γ(F,Ω0,∗
F ) ⊕K#

π

where

K#
π := Tot(Ω0,∗

X,c ⊗ Γ(F,Ω0,∗
F )[1] ∂→ Ω1,∗

X,c ⊗ Γ(F,Ω0,∗
F ) ⊕ Ω0,∗

X,c ⊗ Γ(F,Ω1,0
F )).

Here, ∂ acts “vertically” within each term.

Remark 4.8. The cosheaf ĝ#c
π may be equipped with a dg − DVS structure as in Exam-

ple 3.11.

The L∞ structure on ̂gcπ induces one on the sub-complex ̂g#c
π (this follows from the fact 

that the cocycle φ restricts). The advantage of ĝ#c
π lies in the fact that it’s constructed 

from ordinary (algebraic) tensor products of complexes whose cohomology is easy to 
describe.

Definition 4.9. Define the precosheaf Gg,π on X by

Gg,π := CLie
∗ (ĝ#c

π )

The same argument for Fg,π in Proposition 4.6 implies that Gg,π has the structure of a 
prefactorization algebra on X.

The arguments of the previous section show:
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Proposition 4.10. Gg,π has the structure of a prefactorization algebra on X. When X =
Cn, n ≥ 1, Gg,π is holomorphically translation-invariant.

When E = X × F , we have the following relationship between Gg,π and Fg,π:

Lemma 4.11. Suppose π : E = X × F → X is trivial. Then, there exists a map of 
prefactorization algebras on X:

Gg,π → Fg,π (22)

Proof. We have just constructed a map of DGLA’s ĝ#c
π → ĝcπ, which induces a map 

Gg,π → Fg,π upon taking the factorization enveloping algebra. �
For a general locally trivial holomorphic fibration π : E → X, we can construct a 

map of prefactorization algebras Gg,π → Fg,π locally on X. Indeed, for any x ∈ X there 
exists a local trivialization of E on an open neighborhood V of x. On V , we obtain the 
map (22). It depends on the choice of trivialization however.

4.3.1. An algebraic variant
When the fiber F is a smooth complex affine variety and π : E = X × F → X is 

trivial, we may further refine Gg,π to obtain a prefactorization algebra Galg
g,π with stronger 

finiteness properties, by considering the algebraic rather than analytic cohomology of 
OF . This variation will be important in the next section, when we make contact with 
vertex algebras. Let Oalg

F denote the sheaf of algebraic regular functions on F , and Ω1,alg

the sheaf of Kahler differentials. We have

H0(F,Oalg
F ) ⊂ H0(F,OF ) ↪→ (Ω0,∗

F , ∂)

H0(F,Ω1,alg
F ) ⊂ H0(F,Ω1

F ) ↪→ (Ω1,∗
F , ∂)

Definition 4.12. We define

ĝ#c,alg
π := g⊗ Ω0,∗

X,c ⊗H0(F,Oalg
F ) ⊕K#,alg

π

where

K#,alg
π := Tot(Ω0,∗

X,c ⊗H0(F,Oalg
F )[1] ∂→ Ω1,∗

X,c ⊗H0(F,Oalg
F ) ⊕ Ω0,∗

X,c ⊗H0(F,Ω1,alg
F )).

The totalization is with respect to the horizontal ∂-operator and the vertical ∂-operator 
acting on Ωp,∗

X,c.

Remark 4.13. Again, ĝ#c,alg
π may be equipped with the DVS structure of Example 3.11, 

yielding a prefactorization algebra in dg − DVS.
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We can now define the main object of study for us.

Definition 4.14. The n-dimensional toroidal prefactorization algebra associated with the 
trivial holomorphic fibration F → X × F

π−→ X is the prefactorization algebra

Galg
g,π := CLie

∗
(
ĝ#c,alg
π

)
with the structure maps induced from those of Gg,π.

Proposition 4.15. Suppose that F is a smooth complex affine variety and X = Cn. Then 
Galg
g,π has the structure of a holomorphically translation-invariant pre-factorization algebra 

valued in dg − DVS.

The reasoning at the end of the previous section shows that for a general locally 
trivial fibration π : E → X, a point x ∈ X, and a choice of trivialization of E|U on a 
neighborhood U of x, one obtains prefactorization algebra maps

Galg
g,π → Gg,π → Fg,π|U

Remark 4.16. We remark that in this paper we are primarily concerned with the case 
in which the fiber F is a smooth complex affine variety. There is another interesting 
case in which we take the fibers to be compact. One can still study the pushforward 
π∗(ĝE) as a sheaf of L∞ algebras, and its factorization enveloping algebra. Unlike the 
case of affine fibers, this pushforward may have interesting higher cohomology in the 
fiber direction, and moreover the factorization enveloping algebra is equipped with the 
analytic Gauss-Manin connection. The case of a trivial fibration has been studied in 
Section 4.3 of [8].

5. X = C and vertex algebras

In [4], it is shown that prefactorization algebras on X = C which are holomorphically 
translation-invariant and S1-equivariant for the natural action by rotations are closely 
related to vertex algebras. More precisely, given such a prefactorization algebra F , the 
vector space

V (F) =
⊕
l

H∗(F (l)(C))

equal to the direct sum of S1-eigenspaces in the cohomology H∗(F(C)) has a ver-
tex algebra structure. We begin by reviewing this correspondence following [4], and 
then apply it to the case of the one-dimensional toroidal prefactorization algebra Galg

g,π, 
where π : C × F 	→ C is the trivial fibration on C with fiber a smooth complex 
affine variety F . We show that resulting vertex algebra is isomorphic to V (ĝR) where 
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R = H0(F, Oalg
F )[t, t−1] from Section 2.3.2. As a special case, when F = (C∗)k, we 

recover a toroidal vertex algebra.

5.1. Prefactorization algebras on C and vertex algebras

We review here the correspondence between prefactorization algebras on C and vertex 
algebras established in [4], where we refer the reader for details. Recall that S1 acts on 
C by rotations via z 	→ exp(iθ)z. Suppose that F is a prefactorization algebra on C that 
is holomorphically translation-invariant and S1-equivariant. Let F(r) := F(D(0, r)) be 
the complex assigned by F to a disk of radius r (we allow here r = ∞, in which case 
D(0, ∞) = C), and F (l)(r) ⊂ F(r) be the lth eigenspace for the S1-action. The following 
theorem from [4] establishes a bridge between prefactorization and vertex algebras:

Theorem 5.1 (Theorem 5.3.3 [4]). Let F be a unital S1-equivariant holomorphically 
translation invariant prefactorization algebra on C. Suppose

• The action of S1 on F(r) extends smoothly to an action of the algebra of distributions 
on S1.

• For r < r′ the map

F (l)(r) → F (l)(r′)

is a quasi-isomorphism.
• The cohomology H∗(F (l)(r)) vanishes for l � 0.
• For each l and r > 0 we require that H∗(F (l)(r)) is isomorphic to a countable se-

quential colimit of finite dimensional vector spaces.

Then V (F) :=
⊕

l∈Z H∗(F (l)(r)) (which is independent of r by assumption) has the 
structure of a vertex algebra.

We briefly sketch how the vertex algebra structure on V (F) can be extracted from 
the prefactorization structure on F .

• Using the notation of Section 3.3.2, polydisks in one dimension are simply disks, and 
we denote PD(r1, · · · , rk|s) by Discs(r1, · · · , rk|s). If r′i < ri, we obtain an inclusion

Discs(r1, · · · , rk|s) ⊂ Discs(r′1, · · · , r′k|s) (23)

In the limit limri→0, these spaces approach Confk, the configuration space of k
distinct points in C.

• The structure maps (17) are compatible with the maps F(r′i) 	→ F(ri) and the 
inclusions (23), and one may take limri→0, s = ∞, obtaining maps
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m : ( lim
r→0

H∗(F(r)))⊗k → Hol(Confk, H∗(F(C))) (24)

• We set k = 2, and fix one of the points to be the origin. There is a natural map 
V (F) 	→ limr→0 H

∗(F(r)), as well as projections H∗(F(C)) → H∗(F (l)(C)). Pre 
and post-composing by these in (24), yields a map

m0,z : V (F) ⊗ V (F) →
∏
l

Hol(C×, V (F)l) (25)

where V (F)l = H∗(F (l)(C)). Laurent expanding m0,z we obtain

m0,z : V (F) ⊗ V (F) →
∏
l

V (F)l[[z, z−1]]

whose image can be shown to lie in V (F)((z)). The vertex operator can now be 
defined by

Y : V (F) → End(V (F))[[z, z−1]]

Y (v, z)v′ = m0,z(v′, v)

• Holomorphic translation invariance yields an action of ∂z

∂z : F (l)(r) → F (l−1)(r).

which descends to H∗(F l(r)). This induces the translation operator T : V (F) →
V (F).

• The vacuum vector is obtained from the unit in F(∅).

5.2. The main theorem

Our goal in this section is to prove the following theorem

Theorem 5.2. Let F be a smooth complex affine variety, and π : C × F → C the trivial 
fibration with fiber F . Then

(1) The toroidal prefactorization algebra Galg
g,π satisfies the hypotheses of Theorem 5.1.

(2) The vertex algebra V (Galg
g,π) is isomorphic to the toroidal vertex algebra V (ĝR), with 

R = H0(F, Oalg
F )[t, t−1] defined in Section 2.3.2.

Throughout this section, R will denote the algebra H0(F, Oalg
F )[t, t−1]. We will denote 

H0(F, Oalg
F ) simply by C[F ], so R = C[F ][t, t−1]. Recall that
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ĝR = g⊗C[F ][t, t−1] ⊕ Ω1
C[F ][t,t−1]/d(C[F ][t, t−1])

= g⊗C[F ][t, t−1] ⊕
C[t, t−1] ⊗ Ω1

C[F ] ⊕C[F ] ⊗ Ω1
C[t,t−1]

〈tkdu + ktk−1udt〉

5.2.1. Recollections on Dolbeault cohomology
In this section we recall some facts regarding ordinary and compactly supported Dol-

beault cohomology and apply these to compute H∗(Galg
g,π(U)) over opens U ⊂ C. These 

results will be used in proving Theorem 5.2.
Stein manifolds are complex analytic analogues of smooth affine varieties over C

[18]. In particular, Cn and smooth affine complex varieties are Stein. In addition, all 
open subsets U ⊂ C are Stein. We recall the following classic result pertaining to Stein 
manifolds:

Theorem 5.3 (Cartan’s Theorem B). Let X be a Stein manifold. Then

Hk(Ωp,∗(X), ∂) =
{

0 k �= 0
Ωp

X k = 0

where Ωp
X denotes the space of holomorphic p-forms on Z.

Remark 5.4. When n > 1 the open subset Cn \ 0 ⊂ Cn is not Stein, since it has higher 
cohomology.

On a complex manifold X of dimension n, Serre duality implies that there is a non-
degenerate pairing between ordinary and compactly supported forms

Ωp,q
X,c ⊗ Ωn−p,n−q

X → C

α⊗ β →
∫
X

α ∧ β.

Thus, compactly supported differential forms yield continuous linear functionals on dif-
ferential forms. At the level Dolbeault cohomology, one obtains the following corollary 
to Theorem 5.3 noted by Serre ([17]):

Corollary 5.5. Let X be a Stein manifold. Then

Hk(Ωp,∗
c (X), ∂) =

{
0 k �= dim(X)
(Ωn−p

X (X))∨ k = n = dim(X)

where (Ωn−p
X (X))∨ denotes the continuous dual to the space of holomorphic n − p forms 

with respect to the Frechet topology.
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We now specialize to our situation, where π : C × F → C is the trivial fibration with 
F a smooth complex affine variety. The cosheaf ĝ#c,alg

π on C defined in Section 4.3.1 has 
the form

ĝ#c,alg
π := g⊗C[F ] ⊗ Ω0,∗

X,c ⊕K#,alg
π

where K#,alg
π is the total complex of the following double complex

Ω0,1
c ⊗C[F ] Ω1,1

c ⊗C[F ] ⊕ Ω0,1
c ⊗ Ω1

C[F ]

Ω0,0
c ⊗C[F ] Ω1,0

c ⊗C[F ] ⊕ Ω0,0
c ⊗ Ω1

C[F ].

∂+d

∂+d

∂ ∂

Here, Ωp,q
c denotes the cosheaf of compactly supported forms on C, and Ω1

C[F ] is the 
space of algebraic 1-forms (i.e. Kahler differentials) on F . Recall, from this cosheaf we 
have defined the factorization algebra

Galg
g,π = CLie

∗ (ĝ#c,alg
π ) = Sym(ĝ#c,alg

π [1], d̃)

where the differential d̃ may be decomposed as d̃ = d1 + d2 + d3, with

di : Symi(ĝ#c,alg
π [1]) → ĝ#c,alg

π [1]

of cohomological degree 1 defined by:

• d1 = ∂ + dK#,alg
π

, the linear differential operators defining the underlying cochain 
complexes of Dolbeault forms;

• d2 = dCE,g, the Chevalley-Eilenberg differential induced from the Lie bracket on g;
• d3 = φ, where φ is the cocycle defined in Section 4.1, which extends to CLie

∗ (−) by 
the rule that it is a coderivation.

The complex CLie
∗ (ĝ#c,alg

π ) has an increasing filtration by symmetric degree, leading 
to a spectral sequence whose E1 page is

H∗(Sym(ĝ#c,alg
π [1], d1)) = Sym(H∗(ĝ#c,alg

π [1], d1))

Now (ĝ#c,alg
π , d1) is the direct sum of the complexes (g ⊗ C[F ] ⊗ Ω0,∗

c , ∂) and K#,alg
π . 

Applying Theorem 5.3 and Corollary 5.5 on an open Stein subset U ⊂ C, the cohomology 
of the first is

g⊗C[F ] ⊗ (Ω1(U))∨[−1].

Similarly, by first computing the ∂ cohomology in K#,alg
π , we have
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H∗(K#,alg
π (U)) = Coker

(
(Ω1

X(U))∨ ⊗C[F ])
1⊗∂+∂∨⊗1→ (Ω1

X(U))∨ ⊗ Ω1
C[F ] ⊕ (O(U))∨ ⊗C[F ]

)
where ∂∨ denotes the transpose of ∂ : Ωn−1

X (U) 	→ Ωn
X(U). We have the following:

Lemma 5.6. Let U ⊂ C be an open subset. Then

H∗(ĝ#c,alg
π (U), d1) = g⊗ (Ω1

X(U))∨ ⊗C[F ]
⊕

Coker
(
(Ω1

X(U))∨ ⊗C[F ]) 1⊗∂+∂∨⊗1→ (Ω1
X(U))∨ ⊗ Ω1

C[F ] ⊕ (O(U))∨ ⊗C[F ]
)

where ∂∨ denotes the transpose of ∂ : OX(U) 	→ Ω1
X(U).

It follows that H∗(ĝ#c,alg
π [1], d1) is concentrated in cohomological degree 0. Since d̃ has 

cohomological degree 1, this means that the spectral sequence computing H∗(Galg
g,π(U))

collapses at E1, and we have an isomorphism of vector spaces

H∗(Galg
g,π(U)) � Sym(H∗(ĝ#c,alg

π (U)[1], d1)) (26)

Next, we note that the value of Galg
g,π on a disk U = D has a natural S1-action induced 

by rotations. Rotations act by holomorphic diffeomorphisms and so extend to an action 
on Dolbeault forms, and hence to the factorization algebra Galg

g,π . This action clearly 
preserves the first term in the differential d1. Furthermore, S1 acts by the identity on 
the Lie algebra g, so its action preserves the differential d2 as well. Finally, to see that 
the S1 action preserves the differential d3 note that the cocycle φ is defined in terms of 
diffeomorphism invariant operators.

Applied to a disk U = D, the sum of the S1-eigenvalues of the cohomology of Galg
g,π

naturally embeds into the left hand side of Equation (26). We now characterize this 
cohomology.

Lemma 5.7. There is an isomorphism of vector spaces

V (Galg
g,π) � Sym(ĝS/ĝ+

S ) � U(ĝS) ⊗U(ĝ+
S ) C (27)

where S = C[F ][z, z−1].

Proof. We introduce the vector spaces

S+ = C[F ][z]

S− = C[F ] ⊗ z−1C[z−1]

Ω1
S+ = Ω1

C[F ] ⊗C[z] ⊕C[z]dz ⊗C[F ]

Ω1
S− = Ω1

C[F ] ⊗ z−1C[z−1] ⊕ z−1C[z−1]dz ⊗C[F ]
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We have S = S+ ⊕S− and Ω1
S = Ω1

S+ ⊕Ω1
S− as vector spaces, and these decompositions 

are moreover compatible with the differential, in the sense that d(S±) ∈ Ω1
S± . Hence

Ω1
S/dS � Ω1

S+/dS+ ⊕ Ω1
S−/dS−

which implies that as vector spaces

ĝS/ĝ
+
S � g⊗ S− ⊕ Ω1

S−/dS−

Now, the residue identifies z−1C[z−1] with a subspace of (Ω1(D))∨. With respect to 
this embedding, the weight l-eigenspace of the S1 action on this space is C{zl}. Similarly, 
the residue identifies z−1C[z−1]dz with a subspace of (Ω0(D))∨. The weight l-eigenspace 
of the S1 action is C{zl−1dz}.

Using this, we can read of the cohomology of the corresponding eigenspaces as follows. 
For l < 0 we have

H∗(ĝ#c,alg
π (D), d1)(l) � g⊗C[F ] ⊗ {zl} ⊕

(
Ω1
C[F ] ⊗ {zl} ⊕C[F ] ⊗ {zl−1dz}

)
/ im(d̃).

For l = 0 we have

H∗(ĝ#c,alg
π (D), d1)(0) �

(
C[F ] ⊗ {z−1dz}

)
/ im(d̃).

When l > 0 the cohomology H∗(ĝ#c,alg
π (D), d1)(l) vanishes since (Ωp(D))∨ has non-

positive S1 spectrum for p = 0, 1 for any disk D.
Therefore, as vector spaces

V (Galg
g,π) = Sym

(⊕
l∈Z

H∗(ĝ#c,alg
π (D), d1)(l)

)
= Sym(g⊗ S− ⊕ Ω1

S−/dS−) = Sym(ĝS/ĝ+
S ) �

5.2.2. Verifying the hypotheses of Theorem 5.1
We proceed to verify the hypotheses of Theorem 5.1, establishing part (1) of Theo-

rem 5.2 above.

• The first hypothesis is verified as in Section 5.3.1 of [4].
• The second and third hypotheses follow from Lemma 5.7, from which it follows in 

particular that H∗((Galg
g,π(D(0, r)))(l)) is non-zero only if l ≤ 0.

• The last hypothesis requires some attention. By Lemma 5.7 H∗((Galg
g,π(D(0, r)))(l))

may be identified with the elements of weight l in

Sym
(
g⊗ S− ⊕ Ω1

S−/dS−) .
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We begin by showing that C[F ] and Ω1
C[F ] are naturally a sequential colimit of 

finite-dimensional vector spaces. This can be done as follows. Embed F ⊂ AN =
SpecC[x1, · · · , xN ]. This induces an increasing filtration F kC[F ], k ≥ 0, where 
F kC[F ] is spanned by the images of polynomials of degree ≤ k in x1, · · · , xN . C[F ]
and by the same reasoning Ω1

C[F ] can therefore be expressed as a countable union of 
finite-dimensional vector spaces. This induces a filtration on ĝ#c,alg

π compatible with 
the DVS structure, which in turn induces one on H∗((Galg

g,π(D(0, r)))(l)).

5.2.3. Constructing the isomorphism
We proceed to prove part (2) of Theorem 5.2. The proof is a variation on the approach 

taken in [19] with respect to the Virasoro factorization algebra, and involves three main 
steps:

(1) Showing that V (Galg
g,π) has the structure of a ĝR-module.

(2) Showing that V (Galg
g,π) � V (ĝR) as ĝR-modules.

(3) Checking that the vertex algebra structures agree by using the reconstruction The-
orem 2.6.

Let ρ : C× → R>0 be the map ρ(z) = zz = |z|2. The universal enveloping alge-
bra U(ĝR) defines a locally constant prefactorization algebra on R>0 which we denote 
AU(ĝR).

Lemma 5.8. There is a homomorphism Φ : AU(ĝR) → ρ∗H
∗(Galg

g,π) of prefactorization 
algebras on R>0.

Proof. • It is shown in Section 3.2 of [4] that a map of prefactorization algebras on R>0
is determined by the maps ΦI on connected open intervals. For each open interval 
I ⊂ R>0, AI = ρ−1(I) is an annulus. We choose for each such a bump function 
fI : AI → R having the properties
– fI is a function of r2 = zz only.
– fI ≥ 0 and f is supported in AI .
–

∫
A
fIdzdz = 1.

The map ΦI is uniquely determined by where it sends the generators of ĝR. We 
define ΦI on these linear generators by the assignments:

ΦI(J ⊗ utk) = −[J ⊗ uzk+1fIdz]

ΦI(tkω) = [zk+1fIω ∧ dz]

ΦI(tkudt) = [uzk+1fIdzdz]

where J ∈ g, u ∈ C[F ], ω ∈ Ω1
C[F ], and [−] ∈ H∗(Galg

g,π(AI)) denotes the ∂-
cohomology class of the closed differential form. The elements on the right are clearly 
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closed for the differential d̃, and the corresponding d̃-cohomology classes are easily 
seen to be independent of the choice of the function fI .

• We first check that ΦI is well-defined, which amounts to verifying that

ΦI(d(utk)) = ΦI(tkdu + ktk−1udt) = 0 ∈ H∗(Galg
g,π(AI))

for each u ∈ C[F ], k ∈ Z. We have

ΦI(tkdu + ktk−1udt) = −
(
[zk+1fIdzdu] + [kzkufIdzdz]

)
.

Notice that

ΦI(tkdu + ktk−1udt) + [dK#,alg
π

(zk+1ufIdz)]

= −[zk+1fIdudz] − [kzkufIdzdz]

+ [zk+1fIdudz + (k + 1)zkufIdzdz + uzk+1∂fI ∧ dz]

= +[u(zkfIdzdz + zk+1∂fI ∧ dz)]

It therefore suffices to show that [zkfIdzdz + zk+1∂fI ∧ dz] = 0 ∈ (OX(AI))∨, or 
equivalently, that ∫

AI

zm ∧ (zkfIdzdz + zk+1∂fI ∧ dz) = 0 ∀m ∈ Z

This follows from the identities∫
AI

zafIdzdz = δa,0 ,

∫
U

zb∂fI ∧ dz = −δb,1 (28)

for a, b ∈ Z that we obtain via integration by parts.
• Consider three disjoint open intervals I1, I2, I3 ⊂ R>0, such that Ii+1 is located to the 

right of Ii, all contained in a larger interval I. Their inverse images under ρ correspond 
to three nested annuli AIi inside a larger annulus AI . We have structure maps

•i,i+1 : ρ∗H∗(Galg
g,π)(Ii) ⊗ ρ∗H

∗(Galg
g,π)(Ii+1) → ρ∗H

∗(Galg
g,π)(I) i = 1, 2

To show that Φ is a prefactorization algebra homomorphism, we have to check that 
for X, Y ∈ ĝR,

ΦI1(X) •1,2 ΦI2(Y ) − ΦI2(Y ) •2,3 ΦI3(X) = ΦI([X,Y ])

Let
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Fm(z, z) = zm
zz∫
0

(fI1(s) − fI3(s))ds

Then on AI2 , Fm = zm, and moreover,

∂Fm(z, z) = zm∂(
zz∫
0

(fI1(s) − fI3(s))ds)

= zm
∂(zz)
∂z

∂

∂(zz) (
zz∫
0

(fI1(s) − fI3(s))ds)dz

= zm+1(fI1(zz) − fI3(zz))dz

Let J1, J2 ∈ g, u, v ∈ C[F ]. Then

ΦI1(J1ut
k) •1,2 ΦI2(J2vt

l) − ΦI2(J2vt
l) •2,3 ΦI3(J1ut

k) − ΦI2([J1ut
k, J2vt

l])

= ΦI1(J1ut
k) •1,2 ΦI2(J2vt

l) − ΦI2(J2vt
l) •2,3 ΦI3(J1ut

k)

− ΦI2

(
[J1, J2]uvtk+l + 1

2 〈J1, J2〉(utkd(vtl) − vtld(utk))
)

=
(
[J1uz

k+1fI1dz] · [J2vz
l+1fI2dz] − [J2vz

l+1fI2dz] · [J1uz
k+1fI3dz]

)
+

+ [[J1, J2]uvzk+l+1fI2dz] + 1
2 〈J1, J2〉[zk+l+1fI2(udv − vdu)dz

+ (l − k)uvzk+lfI2dzdz]

We also have

d̃
(
[J1uFk] · [J2vz

l+1fI2dz]
)

=
(
[J1uz

k+1fI1dz] · [J2vz
l+1fI2dz] − [J2vz

l+1fI2dz] · [J1uz
k+1fI3dz]

)
+ [[J1, J2]uvzk+l+1fI2dz] + 1

2 〈J1, J2〉[uFk∂(vzl+1fI2dz) − ∂(Fku)

∧ (zl+1vfI2dz)]

=
(
[J1uz

k+1fI1dz] · [J2vz
l+1fI2dz] − [J2vz

l+1fI2dz] · [J1uz
k+1fI3dz]

)
+ [[J1, J2]uvzk+l+1fI2dz] + 1

2 〈J1, J2〉[zk+l+1(udv − vdu)fI2dz

+ uv((l − k + 1)fI2zk+ldzdz − zk+l+1∂fI2 ∧ dz)]

where we have used the fact that over the support of fI2, Fk = zk. Using the identities 
(28), we obtain

[(l − k + 1)zk+lfI2dzdz − zk+l+1∂fI2 ∧ dz] = [(l − k)zk+lfI2dzdz].



M. Szczesny et al. / Advances in Mathematics 386 (2021) 107799 39
It follows that

ΦI1(J1ut
k) •1,2 ΦI2(J2vt

l) − ΦI2(J2vt
l) •2,3 ΦI3(J1ut

k) − ΦI2([J1ut
k, J2vt

l])

= 0 ∈ ρ∗H
∗(Galg

g,π)(I)

proving the lemma. �
The homomorphism Φ of Proposition (5.8) equips V (Galg

g,π) with the structure of a 
ĝR-module. Let us fix 0 < r < r′ < R We have the following commutative diagram:

H∗(Galg
g,π(D(0, r))) ⊗H∗(Galg

g,π(A(r′, R))) H∗(Galg
g,π(D(0, R))

V (Galg
g,π) ⊗AU(ĝR) V (Galg

g,π)

m

ι⊗Φ ι

where ι denotes the inclusion of V (Galg
g,π) ⊂ H∗(Galg

g,π(D(0, r))) (for any r), and m is the 
prefactorization structure map. As explained in the proof of Theorem 5.3.3 in [4], the 
existence of the dotted arrow (i.e. the fact that the U(ĝR)-action preserves the subspace 
V (Galg

g,π)) follows from the fact that the structure map m is S1-equivariant.
In concrete terms, the action of X ∈ ĝR on v ∈ V (Galg

g,π) is given as follows: we may 
represent v by a closed chain ṽ ∈ CLie

∗ (ĝ#c,alg
π (D(0, r)) - then X · v is represented by 

Φ(r′,R)(X) · ṽ.

Lemma 5.9. There is an isomorphism of ĝR-modules

η : V (ĝR) → V (Galg
g,π)

which sends |0〉 ∈ V (ĝR) to 1 ∈ V (Galg
g,π).

Proof. Let h(z, z) =
∫ zz

0 f(s)ds. By the chain rule, we have that

∂(znh(z, z)) = zn+1f(zz)dz

Thus in H∗(Galg
g,π(D(0, R)), we have for k ≥ 0:

Φ(r′,R)(Jutk) = [Juzk+1f(zz)dz] = d̃(Juzkh(z, z))

Φ(r′,R)(tkudv) = [zk+1f(zz)udzdv] = d̃(zkh(z, z)udv)

Φ(r′,R)(utkdt) = [uzk+1f(zz)dzdz] = d̃(uzkh(z, z)dz)

In other words, if X ∈ ĝ
+
R, then Φ(r′,R)(X) = 0 ∈ H∗(Galg

g,π(D(0, R)). This shows that 
the vector 1 ∈ V (Galg

g,π) is annihilated by ĝ+
R. It follows that there exists a unique map 

of ĝR-modules η : V (ĝR) → V (Galg
g,π) sending |0〉 → 1. It remains to show this is an 
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isomorphism, which can be done as in [4,19] for the affine and Virasoro algebra, so we 
will be brief. Both V (ĝR) and V (Galg

g,π) have the structure of filtered U(ĝR)-modules, 
where in each case the filtration is induced by symmetric degree. It is straightforward to 
verify that η induces an isomorphism at the level of associated graded modules, proving 
the result. �

To complete the proof of Theorem 5.2, we check that η induces an isomorphism of 
vertex algebras. Suppose that z ∈ A((r′, R)). Recall that the operation

Y : V (Galg
g,π) ⊗ V (Galg

g,π) → V (Galg
g,π)((z))

is induced from the diagram

V (Galg
g,π) ⊗ V (Galg

g,π)

H∗(Galg
g,π(D(z, ε))) ⊗H∗(Galg

g,π(D(0, r))) H∗(Galg
g,π(D(0, R)))

ι⊗ιz

mz,0

as the Laurent expansion of the map mz,0 ◦ ι ⊗ ιz. By the Reconstruction Theorem 2.6, 
it suffices to show that the generating field assignments agree, that is we need to verify 
that for v ∈ V (Galg

g,π),

mz,0(ιz(η(Jut−1 · |0〉)), ι(v)) =
∑
n∈Z

(Φ(Jutn) · v)z−n−1

mz,0(ιz(η(ut−1dt · |0〉)), ι(v)) =
∑
n∈Z

(Φ(utn−1dt) · v)z−n

mz,0(ιz(η(t−1ω · |0〉)), ι(v)) =
∑
n∈Z

(Φ(tnω) · v)z−n−1

ιz(η(Jut−1 · |0〉)) may be identified with the element Juψz ∈ g ⊗C[F ] ⊗ (Ω1(D(z, ε)))∨, 
where ψz ∈ (Ω1(D(z, ε)))∨ is defined by

ψz(h(w)dw) = 1
2πi

∮
C(z,δ)

h(w)dw
w − z

By the residue theorem, for h(w)dw ∈ Ω1(A(r, R)), we may switch contours, to write∮
C(z,δ)

h(w)dw
w − z

=
∮

C(0,R−δ)

h(w)dw
w − z

−
∮

C(0,r′+δ)

h(w)dw
w − z

=
∑
n≥0

(
∮

C(0,R−δ)

w−n−1h(w)dw)zn +
∑
n<0

(
∮

C(0,r′+δ)

w−n−1h(w)dw)zn
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where in the second line we have expanded 1
w−z into a geometric series in the domains 

|w| > |z| and |w| < |z| respectively. Using the fact that

Res0h(w)w−n−1dw =
∫

A(r′,R)

h(w)w−nf(r,R)dwdw

and Φ(Jut−n−1) · v = [Juz−nf(r′,R)dz] · v we obtain the first identity. Similarly, we may 
identify ιz(η(ut−1dt · |0〉)) with the element uξz ∈ C[F ] ⊗ (O(D(z, ε)))∨, where

ξz(h(w)) = h(z) = 1
2πi

∮
C(z,δ)

h(w)dw
w − z

and ιz(η(t−1ω · |0〉)) with ωψz ∈ Ω1
C[F ] ⊗ (Ω1(D(z, ε)))∨. Expanding these in contour 

integrals centered at 0, and identifying the coefficients with appropriate elements in the 
image of Φ as above proves the remaining two identities.
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