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Abstract This paper focuses on the connection of holomorphic two-dimensional fac-
torization algebras and vertex algebraswhich has beenmade precise in the forthcoming
book of Costello–Gwilliam. We provide a construction of the Virasoro vertex algebra
starting from a local Lie algebra on the complex plane.Moreover, we discuss an exten-
sion of this factorization algebra to a factorization algebra on the category of Riemann
surfaces. The factorization homology of this factorization algebra is computed as the
correlation functions. We provide an example of how the Virasoro factorization alge-
bra implements conformal symmetry of the beta–gamma system using the method of
effective BV quantization.

Keywords Factorization algebras · Virasoro vertex algebra · BV quantization ·
Conformal field theory
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1 Introduction

In this paper,we study the sheaf of holomorphic vector fields in one complex dimension
and local extensions thereof. Using the formalism of factorization algebras devel-
oped in the book [9], we provide a construction of the Virasoro factorization algebra
defined on any Riemann surface. Moreover, we compute and recognize the factoriza-
tion homology of the two-dimensional factorization algebra as encoding the conformal
blocks of the Virasoro vertex algebra.
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2190 B. Williams

TheVirasoro Lie algebraVir arises as a central extension of the Lie algebra of vector
fields on a circle Vect(S1). In fact, it is the unique central extension as H2(Vect(S1))
is one-dimensional with generator given by the Gelfand–Fuks cocycle [14] defined
by

ωGF( f (t)∂t , g(t)∂t ) �→ 1

12

∫
S1

f ′′′(t)g(t)dt.

The Virasoro Lie algebra, along with its related vertex algebra and category of repre-
sentations, is interesting and natural in their own right from a mathematical point of
view [11,14–16].

The compelling motivation for studying of the Virasoro algebra derived from
understanding the symmetries of two-dimensional conformal field theories. Clas-
sically, conformal symmetry consists of two copies of the complexification of the
Lie algebra of vector fields on the circle: a holomorphic and an anti-holomorphic
version. We will choose to focus on holomorphic, or chiral, conformal field theo-
ries and hence only consider holomorphic vector fields on two-dimensional complex
manifolds. The Weyl anomaly arises when one tries to quantize the symmetry
of holomorphic vector fields on such a conformal field theory. It results in the
one-dimensional central extension of holomorphic vector fields defined by the
Gelfand–Fuks cocycle. Moreover, the anomaly is characterized by how the central
parameter acts on the quantum theory; this is called the central charge of the the-
ory.

We work with the Dolbeault resolution of holomorphic vector fields on C, which
we denote by LC throughout. The fact that we can restrict vector fields to open sets
gives this the structure of a sheaf of Lie algebras. Moreover, it has the structure of a
local Lie algebra onCwhich will be central in our construction. We define an explicit
cocycle ω that defines a (−1)-shifted central extension of this local Lie algebra. There
is a factorization algebra associated to this local Lie algebra, denoted Vir. We show
that the factorization product encodes the product on the universal enveloping algebra
associated to the ordinary Virasoro Lie algebra, U (Vir).

We go further and use a characterization of structured holomorphic factorization
algebras onC from the book [9] to show that this factorization algebra has the structure
of a vertex algebra and it is equivalent to that of the Virasoro vertex algebra. In [9], a
functor Vert from the category of structured holomorphic factorization algebras on C
to the category of vertex algebras is defined. The main result from the first part of this
paper can be stated as follows.

Theorem 1 For any complex number c ∈ C, there is a factorization algebra Virc on
C (given by the enveloping factorization algebra for the extension ofLC by the cocycle
cω) which determines a vertex algebraVert(Virc). Moreover, there is an isomorphism
of vertex algebras

Virc
∼=

Vert(Virc)

where Virc denotes the Virasoro vertex algebra of charge c.
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The Virasoro vertex algebra and factorization algebras on… 2191

After spelling out the local structure, we study global sections, or the factorization
homology, of Virc. Some care must be taken when defining the cocycle determining
the extension on the Dolbeault resolution of vector fields on a general Riemann surface
since the original cocycle for the local Lie algebra on C is coordinate dependent. We
show that a slightly modified version of the cocycle gives a coordinate independent
description and hence a universal version of the cocycle. That is, we show that the
Virasoro factorization algebra defines a factorization algebra on the site of Riemann
surfaces. We calculate the cohomology of global sections of the Virasoro factorization
algebra and write down correlation functions.

This paper can be viewed in conjunction with a new direction of work that com-
bines methods of renormalization, homological perturbation theory, and factorization
algebras developed in Costello [8] and Costello–Gwilliam [9,10]. From the data of a
classical field theory, defined in terms of an action functional, one applies of homo-
topical renormalization to construct a quantization. Locality of the theory and the
quantization on the manifold in which the theory lives combine to give the structure
of a factorization algebra on the algebraic observables of the theory.

The last section of this paper exhibits how the usual physical idea of the Virasoro
algebra encoding the symmetries of a conformal field theory fits in to the model for
QFT developed by Costello–Gwilliam. The usual Virasoro symmetry in field theory
is naturally encoded by map of factorization algebras from the Virasoro factorization
algebra (at a certain central charge) to the factorization algebra of observables. We
will focus on a particular example of a chiral conformal field theory, called the free
βγ system, though the methods we use work in a much larger context.

One motivation for this approach to constructing the Virasoro vertex algebra and
realizing its significance in the context of conformal field theory is that it is amenable
to higher dimensions. Indeed, it is completely natural to consider field theories defined
on a complex manifold that have the symmetry of holomorphic vector fields. This is
a generalization of a chiral conformal field theory in complex dimension one and
examples are bountiful in the context of supersymmetric theories in higher dimen-
sions [17,18]. On completely formal grounds, we then expect the quantization of such
a theory (assuming the relevant anomalies vanish) to have the symmetry of a central
extension of this local Lie algebra of holomorphic vector fields. In future work we
classify such central extensions and understand them as certain universal character-
istic classes on the moduli stack of complex structures. We also investigate the local
structure of a higher-dimensional factorization algebra on Cd , for d > 1, analogous
to the way holomorphic factorization algebras onC give rise to vertex algebras. Thus,
this can be seen as an approach to studying higher-dimensional generalizations of
vertex algebras.

1.1 Notation and conventions

– If X is a complex manifold we have a decomposition of the tangent bundle
T 1,0X ⊕ T 0,1X . Unless otherwise noted we will write T X = T 1,0X for the
(1, 0) part of the tangent bundle. With respect to this decomposition the de Rham
differential
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ddR : O(X)→ Ω1(X)=Ω1,0(X)⊕Ω0,1(X):=Γ
(
(T 1,0X)∨

)
⊕ Γ

(
(T 0,1X)∨

)

splits as ∂ + ∂̄ .
– Let V be a graded vector space. We denote by Tens(V ) the full tensor algebra of

V , ⊕n≥0V⊗n . This is again a graded vector space in the natural way. Define the
symmetric algebra as

Sym(V ) =
⊕
n≥0

Symn(V )

where Symn(V ) = (V ⊗ · · · ⊗ V )Σn
. Wewill also need the completed symmetric

algebra

ˆSym(V ) =
∏
n≥0

Symn(V ).

– All graded vector spaces are cohomologically graded. For k ∈ Z we denote by
V [k] the graded vector space with graded components:

(V [k])i = V i+k .

If W is an ordinary (ungraded) vector space, we will understand it as a graded
vector space concentrated in degree zero. For instance, W [k] is concentrated in
degree −k.

– Let g be a dg Lie algebra. That is, aZ-graded vector space together with a differen-
tial dg : g• → g•+1 of degree+1 and a bracket [−,−] that is graded antisymmetric,
satisfies the graded Jacobi identity, and for which dg is a graded derivation. We
define Chevalley–Eilenberg chains for computing Lie algebra homology as

C∗(g) := Sym (g[1]) =
⊕
n≥0

Symn(g[1])

with differential given by d = dg + dCE where dCE is the usual CE-differential
determined by dCE(a ∧ b) = [a, b] on Sym2. Similarly, Chevalley–Eilenberg
cochains for computing Lie algebra cohomology are defined by

C∗(g) := ˆSym (
g∨[−1])

with differential given by d = d∨g + d∨CE.
– We will need to consider a topology on the dg vector spaces we work with. Unless
otherwise noted our complexes will take values in the category of dg nuclear
vector spaces. This is an especially convenient category of topological vector
spaces which are locally convex and Hausdorff. For more on their properties see
[8] Given two dg nuclear vector spaces we denote by V ⊗W the completed tensor
product. This tensor product makes the category of dg nuclear vector spaces a
symmetric monoidal category which we denote by dgNuc⊗.
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2 Virasoro as a local Lie algebra on C

In this section, we introduce a local version of the Virasoro Lie algebra on the complex
plane. It appears as an extension of the Lie algebra of holomorphic vector fields on C
given by an explicit cocycle.

2.1 Dolbeault resolution of holomorphic vector fields

Let X be a complex manifold. We study the space of holomorphic sections of the
holomorphic (1, 0) tangent bundle Ohol(T X). We can use the decomposition of the
tangent bundle above gives us a resolution for this space. Indeed, the ∂̄ operator extends
to define a complex

Ω0,0(X, T X)
∂̄

Ω0,1(X, T X)
∂̄

Ω0,2(X, T X)
∂̄ · · · .

We will be concerned with the case that the complex manifold is a Riemann
surface Σ . Indeed the Dolbeaut complex above defines the dg Lie algebra LΣ :=
Ω0,∗(Σ, TΣ). The differential is ∂̄ , and the Lie bracket is given by extending the
ordinary Lie bracket on Ω0,0(Σ, TΣ) to a graded Lie bracket.

Wewill considerLΣ as a sheaf of cochain complexes that assigns to an openU ⊂ Σ

the complex

(Ω0,∗(U, TU ), ∂̄).

Moreover, LΣ is a sheaf of dg Lie algebras. In fact it has even more structure, that of
a local DG Lie algebra.

The following definition can be found in [9].

Definition 2.1 A local dg Lie algebra on a manifold M is the following data:

(1) A graded vector bundle L on M , whose sheaf of smooth sections is denoted L.
(2) A differential operator d : L→ L of degree one and square 0.
(3) Antisymmetric multi-differential operators

d : L→ L , [−,−] : L⊗2 → L

of degree one and zero, respectively, that give L the structure of a sheaf of dg Lie
algebras.

We will often refer to a local Lie algebra simply by its sheaf of sections L. A
closely related object that we will consider is the associated precosheaf of compactly
supported sections Lc. To an open set U ⊂ M , it assigns the graded vector space
Γc(L ,U ) of compactly supported sections of L supported onU . Since the differential
and bracket are multi-differential operators of the bundle L , we see that they restrict
to define the structure of a dg Lie algebra on Lc(U ). Note, however, that although Lc

is a cosheaf of underlying graded vector spaces on M , it is not a cosheaf of dg Lie
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2194 B. Williams

algebras (though it is still a prechosheaf of dg Lie algebras). This follows from the
fact that the coproduct in the category of dg Lie algebras differs from the direct sum.

Since ∂̄ and the Lie bracket of vector fields are differential and bi-differential oper-
ators, respectively, we see that LΣ is a local dg Lie algebra that assigns to an open
set U ⊂ Σ the dg Lie algebra LΣ(U ) = (Ω0,∗(U, TU ), ∂̄). The precosheaf of
compactly supported sections LΣ

c assigns to an open set U ⊂ Σ the dg Lie algebra
LΣ
c (U ) = (Ω

0,∗
c (U, TU ), ∂̄)

2.2 Lie algebra extensions and the cocycle

We are interested in a one-dimensional central extension of LΣ . As the Lie algebra in
question is local, we ask for our extensions to be local as well. Before defining what
we mean by this, we review extensions of ordinary Lie and dg Lie algebras.

In the remainder of this section, as well Sects. 3 and 4 we will be concerned with
the case that the Riemann surface is the complex line Σ = C.

2.2.1 Extensions

A central extension ĝ of an ordinary Lie algebra g is a Lie algebra that fits into an
exact sequence

0→ C→ ĝ→ g→ 0

such that [λ, x] = 0 for all λ ∈ C and x ∈ g. Isomorphism classes of central extensions
of g are in bijective correspondence with H2(g).

For a dg Lie algebra g and an integer k, we can define a k-shifted central extension
of g. It fits into and exact sequence

0→ C[k] → ĝ→ g→ 0 (1)

and satisfies [λ, x] = 0 as above.

Remark 1 The group H2+k(g) does not parametrize such extensions. It parametrizes a
larger class of extensions, namely shifted L∞-extensions of g. That is, exact sequences
as in (1) except ĝ is allowed to be an L∞-algebra, and the maps are of L∞-algebras.

Example 1 Consider the Lie algebra of vector fields on S1, Vect(S1). This is an ordi-
nary Lie algebra that, as usual, can be thought of as a dg Lie algebra concentrated
in degree zero. The Gelfand–Fuks extension mentioned in the introduction is a 2-
cocycle, hence determines an element in H2

Lie(Vect(S
1)). In fact, this cohomology is

one-dimensional. See [14] for a proof of this.

Now, let L be a local dg Lie algebra on a manifold M . A local k-shifted central
extension of L is a dg Lie algebra structure on the precosheaf

L̂c = Lc ⊕ C[k]
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The Virasoro vertex algebra and factorization algebras on… 2195

such that for all opens U ⊂ M :

– (Central) For any λ ∈ C[k] and x ∈ L̂c(U ), we have [x, λ] = 0 and the sequence

0→ C[k] → L̂c(U )→ Lc(U )→ 0

is exact.
– (Local) The differential d

L̂
: Lc(U )→ C[k] and Lie bracket [−,−] : Lc(U )⊗

Lc(U )→ C[k] both factor through the k-shifted integration map

∫
U
: Densc(U )[−k] → C[k].

Here, Densc denotes the cosheaf of compactly supported densities.

Remark 2 As in the ordinary case, there is a cohomology that parametrizes central
extensions of this local nature.LetLbe a localLie algebra onM . In [8] local functionals
are defined as

C∗loc,red(L) := DensM ⊗DM C∗red (Jet(L)) .

Here, DM is the space of differential operators on M and Jet(L) is the infinite Jet-
bundle of the vector bundle L . The jet-bundle inherits a naturalDM -module structure,
and this induces one on cochains. There is another interpretation of local cochains.
They are precisely the graded multilinear functionals on L that factor through the
integration map. More precisely, integration along M induces a natural inclusion

C∗loc,red(L) ↪→ C∗red(Lc(M))

that sends a local functional S to the functional ϕ �→ ∫
M S(ϕ).

Just as in the case of (non-local) dg Lie algebras, the degree 2 + k cocycles of
C∗loc,red(L) parametrize a larger class of extensions, namely local L∞-algebra exten-
sions of L. For our situation, when L is the Dolbeault resolution of holomorphic
vector fields on U ⊂ C (or on a closed Riemann surface Σ), the non-trivial degree
one cocycles are all cohomologous to one of the form

Lc(U )⊗2 → C

and hence all (−1)-shifted extensions will be equivalent to a local dg Lie algebra.

2.2.2 A cocycle for LC

We now define the cocycle used to construct the central extension of LC we are
interested in. Let U ⊂ C and fix a coordinate. Consider the bilinear map

ω : LC
c (U )⊗ LC

c (U )→ C[−1]
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given by

(α ⊗ ∂z, β ⊗ ∂z) �→ 1

2π

1

12

∫
U

(
∂3z α0β1 + ∂3z α1β0

)
d2z

where α = α0 + α1dz̄ and β = β0 + β1dz̄. The target of the bilinear map ω is C[−1]
which reflects the fact that it is only nonzero when the degree of α∂z and β∂z sum
to 1. One checks by direct calculation that ω is a cocycle. It is our analog of the
Gelfand–Fuks cocycle.

This cocycle defines for us a local (−1)-shifted central extension L̂C of LC via the
local extension construction above. As a cosheaf of vector spaces, it is

LC
c ⊕ C · c[−1].

On an open U , the Lie bracket is defined by the rules

[α ⊗ ∂z, β ⊗ ∂z]L̂C
c
:= [α ⊗ ∂z, β ⊗ ∂z] + 1

2π

1

12

∫
U

(
∂3z α0β1 + (∂3z α1β0

)
d2z · c

and [α ⊗ ∂z, c]L̂C
c
= 0.

The locality and cocycle properties imply thatω determines an element in H1
loc(L

C).

2.3 Statements about cohomology

The following facts about the ∂̄-cohomology of subsets of C will be used throughout.
Let U ⊂ C be open. The following lemma is due to Serre [21].

Lemma 1 Let E be an arbitrary holomorphic vector bundle on a one-dimensional
complex manifold U. The compactly supported Dolbeault cohomology with coeffi-
cients in E is concentrated in degree 1, and there is a continuous isomorphism

H1(Ω0,∗
c (U ; E), ∂̄) ∼=

(
Ω1

hol(U ; E∨)
)∨

where E∨ denotes the linear dual of the bundle E and the outer dual (−)∨ of holo-
morphic one-forms with values in E∨ denotes the continuous linear dual of nuclear
Fréchet spaces.

The isomorphism can explicitly be written as follows. We assign to an element α ∈
Ω0,1(U ; E), the continuous linear functional

〈α,−〉 : Ω1
hol(U )→ C , β �→

∫
U
〈α, β〉E

where 〈−,−〉E denotes the evaluation pairing between E and E∨.
Next, we need the following fact about dg Lie algebras.

123



The Virasoro vertex algebra and factorization algebras on… 2197

Lemma 2 Suppose L is a dg Lie algebra such that H∗(L) is concentrated in a single
degree. Then L is formal (as a dg Lie algebra).

Proof Suppose the cohomology of L is concentrated in degree m. Define the sub-
complex L ′ ↪→ L as follows: for k < m set (L ′)k := Lk , for k = 0 set
(L ′)0 = ker(dL : L0 → L1), for k > m set (L ′)k := 0. There is a natural zig-
zag of dgla’s

L ←↩ L ′ → H0L .

Both arrows are clearly weak equivalences.

Serre’s result implies that LC
c (U ) = Ω

0,∗
c (U, TU ) is formal for all opens U ⊂ C.

In fact, there is a quasi-isomorphism of dg Lie algebras

Ω0,∗
c (U, TU ) � H(Ω0,∗

c (U, TU ), ∂̄) ∼=
(
Ω1

hol(U, T ∗U )
)∨ [−1].

This implies the following useful fact about the Lie algebra cohomology.

Proposition 2 Let U ⊂ C be open. Then,

HLie∗ (LC
c (U )) := H∗

(
Sym(LC

c (U )[1]), ∂̄ + dCE

) ∼= Sym
(
Ω1

hol(U, T ∗U )∨
)

concentrated in degree 0.

Here, we extend the differential ∂̄ on Lc(U ) to the symmetric algebra in the obvious
way.

Proof This result follows from formality. Indeed,

HLie∗ (LC
c (U )) ∼= HLie∗ (H∗̄

∂
(LC

c (U )) = HLie∗ (Ω1
hol(U, T ∗U )∨[−1]).

Now,Ω1
hol(U, T ∗U )∨[−1] is an abelian dgLie algebra concentrated in a single degree.

Thus

HLie∗ (Ω1
hol(U, T ∗U )∨[−1]) = Sym

(
Ω1

hol(U, T ∗U )∨
)

as desired.

This result also follows from considering the filtration spectral associated to sym-

metric tensor power degree. The E1-page is Sym
(
H ∗̄

∂
(LC

c (U ))
)
and the spectral

sequence degenerates at the E2-page as the ∂̄-cohomology is concentrated in a single
degree. In fact, the degeneration of this spectral sequence associated to cochains on a
dg Lie algebra g is closely related to the formality of g, for example see [19].

Remark 3 In the second part of the paper, we consider closed Riemann surfaces. It is
still true that on a closed Riemann surface, the spectral sequence associated to the dg
Lie algebra Ω0,∗(Σ, TΣ) degenerates. In fact, this dg Lie algebra is also formal.
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2.4 Factorization algebras

Central to this work is the notion of a factorization algebra. We recall the relevant
theory as in [9].

Fix a topological space M . For the level of generality of most of this section, we
work in an arbitrary symmetric monoidal categoryC⊗ closed under small colimits. For
the purposes of thiswork,we aremainly concernedwithC = dgNuc, the dg category of
cochain complexes of nuclear vector spaces overCwith symmetricmonoidal structure
given by the completed tensor product over C.

2.4.1 Prefactorization

A prefactorization algebra F on M with values in C⊗ is an assignment of an object
F(U ) of C for each open U ⊂ M together with the following data:

– For U ⊂ V , a morphism F(U )→ F(V ).
– For any finite collection {Ui } of pairwise disjoint opens in an open V ⊂ M a
morphism

⊗iF(Ui )→ F(V ).

– Coherences between the above two sets of data.

For a better definition,weneed to define the following symmetricmonoidal category
Fact(M)�. Its objects are topological spaces U together with a map U → M such
that on each connected component ofU this map is an open embedding. A morphism
from U → M to V → M is a commutative diagram

U
i

V

M

with i an open embedding. Composition is done in the obvious way. The symmetric
monoidal structure is given by disjoint union.

A more precise definition of a prefactorization algebra is symmetric monoidal
functor

F : Fact(M)� → C⊗.

Example 2 The coherence of the data above can be read of immediately from this
definition and encodes the transitivity of opens. For instance, suppose U1,U2 ⊂ V ⊂
W are opens with Ui disjoint. Then F applied to this composition says that

F(U1)⊗ F(U2) F(V )

F(W )

commutes.
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The structures we consider in the first part of this paper are completely encoded by
a prefactorization structure. In the last section, however, when we will be concerned
with global sections on a general Riemann surface, it is critical that our object satisfies
a form of descent.

2.4.2 Factorization: gluing

A factorization algebra is a prefactorization algebra satisfying a descent axiom.
Descent for ordinary sheaves (or cosheaves) says that one can recover the value of the
sheaf on large open sets by breaking it up into smaller opens. That is, if U = {Ui } is
a cover of U ⊂ M , then a presheaf F of vector spaces is a sheaf iff

F(U )→⊕
i F(Ui ) ⊕i, jF(Ui ∩Uj )

is an equalizer diagram for all opensU and covers U. It is convenient to introduce the
Čech complex associated to U. The pth space is

Č p(U,F) :=
⊕

i0,...,i p

F(Ui0 ∩ · · · ∩Uip ).

The differential Č p → Č p+1 is induced from the natural inclusion maps Ui0 ∩ · · · ∩
Uip ↪→ Ui0 ∩ · · · ∩ Ûi j ∩ · · · ∩ Uip . The sheaf condition is equivalent to saying that
the natural map

F(U )→ H0(Č(U,F))

is an isomorphism. There is a similar construction for cosheaves, but the arrow goes
in the opposite direction.

We are interested in descent for a different topology, that is, for only a special
class of open covers. Call an open cover U = {Ui } of U ⊂ M a Weiss cover if for
any finite collection of points {x1, . . . , xk} in U , there exists an open set Ui such that
{x1, . . . , xk} ⊂ Ui . This is equivalent to providing a topology on the Ran space.

AWeiss cover defines a Grothendieck topology onOp(M), the poset of opens inM .
A factorization algebra on M is a prefactorization algebra on M that is, in addition,
a homotopy cosheaf for this Weiss topology.

When C⊗ = dgVect, we can be explicit about this homotopy gluing condition
using a variant of the Čech complex above. Let F be a cosheaf of dg vector spaces.
For U = {Ui }i∈I let Č p(U,F) be the complex

⊕
i0,...,i p

F(Ui1 ∩ · · · ∩Uik )[p − 1]

with differential inherit from F. Then Č(U,F) is a bigraded object. The differential is
the total differential obtained from combining the ordinary Čech differentials above
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2200 B. Williams

plus the internal differential of F. The cosheaf condition is that the natural map

Č(U,F)→ F(U )

is an equivalence for all Weiss covers U of U .

Remark 4 One might refer to this as a homotopy factorization algebra, reserving a
strict factorization algebra for one in which

Ȟ0(U,F)→ F(U )

is an equivalence. The Ȟ0 means we have only taken cohomology with respect to the
Čech differentials. It has a natural dg structure inherited from F.

2.5 (Twisted) envelopes

One of themost useful ways of constructing factorization algebras is the “factorization
envelope” of a local Lie algebra. This is the analog of the universal enveloping algebra
of a Lie algebra.

Let L be any local Lie algebra on a manifold M . Denote by Lc its associated
cosheaf of compactly supported sections. Define the prefactorization algebra U factL

as follows:

– For an openU ⊂ M , we assign the complexC∗(Lc(U ))with it’s usual differential
d = dL + dCE.

– Suppose �iUi ↪→ V is an inclusion of disjoint opens inside a bigger open. The
structure maps of the prefactorization algebra come from applying C∗(−) to the
structure maps of the cosheaf

⊕iLc(Ui )→ Lc(V ).

In fact, we will use the following fact to compute global sections, i.e., factorization
homology.

Theorem 3 ([9]) The prefactorization algebra U factL satisfies descent, that is it is a
factorization algebra.

Example 3 If g is an ordinary Lie algebra, we can consider the local Lie algebra
Ω∗R⊗ g on R. The factorization algebraU fact(ΩR⊗ g) is locally constant on R. Now,
map that sends a factorization algebra on R to its value on an interval is known to
induce an equivalence of categories

{A∞−algebras} � {E1−algebras} � { locally constant factorization algebras on R}.

Under this equivalence the factorization algebraU factg corresponds to the associative
algebra Ug.
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Now, suppose we have an element ω ∈ H1
loc(L) corresponding to a (−1)-shifted

central extension L̂ of a local Lie algebra L on a manifold M . We define the twisted
factorization envelope U fact

ω L as the factorization algebra on M that sends an open
U ⊂ M to the complex

(Sym (L(U )[1] ⊕ C · C) , dL + dCE + ω)

where ω is made into an operator on Sym as follows. On Sym≤1 it is zero, and on
Sym2 it is

(α, β) �→ C · ω(α, β).

It is extended to the full symmetric algebra by demanding that it is a graded derivation.
Note that U fact

ω LC = U factL̂C
c so that the twisted envelope is just the envelope of the

extended local Lie algebra.

2.5.1 The Virasoro factorization algebra

We will now specialize to factorization algebras valued in the symmetric monoidal
category of dg nuclear vector spaces dgNuc or slight variants thereof.

In the remainder of the paper, we are interested in both the untwisted and twisted
factorization envelopes of the local Lie algebra of holomorphic vector fields.

First, define the Virasoro factorization algebra at central charge zero by

Vir0 := U factLC.

This is a factorization algebra valued in the category dgNuc (since the Dolbeault
complexes belong to this category).

Let ω ∈ H1
loc(L

C) denote the cocycle from Sect. 2.2.2. We define the Virasoro
factorization algebra by

Vir := U fact
ω LC.

The factorization algebraVir is a factorization algebra in the category ofC[c]-modules
in dg nuclear vector spaces. In particular, we can specialize a value of c to obtain a
factorization algebra in dgNuc. We will denote such a specialization by Virc and call
it the Virasoro factorization algebra of central charge c.

3 Annuli: recovering the Virasoro

In this section, we show how the Virasoro Lie algebra is encoded in the factorization
algebras constructed above.

First we recall the definition the Virasoro Lie algebra. Consider the ring of Laurent
power series in one variable C((t)). As a vector space the Lie algebra of derivations
W×1 := Der (C((t))) is isomorphic to C((t))∂t . The ring C((t)) is equal to functions
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on the holomorphic formal punctured disk D̂× and W×1 is the Lie algebra of formal
vector fields on the punctured disk. Let Vir be the central extension ofW×1 determined
by the Gelfand–Fuks cocycle ωGF defined in the introduction. It fits into the exact
sequence of Lie algebras

0→ C · C → Vir→ W×1 → 0.

Thus, as a vector space we have Vir = C((t))∂t ⊕C ·C . Explicitly, the bracket in this
Lie algebra is

[ f (t)∂t , g(t)∂t ] = ( f (t)g′(t)− f ′(t)g(t))∂t + 1

12

∮
f ′′′(t)g(t)dt · C.

It is topologically generated by c and Ln = tn+1∂t and in terms of these generators,
the commutator is

[Ln, Lm] = (n − m)Ln+m + m3 − m

12
δn,−m · C.

Now, consider the universal enveloping algebra of the Virasoro Lie algebraU (Vir).
Being an associative algebra, it determines a locally constant factorization algebra on
R>0. Denote this factorization algebra by AVir. Explicitly, AVir sends an interval I to
U (Vir) (considered as a dg vector space concentrated in degree zero) and the structure
maps are induced by the usual associative multiplication on U (Vir).

Let ρ : C× → R>0 be themap z �→ zz̄.We consider the push-forward factorization
algebra ρ∗Vir. This is a factorization algebra on R>0. The main result of this section
can be stated as follows.

Proposition 4 There is a map of factorization algebras

Φ : AVir → H0(ρ∗Vir) (2)

that is a dense inclusion of topological vector spaces on every open interval I ⊂ R>0.

Note that on an open interval I ⊂ R>0

(ρ∗Fω)(I ) = Vir(ρ−1(I )).

So, we need to understand what Vir does to annuli.

Remark 5 This proposition says that every cohomology class in Vir applied to an
annulus is arbitrarily close to some element of the universal enveloping algebra of the
Virasoro Lie algebra. Moreover, the structure maps of the factorization algebra are the
continuous extensions of the multiplication for UVir.
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3.1 The case of zero central charge

Recall that we have the following identification for any open U ⊂ C:

H∗(Vir0(U )) ∼= Sym
(
H1(Ω0,∗

c (U, TU ))
) ∼= Sym

(
Ω1

hol(U, TU )∨
)

concentrated in cohomological degree 0.
First, we describe the untwisted version of the map (2), denote itΦun : C((z))∂z →

ρ∗(Vir0). Let Ln = zn+1∂ ∈ C((z))∂z be the usual basis vectors for n ∈ Z. Pick an
open interval I ⊂ R>0 and let A = ρ−1(I ). We will utilize a function f : C× → R
for A that satisfies the following:

– f is only a function of r2 = zz̄.
–

∫
A f dzdz̄ = 1.

– f (r2) ≥ 0 and f is supported on A.

We will refer to f as a bump function for A. Finally, we define

Φun(I ) : Ln �→
⌊
f (zz̄)zn+2dz̄∂z

⌋

where �−� denotes the cohomology class in compactly supported Dolbeault forms.
Note that this map is a dense inclusion of topological vector spaces by Serre’s resulted
stated above. Therefore, we might unambiguously confuse Ln with its image in
H∗(Vir0(A)). Also, it will be convenient to use the notation Ln(A) = f (zz̄)zn+2dz̄∂z
for the lift of Ln to the factorization algebra. We make no reference to the bump
function chosen since this choice will not affect the cohomology class.

Consider three nested disjoint annuli A1, A2, A3 where Ai has inner radius ri and
outer radius Ri so that R1 < r2 and R2 < r3. Suppose all three are contained in the
big annuli A, i.e., r < r1 and R3 < R.

Let’s explain some notation for the factorization product of such nested annuli. The
relevant factorization maps are

• : Vir0(A2)⊗ Vir0(A1)→ Vir0(A)

• : Vir0(A3)⊗ Vir0(A2)→ Vir0(A).

Moving outward, radially, corresponds tomultiplying from the right to left in this nota-
tion. This is known as radial ordering. Using this notation, upon taking cohomology
we want to show

Lm • Ln − Ln • Lm = (m − n)Ln+m .

Remark 6 This is a bit of abuse of notation, as we are using the same symbol Lm even
though the two live in different spaces. This is a superficial confusion since Φun is an
embedding, but what the above expression actually means is

Φun(ρ(A2))(Lm) •Φun(ρ(A1))(Ln)−Φun(ρ(A3))(Ln) •Φun(ρ(A2))(Lm)

= (m − n)Φun(ρ(A))(Ln+m).
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Let fi : C× → R be a bump function for Ai , i = 1, 2, 3. We use these to obtain
lifts of Ln’s to the factorization algebra. Explicitly, Lm(A1) ∈ Vir0(A1), Lm(A3) ∈
Vir0(A3) and Ln(A2) ∈ Vir0(A2).

Now, in cohomology

�Lm(A1)Ln(A2)− Ln(A2)Lm(A3)� = Lm • Ln − Ln • Lm

and

(m − n)Lm+n = �[Lm, Ln](A)� =
⌊
f2(r

2)(m − n)zn+m+2dz̄ ⊗ ∂z

⌋
.

Consider the function

F(z, z̄) = zm+1
∫ zz̄

0
f1(s)− f3(s) ds.

We compute the ∂̄ operator acting on F(z, z̄) as

∂̄(F(z, z̄)) = zm+1 ∂

∂ z̄

(∫ zz̄

0
f1(s)− f3(s) ds

)
dz̄

= zm+1 ∂(zz̄)

∂ z̄

∂

∂(zz̄)

(∫ zz̄

0
f1(s)− f3(s) ds

)
dz̄

= zm+2 ( f1(zz̄)− f3(zz̄)) dz̄.

Similarly, we have the element F(z, z̄)∂z ∈ Ω0,∗(A, T A) and the formula above
implies

∂̄(F(z, z̄)∂z) = Lm(A1)− Lm(A3).

Let d denote the differential in C∗(LC(A)). The above implies

d(F(z, z̄)∂z · Ln(A2)) = (Lm(A1)−Lm(A3))Ln(A2)+�F(z, z̄)∂z, Ln(A2)�Vir0(A2)
.

We compute

�F(z, z̄)∂z, Ln(A2)�Vir0(A2)
= f2(r

2)dz̄
⌊
zm+1∂z, zn+2∂z

⌋
+ zm+n+3 ∂ f2(r2)

∂z
dz̄∂z

= (m − n − 1)Lm+n(A2)+ zm+n+3 ∂ f2(r2)

∂z
dz̄∂z .

Combining, obtain

Lm • Ln − Ln • Lm − [Lm, Ln] − Lm+n +
⌊
zm+n+3 ∂ f2(r2)

∂z
dz̄∂z

⌋
= 0 (3)
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where the bracket denotes the cohomology class. We consider the last term. Introduce
the element zn+m+2 z̄ f2(r2)∂z . Applying the ∂̄-operator, we get

∂̄(zn+m+2 z̄ f2(r2)∂z) = zn+m+2 f2(r2)dz̄∂z + zn+m+2 z̄
(

∂ f2(r2)

∂ z̄

)
dz̄∂z

= Ln+m(A2)+ zn+m+3 ∂ f (r2)

∂z
dz̄∂z

where in the last linewe use the fact that ∂
∂ z̄ f2(r

2) = z f ′2(r2) and
∂

∂zr f2(r
2) = z̄ f ′2(r2).

Thus, in cohomology we have

⌊
zn+m+3 ∂ f2

∂z
dz̄∂z

⌋
= Ln+m

so that (3) simplifies to

Lm • Ln − Ln • Lm − [Lm, Ln] = 0.

3.2 The case of nonzero central charge

We now describe the twisted case. As a vector space, we have

Vir = C((z))∂z ⊕ C · C

where c is the central parameter. We recall that the Lie bracket is

[Ln, Lm] = (m − n)Ln+m + m3 − m

12
δn,−mc.

Again, let I ⊂ R>0 andwrite A = ρ−1(I ). ThemapΦ is definedbyΦ(I )|C((z))∂z =
Φun, and it sends the central parameter of Vir to the central parameter of LC

c (A)⊕C ·
C[−1].

The factorization algebra Vir assigns to the annulus A the dg vector space:

Vir(A) =
(
Sym(Ω0,∗(A, T A)[1] ⊕ C · C), ∂̄ + dCE

)
.

where ω ∈ C1(LC) is the central extension as above. We need to show

Lm • Ln − Ln • Lm = (m − n)Ln+m + m3 − m

12
· c.
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Let the notation be as above. We have

d(F(z, z̄)∂z · Ln(A2)) = (Lm(A1)− Lm(A3))Ln(A2)+
[
F(z, z̄)∂z, Ln(A2)

]
L̂(A2)

= (Lm(A1)− Lm(A3))Ln(A2)− (m − n − 1)Lm+n(A2)

+zm+n+3 ∂ f2
∂z

dz̄∂z − 1

2π

c

12

∫
A
F(z, z̄)

∂3

∂z3

(
f2(r

2)zn+2
)
dzdz̄.

Everything is the same as the zero central charge calculation except for the last line.
Applying the same trick as in the previous section to the second line, we see that
d(F(z, z̄)∂z · Ln(A2)) is cohomologous to

(Lm(A1)− Lm(A3))Ln(A2) − (m − n)Lm+n(A2)

− 1

2π

c

12

∫
A

∂3

∂z3
(F(z, z̄)) f2(r

2)zn+2dzdz

We compute

∫
A

∂3

∂z3
(F(z, z̄)) f2(r

2)zn+2dzdz̄ =
∫
A
f2(r

2)zn+2∂3z

(
zm+1

∫ zz̄

0
f1(s)− f3(s) ds

)
dzdz̄

= (m3 − m)

∫
A
f2(r

2)zn+mdzdz̄

= (m3 − m)

(∫ 2π

0
ei(n+m)θdθ

) (∫ r

0
f2(r

2)rn+mrdr
)

= 2π(m3 − m)δn,−m .

In the second line, we used the fact that the function z �→ ∫ zz̄
0 f1 − f3 is constant on

A2. Thus, d(F(z, z̄)∂z · Ln(A2)) is cohomologous to

(Lm(A1)− Lm(A3))Ln(A2)− (m − n)Lm+n(A2)− m3 − m

12
δn,−m · c.

Wrapping everything up, in cohomology we have verified

0 = Lm • Ln − Ln • Lm − [Lm, Ln] + m3 − m

12
δn,−m · c

as desired.
This completes the proof of Proposition 4.

4 The vertex algebra structure

We sketch the main points of Costello–Gwilliam’s treatment of extracting vertex alge-
bras from structured factorization algebras on C. We then use their characterization
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to show that the factorization algebra Vir determines a vertex algebra and go further
to identify it with the usual Virasoro vertex algebra using the construction.

First, we need to review the definition of a vertex algebra. It consists of a vector
space V over the field C along with the following data:

– A vacuum vector |0〉 ∈ V .
– A linear map T : V → V (the translation operator).
– A linear map Y (−, z) : V → End(V )[[z±1]] (the vertex operator). We write
Y (v, z) =∑

n∈Z Av
nz
−n where Av

n ∈ End(V ).

satisfying the following axioms:

– For all v, v′ ∈ V there exists an N � 0 such that Av
nv
′ = 0 for all n > N . (This

says that Y (v, z) is a field for all v).
– (vacuum axiom) Y (|0〉 , z) = idV and Y (v, z) |0〉 ∈ v + zV [[z]] for all v ∈ V .
– (translation) [T,Y (v, z)] = ∂zY (v, z) for all v ∈ V . Moreover T kills the vacuum.
– (locality) For all v, v′ ∈ V , there exists N � 0 such that

(z − w)N [Y (v, z),Y (v′, w)] = 0

in End(V )[[z±1, w±1]].
We will utilize a reconstruction theorem for vertex algebras. It says that a vertex

algebra is completely and uniquely determined by a countable set of vectors, together
with a set of fields of the same cardinality and a translation operator subject to a list
of axioms.

Theorem 5 (Theorem 2.3.11 of [13]) Let V be a complex vector space equipped with:
an element |0〉 ∈ V , a linear map T : V → V , a countable set of vectors {as}s∈S ⊂ V ,
and fields As(z) =∑

n∈Z As
nz
−n−1 for each s ∈ S such that:

– For all s ∈ S, As(z) |0〉 ∈ as + zV [[z]];
– T |0〉 = 0 and [T, As(z)] = ∂z As(z);
– As(z) are mutually local;
– and V is spanned by {As1

j1
· · · Asm

jm
|0〉} as the j ′i s range over negative integers.

Then, the data (V, |0〉 , T,Y ) defines a unique vertex algebra satisfying

Y (as, z) = As(z).

The main result of this section identifies two vertex algebras: the first comes from
the factorization algebra, the other one is theVirasoro vacuumvertex algebra defined in
the next section. We prove these are the same using the above reconstruction theorem.

4.1 The Virasoro vertex algebra

We recall the definition of theVirasoro vertex algebra. For us, it will be a vertex algebra
over the polynomial ringCc := C[c]. For an arbitrary value of c, this will specialize to
the usual Virasoro vertex algebra associated to that central charge. First, consider, as
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we did above, the associative algebra given by the universal envelope of the Virasoro
Lie algebra U = U (Vir). There is a subalgebra U+ ⊂ U (Vir) generated by elements
of the form zn+1∂z with n ≥ −1. Next, define

Vir = IndUU+ Cc = U ⊗U+ Cc

where the Ln’s act trivially on Cc and the central parameter C acts by multiplication
by c. The vacuum vector is the natural image of the element 1⊗ 1 ∈ U ⊗ C in Virc.
The fields are

L(z) :=
∑
n∈Z

Lnz
−n−2

and translation operator is T = L−1 = ∂z . These satisfy the axioms in the reconstruc-
tion theorem, and so define a vertex algebra, simply denoted Vir. We will call this
C[c]-linear vertex algebra theVirasoro vertex algebra. Note that whenwe specialize to
a particular complex number, we obtain the C-linear vertex algebra Vir|c=c0 = Virc0
called the Virasoro vertex algebra of central charge c.

4.2 From factorization to vertex

In the first part of this note, we studied a particular two-dimensional factorization
algebra and did not mention a vertex algebra. This section is a bit of an aside and
sketches the relationship between certain structured factorization algebras on C and
vertex algebras. This relationship is made more precise in [9], but we try to sketch the
main points. Themain result is essentially a functor from a subcategory of factorization
algebras onC to vertex algebras, andwewill use this result to read off the vertex algebra
structure from the factorization algebra Vir above.

The maps Y (−, z) encode the “multiplication” of the vertex algebra. We can view
it has a multiplication parametrized by a complex coordinate z ∈ C. Consider the two
points 0, z ∈ C with z �= 0. This multiplication has the form

Yz : V0 ⊗ Vz → V ((z))

Critical to the structure of a vertex algebra is holomorphicity. Indeed, the axioms imply
that the Yz’s vary holomorphically. Thus, the factorization algebra we start with must
be translation invariant (so the vector space assigned does not depend on the open set
up to translations) together with a holomorphicity condition.

For the remainder of this section, let F be a prefactorization algebra on C in the
appropriate category of differentiable vector spaces. 1

We say that F is holomorphically translation invariant if

– F is translation invariant.

1 Some care is needed to define this category correctly. We refer the interested reader to [9]
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– There exists a degree −1 derivation η : F → F such that dη = ∂z̄ as derivations
of F.

Also important will be the notion of a smooth S1-equivariant structure on F. We
will mention this shortly. For now, we discuss how to read off the structure of a vertex
algebra from a holomorphic translation-invariant factorization algebra. The key is
that such factorization algebra defines a coalgebra structure over a certain (colored)
cooperad.

Define the complex manifold

Disks(r1, . . . , rk) := {z1, . . . , zk ∈ C | D(z1, r1) � · · · � D(zk, rk) disjoint} ⊂ Ck .

The collection of these spaces form a R>0-colored operad in the category of complex
manifolds, which we denote Disks. Applying the functor Ω0,∗ we get a R>0-colored
cooperad Ω0,∗(Disks) in the category of differentiable vector spaces. The main tech-
nical fact that we use to read off the structure of a vertex algebra is

Proposition 6 ([9]) Let F be a holomorphically translation-invariant factorization
algebra onC. Then,F defines an algebra over theR>0-colored cooperadΩ0,∗(Disks).

This means that at the level of cohomology as we let p ∈ Disks(r1, . . . , rk) vary
the factorization maps

m[p] : H∗F(D(0, r1))× · · · × H∗F(D(0, rk))→ H∗F(C)

lift to a map

μ
r1,...,rk
z1,...,zk : H∗F(D(z1, r1))× · · · × H∗F(D(zk , rk))→ Hol

(
Disks(r1, . . . , rk), H

∗F(C)
)
.

Translation invariance allows us to replace F(D(zi , ri )) � F(D(0, ri )) which we
denote by F(ri ), so we can write this map as

μr1,...,rk
z1,...,zk : F(r1)× · · · × F(rk)→ Hol

(
Disks(r1, . . . , rk), H

∗F(C)
)
.

Note that although the source space of this map does not depend on the centers of the
disks, the map itself does, hence the messy notation.

For r ′ < r the maps μ
r1,...,rk
z1,...,zk respect the natural inclusions

Disks(r1, . . . , rk) ↪→ Disks(r ′1, . . . , r ′k)

and so the limit of the multiplication map as (r1, . . . , rk)→ (0, . . . , 0) makes sense
and has the form

μz1,...,zk :
(
lim
r→0

H∗(F(r))

)⊗k
→ lim

r→0
Hol

(
Disksk(r), H

∗(F(r))
)

∼= Hol
(
Confk(C), H∗F(C)

)
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where Confk(C) is the ordered configuration space of k-distinct points in C.
The last piece of data we need corresponds to the “conformal decomposition” of a

vertex algebra. For us, this will come from an S1-action onF. The reader is encouraged
to look at [9] for a precise definition, but we assume that we have a nice action of S1

on F and it is compatible with the translation invariance discussed above.
We can now read off the data of the vertex algebra from F:

– Let F(l)(r) ⊂ F(r) be the lth eigenspace for the S1-action. The underlying vector
space for the vertex algebra is

V :=
⊕
l

H∗(F(l)(r)).

Note that the right-hand side depends, a priori, on r . The assumptions of Theorem
7 below ensure that up to isomorphism it is actually independent of r , so we leave
the radius out of our notation.

– The translation operator. The action of ∂z on F(l)(r) has the form

∂z : F(l)(r)→ F(l−1)(r).

We let T : V → V be the operator which is ∂z restricted to the l-th eigenspace.
– The fields. Consider the map

μz,0 :
(
lim
r→0

H∗(F(r))

)⊗2
→ Hol

(
Conf2(C), H∗(F(C))

)

defined above. Certainly, we have a map V → limr→0 H∗(F(r)), where the limit
denotes the inverse limit of vector spaces, so it makes sense to restrict μz,0 to a
map

V ⊗ V → Hol
(
Conf2(C),H∗(F(C))

) � Hol
(
C×,H∗(F(C))

)
.

Post composing this with the projection maps H∗(F(∞))→ Vl combine to define
the map

μ̄z,0 : V ⊗ V →
∏
l

Hol(C×, Vl)

We can perform Laurent expansions to view this as

μ̄z,0 : V ⊗ V → V̄ [[z±1]].

We define Y (−, z) : V → End(V )[[z±1]] by

Y (v, z)v′ := μ̄z,0(v, v′).

One can show that this actually lies in V ((z)) for all v, v′.
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The above can be made much more precise and made into the following theorem.

Theorem 7 (Theorem 5.2.2.1 [9]) Let F be a S1-equivariant holomorphically
translation-invariant prefactorization algebra on C. Suppose

– The action of S1 on F(r) extends smoothly to an action of the algebra of distribu-
tions on S1.

– For r < r ′ the map

F(l)(r)→ F(l)(r ′)

is a quasi-isomorphism.
– The cohomology H∗(F(l)(r)) vanishes for l � 0.
– For each l and r > 0 we require that H∗(F(l)(r)) is isomorphic to a countable
sequential colimit of finite-dimensional vector spaces.

Then Vert(F) := ⊕l H∗(F(l)(r)) (which is independent of r by assumption) has the
structure of a vertex algebra.

LetPreFactC denote the categoryof prefactorization algebras onC. Let PreFactholC ⊂
PreFactC be the full subcategory spanned by prefactorization algebras satisfying the
conditions of the above theorem. This result can be upgraded to provide a functor

Vert : PreFactholC → Vert

where Vert is the category of vertex algebras.

4.3 Verifying the axioms

In this section, we verify the Virasoro factorization algebra Vir indeed satisfies the
conditions of Theorem 7 necessary to determine a vertex algebra stated in the last
section.

Explicitly, we show the following:

(1) There is a S1-action on Vir covering the action of C× by rotations. Moreover,
for all r > 0 (including r = ∞) the S1-action on Vir(r) extends to an action of
D(S1) the space of smooth distributions on the circle.

(2) Then for all l and all r < r ′ the natural map

Vir(l)(r)→ Vir(l)(r ′)

is an equivalence.
(3) H∗(Vir(l)(r)) = 0 for l � 0.
(4) The space H∗(Vir(l)(r)) is a colimit of finite-dimensional vector spaces for all

l, r .
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The first condition is clear: the S1-action comes from its natural action on Ω
0,∗
c (C).

We extend this to distributions ϕ ∈ D(S1) by the rule

(ϕ · α)(z) =
∫
t∈S1

ϕ(t)α(t z)

where α ∈ Ω
0,∗
c (C). This extends naturally to vector fields.

Let’s consider (2). For simplicity,weworkwith the (untwisted) factorization algebra
Vir0 = C∗(LC); the twisted case is similar. Consider thefiltration ofVir0 by symmetric
tensor degree. Namely

FmVir0(r) = Sym≤m(L(D(0, r)[1]) =
⊕
j≤m

(
L(D(0, r))[1]⊗ j

)
Σ j

.

The associated graded of this filtration is

GrmVir0(r) =
(
L(D(0, r))[1]⊗m)

Σm

and there is a spectral sequence

H∗(Gr∗Vir0(r))⇒ H∗(Vir0(r)).

The filtration respects the S1-action, so for each l we get a spectral sequence for the
eigenspaces

H∗(Gr∗Vir(l)0 (r))⇒ H∗(Vir(l)0 (r)).

Thus, to verify that Vir(l)0 (r) → Vir(l)0 (s) is an equivalence for r < s, it enough to
show that it is at the level of associated gradeds. That is, we need to show that the
restriction of the map

Ω0,∗
c

(
D(0, r)m, T D(0, r)�m

)
→ Ω0,∗

c

(
D(0, s)m, T D(0, s)�m

)

to the l-eigenspaces is an equivalence. Again, we recall Serre’s result that for any open
U ⊂ C

H ∗̄
∂

(
Ω0,∗

c (U, TU )
) ∼=

(
Ω1

hol(U, TU )
)∨

concentrated in degree 0. When U = D(0, r) we have a coordinatization

Ω1
hol(D(0, r)) = C[z]dz.

Now, zk has S1-weight k. Thus (zk)∨ has weight −k. The weight of (dz)∨ is −1 and
the weight of ∂∨z is +1. This shows that the weight spaces are independent of the
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radius chosen, so we have verified (2). Moreover, the weight spaces are clearly finite
dimensional and vanish for m ≥ 0, so we also get (3) and (4).

Finally, Theorem 7 implies the following.

Proposition 8 TheC[c]-module V =⊕
l H
∗(Vir(l)(r)) has the structure of the vertex

algebra (in C[c]-modules) induced from the factorization structure on Vir. In partic-
ular, for each c ∈ C the vector space Vc = ⊕

l H
∗(Vir(l)c (r)) has the structure of a

vertex algebra.

4.4 An isomorphism of vertex algebras

The map Φ : U (Vir)→ H∗(Vir(A(r, r ′))) from Proposition 4 applied to the interval
I = (r, r ′) gives V the structure of a U (Vir)-module. More precisely, let ε < r < R
then we have a factorization map

Vir(D(0, ε))⊗ Vir(A(r, R))→ Vir(D(0, R)).

We have the following diagram

H∗Vir(D(0, ε))⊗ H∗Vir(A(r, R)) H∗Vir(D(0, R))

V ⊗ H∗Vir(A(r, R)) V

V ⊗U (Vir)

1⊗Φc

The top left arrow comes from the inclusion V ↪→ H∗ (Vir(D(0, ε))). The dotted map
exists since the image of the factorization product on V , where we only see finite sums
of S1-eigenvectors, still only contains finite sums of S1-eigenvectors.

Our main result is:

Theorem 9 There is a C[c]-linear isomorphism of U (Vir)-modules Ψ : Vir → V
which sends |0〉 ∈ Virc to 1 ∈ V . It extends to an isomorphism of vertex algebras

Ψ : Vir ∼=
Vert(Vir)

over the ring C[c]. In particular, when we specialize to a c ∈ C we obtain an isomor-
phism of vertex algebras

Ψc : Virc ∼=
Vert(Virc).

Proof Recall that the vacuum vector is the image of 1 under the map

U (Vir)
id⊗1

U (Vir)⊗ C U (Vir)⊗U (Vir)+ Cc = Virc.
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We define the map of U (Vir)-modules

U (Vir)⊗ C→ V

by sending 1⊗ 1 to 1 and extending by U (Vir)-linearity. We need to check that this
descends to Virc. That is, we verify that 1 ∈ V is killed by Ln for n ≥ −1. Recall
Ln(A) = f (zz̄)zn+2dz̄∂ is a representative for Ln on LC(A(r, R)) where f (zz̄) is a
bump function as above. It suffices to show that Ln(A) is exact when viewed as an
element in LC(D(0, R)). Define h(z, z̄) := ∫∞

zz̄ f (s) ds and note that the chain rule
implies

∂̄(h(z, z̄) zn+1) = f (zz̄)zn+2dz̄

Thus, Ln(A) is exact via the element h(z, z̄)zn+1∂ . This shows that we get a well-
defined map Virc → V that sends |0〉 �→ 1.

We need to see that this map is an isomorphism of U (Vir)-modules. We take
advantage of some filtrations. Consider the natural filtration of the tensor algebra of
Vir, namely

Fi (Tens(Vir)) := ⊗ j≥iVir.

This descends to a filtration on U (Vir). Similarly, define the filtration of Vir by

FiVir(U ) = Sym≤i (Ω0,∗
c (U, TU )[1] ⊕ C · C)

with induced differential. It is clear that this is a subcomplex and hence descends
to cohomology. Moreover, the map of modules defined above respects both of these
filtrations.

With respect to the above filtration, we have the identification

Gr Vir ∼= Sym∗(z−1C[z−1]∂z ⊕ C · C) = Sym∗(z−1C[z−1]∂z)[C].

Moreover, we have the identifications of associated gradeds

Gr U (Vir) = Sym(Vir) = Sym(C[z, z−1]∂z)[C] and Gr Vir(U )

= ˆSym(Ω0,∗
c (U, TU )[1] ⊕ C · C).

Consider the map U (Vir) → V induced by the action of U (Vir) on the unit 1 ∈ V .
We have the diagram of associated gradeds

Gr U (Vir) Gr V H∗
(
Sym∗(Ω0,∗

c (D(0, r), T D(0, r))[1] ⊕ C · C)
)

Sym(C[z, z−1]∂z)[C]
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The embedding on the right is the direct sum of S1-eigenspaces and is identified
with z−1C[z−1][C]. Thus, the map Gr U (Vir) → Gr V is the map of commutative
algebras

Sym(C[z, z−1]∂z)[C] → Sym(z−1C[z−1]∂z)[C]

and is induced by natural map C[z, z−1] → z−1C[z−1].
Concluding,we see that themapGr Vir→ Gr V is an isomorphism, and since there

are no extension problems over C[c], we have the desired isomorphism of U (Vir)-
modules.

Finally, we need to show that the OPE’s agree so that the module isomorphism
extends to an isomorphism of vertex algebras. Namely, we will show

mz,0(L−2 · 1, v) =
∑
n∈Z

(Ln · v)z−n−2.

Now, the residue pairing allows us to represent Ln(A(r, R)) by the linear map

Ω1
hol(A(r, R))→ C , h(z)dz �→

(∮
S1
zn+1h(z)dz

)
.

Fix a point z0 ∈ A(r, R). By Cauchy’s theorem, we have for some ε such that
ε < |z0| − r and ε < s − |z0|:

2π ih(z0) =
∮
|ζ |=R−ε

h(ζ )

ζ − z0
dζ −

∮
|ζ |=r+ε

h(ζ )

ζ − z0
dζ.

For the first integral, we have |z0| < |ζ | and we can expand

1

ζ − z0
= 1

ζ
· 1

1− z0
ζ

= 1

ζ

∞∑
j=0

(
z0
ζ

) j

=
∞∑
j=0

z j0ζ
− j−1.

Thus

∮
|ζ |=R−ε

h(ζ )

ζ − z0
dζ =

∞∑
j=0

(∮
|ζ |=R−ε

h(ζ )ζ− j−1dζ

)
z j0 .

Similarly, the second integral can be written as

∮
|ζ |=r+ε

h(ζ )

ζ − z0
dζ = −

∞∑
j=0

(∮
|ζ |=r+ε

h(ζ )ζ j
)
z− j−1
0 .
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Since h is holomorphic on A(r, R), we can combine these integrals by choosing a
common contour and reindexing to write

∞∑
j=0

(∮
|ζ |=R−ε

h(ζ )ζ− j−1dζ

)
z j0 +

∞∑
j=0

(∮
|ζ |=r+ε

h(ζ )ζ j
)
z− j−1
0

=
∑
n∈Z

(∮
ζ n+1h(ζ )dζ

)
z−n−20 .

This completes the proof.

5 Universal factorization algebras and the Virasoro

It is a natural to extend the Virasoro factorization algebra to general one-dimensional
complex manifolds. Moreover, from the point of view of conformal field theory, [20]
for instance, it is essential to consider this a global version of the Virasoro algebra
definedongeneralRiemann surfaces.Vertex algebras are of course local in nature, from
above they correspond to factorization on C. In this section, we transition to studying
a version of the Virasoro factorization algebra defined on a general one-dimensional
complex manifold.

One approach would be to construct a factorization algebra on each manifold inde-
pendently. It is convenient for us, however, to consider the site of complex manifolds.
Define the category Hol1 whose objects are one-dimensional complex manifolds and
whose maps are holomorphic embeddings. This is a symmetric monoidal category
with respect to disjoint union �. Just as in the case of a fixed manifold, Weiss covers
define a Grothendieck topology on Hol1.

Definition 5.1 A universal holomorphic prefactorization algebra (valued in the cate-
gory dgNuc⊗) is a symmetric monoidal functor

Hol�1 → dgNuc⊗.

A universal holomorphic factorization algebra is a universal holomorphic prefactor-
ization algebra satisfying descent for Weiss covers.

Remark 7 The term universal has appeared in the literature of vertex algebras and
their close relatives, chiral algebras, and we’d like to point out how our terminology is
different. In Section 3.4.14 of [2] the term universal chiral algebra is used to refer to
chiral algebras that are valued in the category of modules for the Harish–Chandra pair
(Aut(D̂),W1) of formal automorphisms and formal derivations of the holomorphic
disk. In Section 6.3 of [13] such a structure in the category of vertex algebras is
referred to as a quasi-conformal vertex algebra. We stress that this is different than
the notion of universal considered in Definition 5.1. One can also realize the analog
of a quasi-conformal structure in the setting of holomorphic factorization algebras by
factorization algebras valued in the category of (Aut(D̂),W1) modules.
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More recently, the concept of universal chiral algebras has appeared in [5,6] which
studies the relationship between factorization algebras in the sense of Beilinson–
Drinfeld that are universal with respect to étale maps (rather than holomorphic
embeddings) and factorization algebras in the appropriate category ofHarish–Chandra
modules.

We can produce such universal holomorphic factorization algebras from sheaves of
Lie algebras on the site Hol1. Indeed, given a sheaf of Lie algebras Gwe can apply the
Chevalley–Eilenberg chains functor applied to compactly supported sections C∗(Gc)

to get a universal factorization algebra. Moreover, this functor satisfies descent so that
it defines a universal holomorphic factorization algebra. We will denote this universal
factorization algebra by U factG.

Example 4 Let us consider a fundamental example of a universal holomorphic factor-
ization algebra. Fix an ordinary Lie algebra g and define the sheaf of Lie algebras on
Hol1 by sending the complex one-manifoldΣ to the dgLie algebra gΣ := Ω0,∗(Σ; g).
The differential is given by ∂̄ ⊗ 1g and the Lie bracket extends that of g. In doing so,
one obtains the universal factorization algebra U factg(−) that sends Σ �→ C∗(gΣ). If
g has a invariant pairing 〈−,−〉g one can use the cocycle on gΣ defined by

(α, β) �→
∫

Σ

〈α ∧ ∂β〉g

to define a central extension ĝΣ . One obtains a universal factorization algebra via

U factĝ : Σ �→ C∗(ĝΣ).

This is the universal factorization algebra representing the Kac-Moody vertex algebra,
see Chapter 5 of [9].

We will produce the universal Virasoro factorization algebra in the same manner.
Indeed, for each Σ in Hol1 we have the dg Lie algebra

LΣ = Ω0,∗(Σ, TΣ)

with differential given by ∂̄ and bracket given by extending the usual Lie bracket
of holomorphic vector fields. The assignment L : Σ �→ LΣ defines a symmetric
monoidal functor from the category Hol1 to the category of dg Lie algebras with sym-
metric monoidal structure given by direct sum (of underlying graded vector spaces).
As the functor of Chevalley–Eilenberg chains C∗(−) is symmetric monoidal, we get
a symmetric monoidal functor given by the universal envelope of L

U factL : Hol1→ dgNuc⊗ , Σ �→ C∗(LΣ
c ).

Applied to Σ = C, of course we are in the situation of the previous portion of the
paper.
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The interesting part from the point of view of conformal field theory and repre-
sentation theory is the envelope of a central extension of the sheaf of dg Lie algebras
L. There is a potential problem defining this central extension based on our formula
given in Sect. 2. Indeed, the cocycle on LC

ω(α ⊗ ∂z, β ⊗ ∂z) = 1

2π

1

12

∫
U

(
∂3z α0β1 + ∂3z α1β0

)
d2z

clearly depends on the choice of a coordinate (its failure to be coordinate independent is
precisely measured by the Schwarzian). Thus, there is no obvious way of constructing
a universal twisted envelope on all holomorphic one-manifolds simultaneously.

5.1 First fix: uniformization

A Riemann surface is a complex manifold of dimension one. Therefore, it is given by
a covering {Ui } such that all transition functions are holomorphic diffeomorphisms.
The cocycle ω is not invariant under arbitrary diffeomorphisms: if w = f (z), it is not
necessarily true that f ∗(ωz) = ωw.

One way of formulating the uniformization theorem for Riemann surfaces is that
one can always find a subordinate cover to {Ui } such that the transition functions have
the form

w = f (z) = az + b

cz + d

with ad − bc �= 0. I.e., we can reduce to the projective linear structure group. Let
Holproj1 ⊂ Hol1 denote the full subcategory of covers where the transition functions

are projective. The above says that there is a section unif : Hol1 → Holproj1 of the
inclusion

Hol1 ↪→ Holproj1 .

Lemma 3 The cocycle ω is invariant under projective changes of coordinate. That is,
for f a projective diffeomorphism one has f ∗ω = ω.

Thus, we can form a factorization algebraFVir
ω onHolproj1 . Using the uniformization

construction, this pulls back to a factorization algebra on Riemann surfaces via

Hol1
unif Holproj1

FVir
ω dgNuc.

The problem with this construction is that the induced extension cocycle is not so
obvious to write down. There is a more explicit way of doing this.
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5.2 Second fix: projective connections

We recall Atiayh’s [1] formulation of connections on holomorphic vector bundles. Let
E be a holomorphic vector bundle on a complex manifold X . Denote by Diff≤1(E) ⊂
Diff(E) the subspace of order one differential operators on E . There is a short exact
sequence of vector bundles

0→ End(E)→ Diff≤1(E)→ T 1,0
X ⊗ End(E)→ 0

where the last map is the symbol map of an order one differential operator. Form the
pull-back along the inclusion of T 1,0

X ↪→ T 1,0
X ⊗End(E) via x �→ x⊗id. The resulting

bundle is the Atiyah-bundle

0→ End(E)→ At(E)→ T 1,0
X → 0.

Atiyah showed that splittings of this sequence are precisely holomorphic connections.
Consider the inclusion OX ↪→ End(E) by viewing s �→ f · s for f ∈ OX . One

gets the induced sequence of bundles

0→ End(E)/OX → At(E)/OX → T 1,0
X → 0.

By definition, projective connections are splittings of the above sequence.

– Non-trivial holomorphic connections on TΣ exist only in genus 1, this is a conse-
quence of Riemann–Roch.

– Projective connections on TΣ exist for all Riemann surfaces and form a torsor over
quadratic holomorphic differentials Ω1

hol(Σ)⊗2.
Let Hol∇1 denote the category of pairs (Σ,∇) where ∇ is a projective connection

for the holomorphic tangent bundle T 1,0
Σ . There is a forgetful functor

π : Hol∇1 → Hol1

that we should think of as a (Ω1
hol)
⊗2-torsor.

Fix a projective connection∇ onΣ . Locally, onΣ consider the bilinear onLc(Uz)

ω∇,z(X,Y ) = ωz(X,Y )+ ∇z · [X,Y ].

Proposition 10 – ω∇ defines a cocycle on Lc(Uz) and is invariant under holomor-
phic changes of coordinate.

– If ∇′ is another projective connection, we have ω∇ ∼ ω∇′ .
Proof Coordinate invariance In writing downω∇,z = ωz we have used a coordinate.
We check coordinate invariance, so that it defines a section over Σ . It suffices to
understand the case Uz = Cz . Suppose f : Cw → Cz is a change of coordinates. Let
u : LC ⊗ LC→ Ω

1,1
C denote the bilinear map

(α∂z, β∂z) �→
(
∂3z α0β1 − α0∂

3
z β1)+ (∂3z α1β0 − α1∂

3
z β0)

)
dz̄dz.
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We compute the difference

f ∗u(α∂z, β∂z)− u
(
f ∗(α∂z), f ∗(β∂z)

) = 2 [(α0∂wβ1 − ∂wα0β1)

+(α1∂wβ0−∂wα1β0)] S( f )
¯(

∂ f

∂w

)
dwdw̄

where S( f ) is the holomorphic function called the Schwarzian. Explicitly, it is given
in terms of first, second, and third holomorphic derivatives of f :

S( f )(z) = ∂

∂z

(
∂2 f/∂z2

∂ f/∂z

)
− 1

2

(
∂2 f/∂z2

∂ f/∂z

)2

.

So the failure of the cocycle u to be independent of a choice of coordinate is measured
by the Schwarzian.

Let P : LC ⊗ LC→ Ω1,1(C) be the bilinear

(α∂z, β∂z) �→ ρz · ((α0∂zβ1 − ∂zα0β1)+ (α1∂zβ0 − ∂zα1β0)) dzdz̄.

We compute the difference

f ∗P(α∂z, β∂z)− P
(
f ∗(α∂z), f ∗(β∂z)

) = ((α0∂zβ1 − ∂zα0β1)

+(α1∂zβ0−∂zα1β0)) S( f )
¯(

∂ f

∂w

)
dwdw̄.

This shows that the bilinear u + 2P is independent of choice of coordinates. Finally,
note that

ωC =
∫
C
◦ (u + 2P)

is the desired cocycle defining the extension of LC, so we are done.

Cocycle condition We need to show that ωU is a cocycle for the Lie algebra LΣ(U )

for all U . We suppose U � C and we check ωC is a cocycle. For simplicity write
elements α∂ ∈ LC(C) as α. In terms of the bilinears u, P above we have

ωC([α, β], γ )+ ωC([β, γ ], α)+ ωC([γ, α], β)

=
∫
C

[
(u([α, β], γ )+ u([β, γ ], α)+ u([γ, α], β))

+2 (P([α, β], γ )+ P([β, γ ], α)+ P([γ, α], β))
]

It follows from Jacobi that P-terms vanish. So, it suffices to show that

∫
C

(u([α, β], γ )+ u([β, γ ], α)+ u([γ, α], β)) = 0.

This is a straightforward calculation.
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Now, we show independence of ω∇,z on a projective connection. Again, this is a
local calculation. Suppose ∇,∇′ are two projective connections, and let ω,ω′ and
P, P ′ denote induced the bilinears as above, respectfully. We need to show that ω−ω′
is a coboundary when viewed as a cocycle in C∗red(LC). As mentioned above, the
difference of two ordinary projective connections is simply a quadratic differential.
It follows that we may view the difference ∇ − ∇′ as an element in Ω0,∗(Σ, K⊗2Σ ).
Then, we see that for X ∈ LΣ

(∇ − ∇′) · X = 〈∇ − ∇′, X 〉

where 〈−,−〉 denotes the natural pairing

Ω0,∗(Σ, K⊗2Σ )⊗Ω0,∗(Σ, TΣ)→ Ω0,∗(Σ, KΣ) � Ω1,∗(Σ).

Denote by Φ = ∫ ◦ 〈∇ − ∇′,−〉
(1,1) : LC → C. Note that Φ is linear of degree −1,

so that it is a 0-cocycle for LC. We have

(ω − ω′)(α, β) = Φ([α, β]).

This is what we wanted to show.

We take away two main observations: (1) there is a local cocycle ω ∈ H1
loc(L

Σ)

for each Σ and hence an associated factorization algebra Ṽir on Hol∇1 and (2) that we
can descend along π to get a factorization algebra Vir : Hol1 → dgNuc as desired.
When restricted to the over category of open setsU ⊂ C, we produce the factorization
algebra from the first part of the paper, hence the repetition of notation.

The prefactorization algebra Vir can be described explicitly as follows. To a pair
(Σ,∇) of a Riemann surface together with a projective connection, we define

Ṽir(Σ,∇) = U factL̂Σ = U fact
ωΔ

LΣ

where L̂Σ is the dg Lie algebra that is the extension of LΣ determined by the cocycle
ω∇ .

Thus, the factorization algebraVir on Hol1 has the following interpretation. Given a
Riemann surfaceΣ choose any projective connection∇. Form the twisted envelope as
above. By the proposition, this extension is independent of the projective connection
chosen.

5.3 Fixed Riemann surface

For each Riemann surface Σ , we can restrict our factorization algebra Vir to the
overcategory Hol1/Σ to get a factorization algebra on Σ which we denote VirΣ . The
construction depends on the 2-cocycle ω, but on a fixed Riemann surface the choice
is unique up to a scaling.
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Proposition 11 Let Σ be any Riemann surface. Then, we have

H1 (
C∗loc(LΣ)

) ∼= C.

Proof Consider Σ = C. Then

C∗loc(LC) = Ω∗C ⊗DC C∗red
(
JetLC

) ∼= Ω∗
(
C;C∗red(JetLC)

) [2]
Now, JetLC corresponds to the dg Lie algebra C[[z, z̄, dz̄]]∂z with differential given
by ∂̄ . This is quasi-isomorphic to the Lie algebra of formal holomorphic vector fields
W1 := C[[z]]∂ (with zero differential). So, we see C∗loc(LC) � C∗(W1)[2]. A calcu-
lation of Gelfand-Fuchs [14] implies that

H∗red(W1) = C[−3]

concentrated in degree 3. The generator is of the form ∂∨z · (z∂z)∨ · (z2∂z)∨.
We’d like to bootstrap this to the global case. Consider the filtration of

Ω∗
(
Σ,C∗red(JetLΣ )

)
by form degree. This spectral sequence has E2-page

E2 = Ω∗
(
Σ, H∗

(
C∗red(JetLΣ

))
.

Here, H means the cohomology D-module. We have computed the cohomology
of the fibers of H∗

(
C∗red(JetLΣ )

)
, and they are concentrated in a single degree.

Choosing a formal coordinate at a point in Σ trivializes the fiber of this point to
C

〈
∂∨z · (z∂z)∨ · (z2∂z)∨

〉
. This trivialization is independent of coordinate choice and

compatible with the flat connection. Thus

H∗(C∗red(JetLΣ ) � C∞Σ [−3]

with its usual flat connection. This completes the proof.

5.4 Symmetries by vector fields

The primary appearance of the Virasoro vertex algebra in physics is as a symmetry
of two-dimensional conformal field theories. That is, the Virasoro vertex algebra acts
on conformal field theories with a specified central charge. Later on we will see an
example of how the Virasoro factorization algebra appears as a symmetry of certain
holomorphic quantum field theories using the BV formalism as developed in [9,10].
For now, wewould like to discuss themeaning of such aVirasoro symmetry on general
holomorphic factorization algebras.

A vertex algebra is conformal of central charge c if there is an element vc ∈ V
such that the Fourier coefficients LV

n of the vertex operator Y (vc, z) =∑
n L

V
n z
−n−2

span a Lie algebra that is isomorphic to Virc. Moreover, one requires that LV−1 = T
the translation operator, and LV

0 |Vn = n · IdVn . This can be wrapped up by saying we
have a map of vertex algebras Virc → V sending L−2 · 1 to vc.
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Motivated by this, we introduce the following terminology for holomorphic factor-
ization algebras. We say a Virasoro symmetry of central charge c of a holomorphic
factorization algebra F is a map of holomorphic factorization algebras

Φ : Virc → F. (4)

Remark 8 A holomorphic factorization algebra is a symmetric monoidal functor

F : Hol1→ dgNuc

A map of holomorphic factorization algebras is a natural transformation between
symmetric monoidal functors of the above form. In particular, in the definition above
we require the existence of maps

Φ(Σ) : Virc(Σ)→ F(Σ)

for each one-dimensional complex manifoldΣ . Moreover, these maps must be natural
with respect to holomorphic embeddings.

In the next section, we will show an example using BV quantization to implement
a map of factorization algebras Virc → F where F is the quantum observables of
the βγ system. In the remainder of this section we’d like to extract one consequence
of having a Virasoro symmetry of charge c. We see that in the case of factorization
algebras on C we recover the usual notion of a conformal vertex algebra.

Indeed, suppose that F is a holomorphic factorization algebra on C satisfying the
conditions of Theorem 7. Then a Virasoro symmetry of central charge c from (4)
induces the structure of a conformal vertex algebra on Vert(F) of charge c. As the
construction Vert(F) is functorial, we obtain a map of vertex algebra

Vert(Φ) : Virc → Vert(F).

Explicitly, the conformal vector is given by Vert(Φ)(L−21Vir) ∈ Vert(F).
A fundamental object in conformal field theory is the so-called bundle of conformal

blocks on themoduli space of curves. Given a vertex algebra describing a holomorphic
conformal field theory the action of the Virasoro Lie algebra is necessary for the
construction of bundle equipped with a projectively flat connection through a process
called “Virasoro uniformization”, see Chapter 17 of [13], for instance. This is a version
of Gelfand-Kazhdan descent (sometimes referred to as Harish–Chandra localization)
along a certain bundle of coordinates over the pointedmoduli of curvesMg,1 whichwe
briefly summarize. The moduli spaceMg,1 consists of pairs (Σ, x)whereΣ is a curve
and x ∈ Σ . There exists a canonically defined Vir0-torsor M̂g,1 overMg,1 consisting
of triples (Σ, x, ϕ)where ϕ is a formal coordinate near x . One then considers modules
for the pair (Aut(D̂),Vir0) where Aut(D̂) is the group automorphisms of the formal
disk. These objects are simultaneously modules for Vir0 and the group Aut(D̂) that
are compatible with the natural inclusion of Lie algebras Lie(Aut(D̂)) ↪→ Vir0. In
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practice, and in all of the examples we care about, Vir0-modules can be exponentiated
to modules for the pair.

If one starts with a module V for the pair (Aut(D̂),Vir0) Virasoro uniformization
can be viewed as a two-step process. First, one forms the associated bundle overMg,1
using the action of formal automorphisms. The residual action of Vir0 defines the
data of a flat connection. In the case that one has an action of Virc, for some nonzero
charge c, one gets a projectively flat connection. The resulting object is no longer a D-
module on the moduli of curves, but rather a module for a sheaf of twisted differential
operators. In the case that V is a conformal vertex algebra, the resulting bundle is
the bundle of conformal blocks equipped with its projectively flat connection. For
instance, in the case of the Virasoro vertex algebra of central c, one finds a sheaf of
twisted differential operators onMg,1 (see [3], for instance).

One can attempt a similar construction at the level of factorization algebras. Indeed,
let F be a holomorphic factorization algebra on C that is equipped with a map of
factorization algebras

Φ : Virc → F

as in (4). In the case that F is holomorphic, we see that F(D) is a module for the Lie
algebra of annular observables. Indeed, we have a factorization map

μ : F(A)⊗ F(D)→ F(Dbig)

where Dbig is a disk centered at zero containing the annulus A. We have already seen
that the structure maps coming from nested annuli give F(A) the structure of a Lie
algebra. Suppose that for any inclusions of disks centered at zero D(0, r) ↪→ D(0, R)

the induced map

F(D(0, r))
�−→ F(D(0, R))

is a quasi-isomorphism. Then, the structure map μ together with the map H∗Φ(A) :
Virc � H∗(Virc(A)) → F(A) give H∗(F) the structure of a module over the Lie
algebra Virc. Thus, we can descend the space F(D) to get a sheaf equipped with a
projective flat connection onMg,1. One expects that the fiber of this bundle over a fixed
curve Σ coincides with the global sections, or factorization homology

∫
Σ
F defined

in the next section.

6 Factorization homology and correlation functions

6.1 Global sections

In this section, we compute the cohomology of the global sections of the factorization
algebra VirΣ . This is known as the factorization homology of VirΣ and is denoted by

∫
Σ

VirΣ = H∗(VirΣ(Σ)).
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In the language of chiral algebras, the cohomologyof global sections is often referred to
as the “chiral homology” in the literature [2,12] and is dual to the space of “conformal
blocks”. We will discuss conformal blocks for the Virasoro in more detail shortly.

Remark 9 As noted above BLΣ describes the formal completion at Σ inside of Mg ,
the moduli of Riemann surfaces of genus g. We have already remarked that

∫
Σ
VirΣ

is the∞-jet at Σ of a certain sheaf on the moduli of curves Mg , namely the sheaf of
twisted differential operators. An independent definition of this sheaf on the moduli
of curves from the point of view of factorization algebras is non-trivial, and we defer
making any precise relationships at the moment.

Now, we compute the factorization homology. We will need the following fact
about the Dolbeault resolution of holomorphic vector fields which is immediate from
studying the cohomology of Riemann surfaces for each g.

Proposition 12 The dg Lie algebra (Ω0,∗(Σ, TΣ), ∂̄) is formal for any Riemann
surface Σ .

That is, the dg Lie algebras Ω0,∗(Σ, TΣ) and H ∗̄
∂
(Ω0,∗(Σ, TΣ)) are quasi-

isomorphic. It follows that H∗(VirΣ(Σ)) is equal to the cohomology of the complex

(
Sym(H∗(Σ, TΣ)⊕ C · C), dCE

)

since ∂̄ kills the central term C .
The full differential on VirΣ is ∂̄ + dLie+ω where dLie is the Chevalley–Eilenberg

differential for the Lie algebra Ω0,∗(Σ, TΣ) and ω is the cocycle of Sect. 5.3.

The case g = 0
We have H∗(Σ0, TΣ0)

∼= s�2(C) generated by the vector fields ∂z, z∂z, and z2∂z .
For degree reasons, the central extension does not contribute to the Lie differential.
Thus

∫
Σ0

VirΣ0 ∼= HLie∗ (s�2(C))[c] ∼= C[y,C]

with deg(y) = 3 and deg(C) = 0.

The case g = 1
In this case, we know that the dg Lie algebra H∗(Σ1, TΣ1) = C⊕C[−1]with zero

Lie bracket and zero differential. Moreover, H0 is generated by the constant vector
field ∂z . The bilinear form defining the central extension vanishes on constant vector
fields so doesn’t contribute to the Lie differential. Thus

∫
Σ1

VirΣ1 ∼= Sym(C[1] ⊕ C⊕ C · C) ∼= C[x, y,C]

with deg(x) = −1 and deg(y) = deg(C) = 0.

123



2226 B. Williams

The case g > 1
The dg Lie algebra is H∗(Σg, TΣg ) = C3g−3[−1]. For degree reasons, this algebra

is abelian and does not interact with the central extension. Thus

∫
Σg

VirΣg ∼= Sym(C3g−3 ⊕ C · C) ∼= C[y1, . . . , y3g−3,C]

with deg(y1) = · · · = deg(y3g−3) = deg(c) = 0.

6.2 Correlation functions

In this section, we compute the correlation functions associated to the Virasoro factor-
ization algebra. These calculations are reminiscent for those of the conformal blocks
of a conformal vertex algebra and exhibits the utility of our approach to factorization
in CFT.

Fix a Riemann surface Σ and consider a collection of disjoint opensU1, . . . ,Un ⊂
Σ . The n-point correlation function for associated to these open sets is the factorization
structure map

ΦU1,...,UN : VirΣ(U1)⊗ · · · ⊗ VirΣ(Un)→ VirΣ(Σ).

Consider the case of Σ = C and suppose that each of the opensUi is a biholomor-
phic to a disk of a certain fixed radius r . Suppose,moreover, thatF is a holomorphically
translation-invariant factorization algebra on C. Then it is an algebra over the coop-
erad Ω0,∗(Disks). In particular, for each n we can think of the n-point correlator as a
holomorphic function on the space

Disksn(r) � Confn(C).

We now describe an explicit way of calculating these n-point correlation functions that
bears some resemblance to the standard method of computing correlation functions in
conformal field theory.

First, we fix a partial inverse ∂̄−1 for the Dolbeault operator ∂̄ for the holomorphic
tangent bundle TΣ . This operator vanishes on harmonic functions and 1-forms and is
inverse to ∂̄ on the complement to the space of harmonic functions and 1-forms. We
can construct it as follows. Let G be a Green’s function for the ∂̄ operator. It satisfies
the equation

∂̄G = ωdiag

where ωdiag is the (1, 1)-form onΣ×Σ that is the volume element along the diagonal
and zero elsewhere. Given G we define the operator ∂̄−1 via the formula

(∂̄−1ϕ)(z) =
∫

w

G(z, w)ϕ(w).
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Let a1, . . . , an ∈ Ω0,∗(Σ, TΣ) be ∂̄ closed. We will write down a general formula
for the cohomology class of the factorization product a1 · · · an . Moreover, suppose
that a1 is in the orthogonal complement to harmonic (0, ∗) forms. Then consider the
expression

(∂̄ + dLie + ω)
(
(∂̄−1a1)a2 · · · an

)
= (∂̄∂̄−1a1)a2 · · · an

+
n∑
j=2

(−1) j+1
[
∂̄−1a1, a j

]
a2 · · · â j · · · an

+
n∑
j=2

(−1) j+1ω(∂̄−1a1, a j )a2 · · · â j · · · an .

The first line follows from the fact that the only non-trivial Lie bracket involving the
elements a1, . . . , an is between a1 and a j for j �= 1. The second line follows from the
fact that the cocycle ω is cohomologically degree one.

Since the term on the left hand side is exact in the cochain complex VirΣ(Σ), we
have at the level of cohomology

�a1 · · · an� =
n∑
j=2

(−1) j
⌊
[∂̄−1a1, a j ]a2 · · · â j · · · an

⌋

+
n∑
j=2

(−1) jω(∂̄−1a1, a j )
⌊
a2 · · · â j · · · an

⌋
. (5)

In particular, we see that �a� = 0 for any a.

6.2.1 Genus zero

We can use this formula to recover well-known relations involving the genus zero
correlation functions. Fix a collection of points (x1, . . . , xn) ∈ Confn(CP1) and
suppose ε > 0 is such that the collection of disks {D(xi , ε)} are pairwise disjoint.
Fix radial bump functions fxi (z, z̄) = f (r2) for the disks D(xi , ε) and consider the
(0, 1)-forms fxi (z, z̄)dz̄ ∈ Ω0,1(D(xi , ε)) which define the holomorphic vector field
valued forms

axi (z, z̄) := fxi (z, z̄)dz̄∂z ∈ Ω0,1
(
D(xi , ε), TCP1|D(xi ,ε)

)
⊂ Vir(D(xi , ε))

on D(xi , ε). One should think of axi as a mollified version of a point-like observable
supported at xi .

We will compute the resulting n-point correlation functions

⌊
ax1 · · · axn

⌋ ∈ H0
∫
CP1

Vir ∼= C · C.
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Here, we note that each axi is a (linear) degree zero element in the factorization algebra
Vir so the resulting element in factorization homology is also degree zero. We have
already computed that H0 of the factorization homology on CP1 is one-dimensional
spanned by the central element C .

Using the explicit form of the operator ∂̄−1 on CP1, we find

∂̄−1(axi (z, z̄)) =
1

z − x1
∂z .

For ai = axi , the recursive equation for the n-point function Eq. (5) becomes

⌊
ax1 · · · axn

⌋ =
n∑
j=2

(−1) j
⌊[

1

z − x1
∂z, ax j (z, z̄)

]
ax2 · · · â j · · · axn

⌋

+ c
n∑
j=2

(−1) jω
(

1

z − x1
∂z, f j (z, z̄)dz̄∂z

)⌊
ax2 · · · âx j · · · axn

⌋
.

Let us use this formula to compute the n-point function for small n. We have already
remarked that �ax1� = 0. Now, suppose x1 �= x2, then the recursive formula implies

⌊
ax1ax2

⌋ = cω
(
∂̄−1ax1 , ax2

)
.

By definition of the cocycle ω, the right-hand side is equal to

c · 1
12

∫
z

1

z − x1
∂3z ( fx2(z, z̄))dzdz̄.

Iterative application of integration by parts together with the fact that∫
ϕ(z) fx2(z, z̄)dzdz̄ = ϕ(x2) yields

⌊
ax1ax2

⌋ = c

2

1

(x1 − x2)4
.

Wecan compute �ax1ax2ax3� in a similarway. Since �axi � = 0 the recursive formula
implies

⌊
ax1ax2ax3

⌋ =
⌊[

1

z − x1
∂z, ax2(z, z̄)

]
· ax3

⌋
−

⌊[
1

z − x1
∂z, ax3(z, z̄)

]
· ax2

⌋
.

(6)

Consider the first term above. We compute the Lie bracket

[
1

z − x1
∂z, ax2

]
= 1

z − x1
∂z( fx2(z, z̄))dz̄∂z +

1

(z − x1)2
fx2(z, z̄)dz̄∂z .
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Applying ∂̄−1 to this expression yields the vector field

(
− 1

(z − x2)2(x2 − x1)
+ 2

(z − x2)(x2 − x1)2

)
∂z .

This calculation, combined with the fact that �a · b� = cω(∂̄−1a, b) yields

⌊[
1

z − x1
∂z, ax2(z, z̄)

]
· ax3

⌋
= −cω

(
1

(z − x2)2(x2 − x1)
∂z, ax3(z, z̄)

)

+2cω
(

1

(z − x2)(x2 − x1)2
∂z, ax3(z, z̄)

)

= − c

12

∫
z

1

(z − x2)2(x2 − x1)
∂3z ( fx3(z, z̄))dzdz̄

+ c

6

∫
z

1

(z − x2)(x2 − x1)2
∂3z ( fx3(z, z̄))dzdz̄

= c

(x3 − x2)4(x2 − x1)

(
− 2

x3 − x2
+ 1

x2 − x1

)

The second term in (6) is obtained by sending x2 ↔ x3 in the above formula. In total,
the sum is thus

c

(x3 − x2)4(x2 − x − 1)(x3 − x1)

(
−2 x3 − x2

x3 − x2
+ x3 − x1

x2 − x1
+2 x2 − x1

x3 − x2
+ x2 − x1

x3 − x1

)
.

This simplifies to the following expression for the 3-point correlator

⌊
ax1ax2ax3

⌋ = c

(x1 − x2)2(x1 − x3)2(x2 − x3)2
.

For general n, the recursive formula implies that can write the n-point function as

⌊
ax1 · · · axn

⌋ =
n∑
j=2

(
1

x j − x1
∂x j +

1

(x j − x1)2

) ⌊
ax2 · · · axn

⌋

+ c

2

n∑
j=2

(−1) j 1

(x j − x1)4
⌊
ax2 · · · âx j · · · axn

⌋
.

This shows, in particular, that as a function on the space Confn(CP1) the correlation
function is not only holomorphic, it is rational. One can find this expression for the
correlation functions in the vertex algebra literature, see for instance Section 2 of [22].
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7 Application: Virasoro symmetry for holomorphic factorization
algebras

7.1 Example: the βγ system

In this section we’d like to explain an example of a family of holomorphic field theo-
ries parametrized by an integer n whose factorization algebra of observables has the
structure of a holomorphic factorization algebra that we denote Obsqn with a Virasoro
symmetry. We produce a map of factorization algebras on C from the Virasoro factor-
ization algebra (at a certain central charge) to Obsqn . As a corollary we show that we
recover the usual Virasoro vector of the βγ vertex algebra.

First we need to define the factorization algebra Obsqn . First, we define a precosheaf
of dg Lie algebras. To a one-dimensional Riemannian manifold U , we define the dg
Lie algebra

Hn(U ) := Ω1,∗
c (U )⊕n ⊕Ω0,∗

c (U )⊕n ⊕ C[−1]

with bracket given by

[ϕ,ψ] :=
n∑

i=1

∫
U

ϕi ∧ ψi .

Here we write each element in components as ϕ = (ϕ1, . . . , ϕn) ∈ Ω
∗,∗
c (U )⊕n so that

ϕi ∈ Ω
∗,∗
c (U ). The factorization algebra is obtained in a similar way to the envelope of

a local Lie algebra. To an open setU , we defineObsqn(U ) := CLie∗ (Hn(U )). Explicitly

Obsqn(U ) :=
(
Sym

(
Ω1,∗

c (U )⊕n[1] ⊕Ω0,∗
c (U )⊕n[1]

)
, ∂̄ +Δ

)
(7)

where Δ is the Chevalley–Eilenberg differential coming from the Lie bracket. We
restrict ourselves to factorization algebras on the Riemann surface C.

It is shown in [9] that Obsq1 is a holomorphic factorization algebra whose associated
vertex algebra is isomorphic, to the one-dimensional βγ vertex algebra. Similarly, one
has the following

Theorem 13 [[9] Theorem 5.3.3.2] The vertex algebra Vert(Obsqn) is isomorphic
to the n-dimensional βγ vertex algebra Vn. The vertex algebra Vn has state space
spanned by vectors {bil , c jm} where l < 0, m ≤ 0 and 1 ≤ i, j ≤ n with vertex
operators

Y (bi−1, z) =
∑
l<0

bimz
−1−n +

∑
l≥0

∂

∂ci−l
z−1−n

Y (c j0 , z) =
∑
m≤0

c jmz
−m −

∑
m>0

∂

∂b j
−m

z−m .
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Proposition 14 There is a map of factorization algebras on C

Φ : VirCc=n → Obsqn

commuting with the S1 action. This map quantizes the map of factorization algebras

Φcl : VirCc=0 → Obscln .

In particular, the map of factorization algebras produces a map of vertex algebras

Vert(Φ) : Vert(VirCc=n)→ Vert(Obsqn).

Concluding the proof of the proposition, we will see explicitly that the map of vertex
algebras produced by the above proposition recovers the usual conformal vector of
the βγ vertex algebra.

7.1.1 A remark on quantization

In the statement of the above proposition, we claimed that the mapΦ is a quantization
of Φcl . On the one hand, a consequence of this is that in the limit as h̄ → 0 the map
Φ equals Φcl . There is, however, a more refined version of what quantization means
here.

In the book [9,10] a quantization of a factorization algebra refers to a h̄-deformation
of a Poisson bracket on the factorization algebra, analogous to the usual picture from
deformation quantization. In this context, however, the bracket is of cohomological
degree 1 and gives the classical factorization algebra a P0-structure. In the usual story
of deformation quantization the deformed object has the structure of an associative
algebra. For us, the quantum factorization algebras have the structure of a Beilinson-
Drinfeld (BD) algebra. For a precise definition of P0 and BD structured factorization
algebras see Sections 2.3 and 2.4 of [10].

Thus, implicit in the statement of quantization in Proposition 14 is that the “classi-
cal” factorization algebras VirCc=0 and Obscln have a P0-structure. The P0 structure on
Obscln is clear, it comes from the (−1)-shifted symplectic pairing defining the classical
βγ system. The P0 structure on VirCc=0 is more subtle, and we will describe it now.

Note that for every open set U we can write the underlying graded vector space of
the factorization algebra evaluated on U as

VirCc=0(U )# = Sym
(
Ω̄1,∗(U, T ∗U )

)∨

where the bar denotes distributional sections. To check this, we use the relationship(
Ω̄1,∗(U, T ∗U )

)∨ ∼= Ω
0,∗
c (U, TU )[1] where (−)∨ denotes the continuous dual as

above. Thus, we can interpret VirCc=0(U ) as the space of functions on the formal
moduli space B

(
Ω̄1,∗(U, T ∗U )[−1]). We will realize the P0 structure on VirCc=0 as

coming from a shifted Poisson tensor on B(Ω̄1,∗(U, T ∗U )[−1]). For conventions of
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degrees and notations of P0 structures on formal moduli problems, we refer the reader
to [4].

The P0 structure has two pieces, a constant term and a linear term. First, consider
the Lie bracket

[−,−] : Ω0,∗
c (U, TU )⊗Ω0,∗

c (U, TU )→ Ω0,∗
c (U, TU ).

Its continuous dual is a map of the form

[−,−]∨ : Ω̄1,∗(U, T ∗U )→ Ω̄1,∗(U, T ∗U )⊗ Ω̄1,∗(U, T ∗U )

and defines the linear piece of the P0 structure. One checks immediately that it is of
the correct degree. Next, we remark that the continuous dual cocycle

ω : Ω0,∗
c (U, TU )⊗Ω0,∗

c (U, TU )→ C[−1]

introduced in Sect. 2.2.2 can be regarded as an element in Sym2(Ω̄1,∗(U, T ∗U )) and
determines the constant term of the P0 structure. Again, it is immediate to check that
it is of the correct degree. The data defining the P0 structure was defined in terms of
differential operators of the underlying graded vector bundles. It follows, Proposition
2.22 of [4], that the P0 structure is compatible with the factorization product of VirCc=0
and hence defines a P0 structured factorization algebra. A small extension of this
provides a P0 structured factorization algebra VirΣc=0 for any surface Σ .

7.2 Proof of Proposition

The proof is based on an explicit calculation in terms of Feynman diagrams in a version
of renormalization developed in [8] and [10].

To describe the map in Proposition 14, it is necessary to describe the factorization
algebra Obsqn in terms of an effective family of factorization algebras and functionals
as in [10]. The general formalism starts with a classical field theory defined by a sym-
plectic form of cohomological degree−1 and produces from an effective quantization,
as in [8], a factorization algebra of quantum observables.

The fields of the theory are

En := Ω0,∗(C)⊕n ⊕Ω1,∗(C)⊕n .

We write the fields as (γ, β) (hence the name), and the components as γ =
(γ1, . . . , γn), β = (β1, . . . , βn). The symplectic pairing is

〈γ, β〉 =
n∑

i=1

∫
C

γiβi
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which is easily seen to have cohomological degree −1. With this pairing, we can
express En as Ω0,∗(C) ⊗ V ⊕ Ω1,∗(C) ⊗ V ∗ where V is a complex n-dimensional
vector space. The pairing comes from the dual pairing on V .

The classical observables supported on Σ are simply the space of algebraic func-
tions on the space of fields. Keeping track of the right notion of duals, for any open
U ⊂ C we define

¯Obscln (C) = Sym
(
Ω̄1,∗

c (C)⊕n ⊕ Ω̄0,∗
c (C)⊕n

)
.

One checks immediately that this construction defines a factorization algebra on C.
The classical action of holomorphic vector fields is a very natural one. Given

any element α ∈ Ω∗,∗(U ) and any section of the holomorphic tangent bundle
X ∈ Γ (U, T 1,0U ), we define

X · α = LXα

where LXα denotes the Lie derivative of α by X . This definition naturally extends
to elements X ∈ LC(U ) = Ω0,∗(U, T 1,0U ). This action of LC on forms leads
to an action of the factorization algebra ¯Obscln as follows. For X ∈ LC define the
holomorphically translation-invariant local functional ILX ∈ Oloc(En) by

ILX (γ, β) =
∫

β ∧ (X · γ ).

Note that this local functional is of cohomological degree−1 and sowe have described
a map

IL : LC→ Oloc(En)[−1].

The space of local functionals shifted up by oneOloc(En)[−1] is itself a dg Lie algebra
with Lie bracket given by the Poisson bracket {−,−} induced from the pairing 〈−,−〉.
It is immediate to check that IL is compatiblewith this bracket and hence defines amap
of local Lie algebras on C. This implies that IL determines a Maurer–Cartan element
of C∗loc(LC;Oloc(En))[−1]) which we think of as encoding the action of holomorphic
vector fields on the classical field theory.

A translation-invariant local functional determines a classical observable supported
on any open set in C. For each U ⊂ C, we then extend IL to a map of commutative

dg algebras Φcl(U ) : Sym(Lc(U )[1])→ ¯Obscl(U ). These combine to give a map of
factorization algebras

Φcl : Vir0 → ¯Obscl .

The naive BV Laplacian Δ0 defined by contraction with the integral kernel K0 of

the symplectic form 〈−,−〉 is ill-defined on ¯Obscln as it involves pairing distributional
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sections. This was solved in the above description by working with a smaller class of
observables: one defines

Obscln (C) ⊂ ¯Obscln (C)

to be the subspace of non-distributional sections of the appropriate vector bundles.
Then, on Obscln the operator Δ0 is well-defined. Note that when we equip Obscln (C)

with the differential ∂̄ +Δ0, we obtain Obs
q
n as defined in (7). It is immediate that the

factorization structures coincide.
There is another solution that is necessary to describe the map in Proposition 14

that involves mollifying the operator Δ0 to a family of operators ΔL for each L > 0.
This approach is outlined in wide generality in Chapter 9 of [10]. In this example,
there is an obvious choice on how to mollify Δ0. Let ∂̄∗ be the Hodge dual operator
to ∂̄ with respect to the Euclidean metric on C. Then the commutator [∂̄, ∂̄∗] is the
Hodge Laplacian. We let KL ,n be the integral kernel for the operator e−L[∂̄,∂̄∗]. It is
the unique graded symmetric element KL ,n ∈ En ⊗ En , for L > 0, satisfying

〈
KL ,n(z, w), ϕ(w)

〉
w
= (e−L[∂̄,∂̄∗]ϕ)(z)

for all ϕ ∈ En . Explicitly, one has KL ,n = KL ⊗ (IdV + IdV ∗) where

KL(z, w) = 1

4πL
e−|z−w|2/4L(dz̄ ⊗ 1− 1⊗ dw̄).

The mollified BV Laplacian is the operator ΔL defined by contraction with KL . Note
that this operator is well-defined on Obscln . The propagator of the theory is P

L
ε (z, w)⊗

(IdV + IdV ∗) where

PL
ε (z, w) =

∫ L

t=ε

1

16π t
e−|z−w|/4tdt.

The space of global quantum observables at scale L is the complex

¯Obsqn(C)[L] :=
(
Sym

(
Ω̄1,∗

c (C)⊕n ⊕ Ω̄0,∗
c (C)⊕n

)
, ∂̄ +ΔL

)
.

To get a factorization algebra structure, we need to provide the space of quantum
observables supported on an arbitrary open U ⊂ C. This is more subtle than in the
classical case since the operator ΔL has support everywhere on the complex line. In
fact, to have a reasonable definition we need to consider the BV Laplacian for a more
general class of parameterices. This is developed fully in Chapter 8 of [10]. We will
not provide details here, as the exact definition of the factorization structure will not
be used. The main result we will need is the following.

Proposition 15 There is a quasi-isomorphism of factorization algebras on C

Obsqn
�−→ ¯Obsqn

123



The Virasoro vertex algebra and factorization algebras on… 2235

where on the right-hand side we use the effective BV quantization provided by the
regularized BV operator.

We are given a Maurer–Cartan element IL that encodes the action of holomorphic
vector fields on the classical factorization algebra. Since the field theory underlying the
factorization algebra is free, the action lifts to an action of a shifted central extension of
holomorphic vector fields. This implies that we have a map of factorization algebras

Φ : UαL→ ¯Obsqn (8)

for some cocycle α ∈ C∗loc(L) parameterizing the shifted central extension. In the
language of effective quantization of BV theories the cocycle α is the L → 0 limit of
the obstruction α[L] of the one-loop quantum interaction

IL[L] =
∑

Γ ∈Graphs of genus≤1

1

|Aut(Γ )|WΓ (PL
0 ⊗ (IdV + IdV ∗) ; IL)

to satisfy the quantum master equation:

∂̄ IL[L]dL IL[L] + 1

2
{IL[L], IL[L]}L + h̄ΔL I

L[L] = α[L].

Here, IL[L] ∈ C∗Lie(L;O(En)) is defined by homotopy RG-flow using the weight
expansion in terms of connected graphs of genus less than or equal to one. There is a
subtle point, the propogator PL

0 is distributional by nature, so a priori the expression for
IL[L]may not exist. The fact that IL[L] is well-defined is a hallmark of holomorphic
theories having no counter terms when one uses the so-called chiral gauge.

With a calculation similar to that of Corollary 16.0.5 in [7], we have the following
description of the effective obstruction cocycle α[L].
Lemma 4 ([7] Corollary 16.0.5)) The obstruction α[L] is computed by the weight

lim
ε→0

WΓ (PL
ε ⊗ (IdV + IdV ∗) , Kε ⊗ (IdV + IdV ∗) ; IL)

where Γ is the one-loop connected wheel with two vertices. We attach the propagator
PL

ε to one inner edge and KL to the other inner edge.

With this lemma in hand, we directly compute α[L]. For X = f (z, z̄)∂z and
g(z, z̄)dz̄∂z in Lc(C) we have

α[L]( f ∂z, gdz̄∂z) = n lim
ε→0

∫
Cz×Cw

f (z, z̄)
(
∂z P

L
ε (z, w)

)
g(z, z̄)dz̄ (∂wKε(z, w)) .

The factor n comes from the contraction of the tensors depending on V . Next, we
compute

∂wKε(z, w) = 1

4πε

z̄ − w̄

4ε
e−|z̄−w̄|2/4ε .
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Similarly,

∂z P
L
ε (z, w) =

∫ L

t=ε

1

4π t

(z̄ − w̄)2

(4t)2
e−|z̄−w̄|2/4tdt.

After making the change of coordinates (y = z −w,w), and plugging in the expres-
sions above we obtain an expression for the integral inside the ε → 0 limit

1

16π2

∫
Cy×Cw

f gd2yd2w
∫ L

t=ε

1

εt

1

(4ε)(4t)2
ȳ3 exp

(
−1

4

(
1

t
+ 1

ε

)
|y|2

)
. (9)

If ϕ is any compactly supported function then integration by parts yields the relation

∫
y
ϕ(y)ȳke−a|y|2d2y = 1

ak

∫
y

(
∂3yϕ

)
(y)e−a|y|2d2y.

Applying this to the integral in (9), we obtain

α[L]( f ∂z, gdw̄∂w) = n lim
ε→0

1

16π2

∫
Cy×Cw

∂3y ( f g)(y, w)

∫ L

t=ε

ε

(ε + t)3
exp

(
−1

4

(
1

t
+ 1

ε

))
.

Finally, performing integration in the y-direction usingWick’s formula, the right-hand
side becomes

n
1

2π

(∫
Cw

∂3w f gd2w

)
lim
ε→0

∫ L

t=ε

ε2t

(ε + t)4
dt.

The t-integral converges and in the ε → 0 limit

∫ L

t=ε

ε2t

(ε + t)4
ε→0−−→ 1

12
.

Note that there is no longer a dependence on the L > 0 parameter. This means that for
any L the functional α = α[L] is already a local functional representing the shifted
central extension. In conclusion, we have calculated

α( f ∂z, gdz̄∂z) = 1

2π

n

12

∫
Cz

∂3z f gd
2z.

This is precisely the defining cocycle for the Virasoro factorization algebra of charge
c = n. In conclusion, we see that the map of factorization algebras (8) becomes

Φ : Virc=n → Obsqn

as desired.
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