Quantum Field Theory Seminar

Yang Mill's Talk

Christopher La Fond

October 28, 2022

By popular request our motivating example throughout this talk will be classical electromagnetism in a vacuum, so we first begin with a quick refresher on the Maxwell-Field equations. From the physicists point of view, classical electromagnetism boils down to studying the following set of partial differential equations, known as the Maxwell-Field equations:

$$
\begin{array}{lc}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \nabla \cdot \mathbf{E}=0 \\
\nabla \times \mathbf{B}=\frac{\partial \mathbf{E}}{\partial t} & \nabla \cdot \mathbf{B}=0 \tag{2}
\end{array}
$$

With these equations, it can be shown that \mathbf{E} and \mathbf{B} can be described by a scalar function $V: \mathbb{R}^{1,3} \rightarrow \mathbb{R}$, and a vector field $\mathbf{M}: \mathbb{R}^{1,3} \rightarrow \mathbb{R}^{3}$ in the following way:

$$
\begin{aligned}
& \mathbf{E}=-\nabla V-\frac{\partial \mathbf{M}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{M}
\end{aligned}
$$

One then finds that the \mathbf{E} and \mathbf{B} are invariant under the following transformation in the potentials:

$$
\begin{aligned}
V^{\prime} & =V-\frac{\partial \lambda}{\partial t} \\
\mathbf{M}^{\prime} & =\mathbf{M}+\nabla \lambda
\end{aligned}
$$

for any function $\lambda: \mathbb{R}^{1,3} \rightarrow \mathbb{R}$. This transformation can be better encoded by defining the four potential on $\mathbb{R}^{1,3}$:

$$
A^{i} \partial_{i}=\left(V, M_{x}, M_{y}, M_{z}\right)
$$

We then obtain the following one form under the musical isomorphism:

$$
A_{i} d x^{i}=-V d t+M_{i} d x^{i}
$$

Then the transformation is given by:

$$
A^{\prime}=A+d \lambda
$$

In physics, this is called a gauge transformation, and it was the goal of the original YangMills paper to extend this invariance to the strong force. In so doing, they, perhaps by happenstance, implicitly used geometry and the theory of connections to develop the Yang-Mills equations.

We now turn to developing the ingredients behind this theory. Recall from the last talk, that given a principal G bundle P over some base manifold M, we can prescribe the principal bundle with a connection A that determines the horizontal subspace of $T P$. We can view A as a Lie algebra value one form on P satisfying:

$$
A\left(X_{p}\right)= \begin{cases}X \in \mathfrak{g} & \text { if } X_{p} \in V_{p} \\ 0 & \text { if } X_{p} \in H_{p}\end{cases}
$$

we call A a vertical one form on P. Furthermore, recall that the curvature of such a connection is given by:

$$
F=\pi^{*} d A
$$

where π is the projection $P \rightarrow M$. One can check by direct verification that this is equivalent to the structure equation:

$$
F=d A+\frac{1}{2}[A, A]
$$

where for Lie algebra valued k and l forms:

$$
[\eta, \omega]=\sum_{i, j=0}^{n} \eta^{i} \wedge \omega^{j} \otimes\left[T_{i}, T_{j}\right]
$$

after choosing a basis $\left\{T_{i}\right\}$ for \mathfrak{g}. For one forms this reduces to the formula:

$$
[\eta, \omega](X, Y)=[\eta(X), \omega(Y)]-[\eta(Y), \omega(X)]
$$

Recall that in a local trivialization of P, corresponding to local section $s: U \rightarrow P$, we have that:

$$
A_{s}=s^{*} A
$$

which is then a Lie algebra valued on form on the base manifold M. Furthermore, we have that $F_{s}=s^{*} F$, satisfies a similar structure equation:

$$
F_{s}=d A_{s}+\frac{1}{2}\left[A_{s}, A_{s}\right]
$$

Now let $U_{i} \times G$ and $U_{j} \times G$ be two local trivializations of P corresponding to sections s_{i} and s_{j} such that $U_{i} \cap U_{j} \neq \emptyset$. Then, we have that on the overlap :

$$
s_{j}=s_{i} \cdot g_{i j}
$$

for some $g_{i j}: U_{i} \cap U_{j} \rightarrow G$, which we call a local gauge transformation. Then under a local gauge transformation we have that:

$$
A_{j}=\operatorname{Ad}_{g_{i j}^{-1}} \circ A_{i}+g_{i j}^{*} \theta
$$

where θ is the Maurer-Cartan form:

$$
\theta(v)=D_{g} L_{g^{-1}}(v)
$$

The above can be verified quite easily by direct calculation with pushforwards, and using the fact that for:

$$
\begin{aligned}
\Phi & : M \times G \longrightarrow M \\
& :(x, g) \longmapsto x \cdot g
\end{aligned}
$$

we have for $(X, Y) \in T_{x} M \oplus T_{g} G$:

$$
D_{(x, g)} \Phi(X, Y)=D_{x} R_{g}(X)+D_{g} \phi_{x}(Y)
$$

where ϕ_{x} is the orbit map through the point x. In a similar vein, if A is the global connection one form on P, and f is a global bundle automorphism, then we can write that:

$$
f(p)=p \cdot \sigma_{f}(p)
$$

for some $\sigma_{f}: P \rightarrow G$ satisfying:

$$
\sigma(p \cdot g)=g^{-1} \sigma_{f}(p) g
$$

Then A transforms as:

$$
f^{*} A=\operatorname{Ad}_{\sigma_{f}^{-1}} \circ A+\sigma_{f}^{*} \theta
$$

Furthermore, $F_{s_{i}}$ transforms as:

$$
F_{s_{j}}=\operatorname{Ad}_{g_{i j}^{-1}} \circ F_{s_{i}}
$$

We then see that similarly:

$$
f^{*} F=\operatorname{Ad}_{\sigma^{-1}} \circ F
$$

Turning back to the physics for a moment, we make the assumption that classical electromagnetism corresponds to a $U(1)$ gauge theory over the base manifold, then:

$$
P=\mathbb{R}^{1,3} \times U(1)
$$

so there exists a global section of P. We can then view A_{s} as a global connection one form on the base with values in $\mathfrak{u}(1) \cong \mathbb{R}$, and set:

$$
A_{s_{i}}=-V d t+M_{x} d x+M_{y} d y+M_{z} d z
$$

then under a the change of section $g_{i j}=e^{i \lambda(x)}$ we have:

$$
\begin{aligned}
A_{s_{j}} & =\operatorname{Ad}_{g_{i j}^{-1}} \circ A_{s_{i}}+g_{i j}^{-1} d g_{i j} \\
& =A_{s_{i}}+e^{-i \lambda(x)} d e^{i \lambda(x)} \\
& =A_{s_{i}}+d \lambda
\end{aligned}
$$

thus we obtain the gauge transformation for the four potential discussed earlier. Furthermore, as $U(1)$ is abelian we have that:

$$
F_{s_{i}}=d A_{s}
$$

and while I won't do the full calculation out, I will examine an easy term:

$$
\begin{aligned}
F_{x t} & =-\frac{\partial V}{\partial x} d x \wedge d t-\frac{\partial M_{x}}{\partial t} d x \wedge d t \\
& =E_{x} d x \wedge d t
\end{aligned}
$$

so the curvature form is given in matrix notation as:

$$
F=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

so the curvature form contains the information for both the electric and the magnetic fields. As $U(1)$ is abelian, we have that $\mathrm{Ad}_{g^{-1}}$ is the identity, so F_{s}, and as a consequence the physical fields, are invariant under a gauge transformation.

Recall that a vector bundle E associated to P, with fibre V, and a representation ρ is defined as:

$$
E=P \times{ }_{\rho} V
$$

which is the quotient of $P \times V$ under the equivalence relation:

$$
[p, v] \sim\left[p \cdot g, \rho(g)^{-1} \cdot p\right]
$$

In particular, this implies that:

$$
[p \cdot g, v] \sim\left[(p \cdot g) \cdot g^{-1}, \rho(g) v\right] \sim[p, \rho(g) v]
$$

If the representation is trivial we have that E is trivial, hence:

$$
E=M \times V
$$

A local section Φ of the bundle is then the equivalence class:

$$
\Phi=[s(x), \phi(x)]
$$

where $\phi: U \subset M \rightarrow V$, and $s: U \rightarrow P$. If f is a global bundle automorphism, we have that the action of f on an associated vector bundle is given by:

$$
f \cdot[p, v]=[f(p), v]=\left[p \cdot \sigma_{f}(p), v\right]
$$

The connection one form induces a a covariant derivative on E :

$$
\begin{aligned}
\nabla^{A}: \Gamma(E) & \longrightarrow \Omega^{1}(M, E) \\
\Phi & \longmapsto\left[p, d \phi+\rho_{*}\left(A_{s}\right) \phi\right]
\end{aligned}
$$

We can also define the covariant exterior derivative:

$$
d_{A}: \Omega^{k}(M, E) \longrightarrow \Omega^{k+1}(M, E)
$$

In a local frame $\left\{e_{i}\right\}$ of E we see that $\omega \in \Omega^{k}(M, E)$ can be written as:

$$
\omega=\omega^{i} \otimes e_{i}
$$

for $\omega^{i} \in \Omega^{k}(M)$, then:

$$
d_{A} \omega=d \omega^{i} \otimes e_{i}+(-1)^{k} \omega \otimes \nabla^{A} e_{i}
$$

In a local gauge $s: U \rightarrow P$, we choose a basis for v_{1}, \ldots, v_{n} for V, then determine a local frame $e_{i}, \ldots e_{n}$ for E via:

$$
e_{i}=\left[s, v_{i}\right]
$$

Then:

$$
\omega_{s}=\omega^{i} \otimes v_{i}
$$

we can then write that:

$$
(d \omega)_{s}=d \omega_{s}+\rho_{*}\left(A_{s}\right) v_{i} \wedge \omega_{s}^{i} \stackrel{\text { def }}{=} d \omega_{s}+A_{s} \wedge \omega_{s}
$$

An associated vector bundle of particular interest is $\operatorname{Ad}(P)$:

$$
\operatorname{Ad}(P)=P \times_{\mathrm{Ad}} \mathfrak{g}
$$

Why is this vector bundle important? Recall that F is horizontal, that is, it sends every vertical vector field to zero. We denote general k forms with values in \mathfrak{g}, which
transform like the curvature form, and are horizontal by $\Omega_{\text {Hor }}^{k}(P, \mathfrak{g})^{\text {Ad }}$. Note that every F is in $\Omega_{\text {Hor }}^{2}(P, \mathfrak{g})^{\text {Ad }}$, and that given a connection $A \in \Omega(P, \mathfrak{g})$, any other connection can be written as:

$$
A^{\prime}=A+\omega
$$

for an $\omega \in \Omega_{\text {Hor }}^{1}(P, \mathfrak{g})^{\text {Ad }}$. It turns out that the vector space $\Omega_{\text {Hor }}^{k}(P, \mathfrak{g})$ is canonically isomorphic to the vector space $\Omega^{k}(M, \operatorname{Ad}(P))$, via the map:

$$
\Lambda: \Omega_{\text {Hor }}^{k}(P, \mathfrak{g}) \longrightarrow \Omega^{k}(M, \operatorname{Ad}(P))
$$

defined by:

$$
\Lambda(\omega)\left(X_{1}, \cdots, X_{k}\right)=\left[p, \omega\left(Y_{1}, \ldots, Y_{k}\right)\right] \in \operatorname{Ad}(P)_{x}
$$

where:

$$
\pi(p)=x \quad \text { and } \quad \pi_{*}\left(Y_{i}\right)=X_{i}
$$

Verification of the above statement is overall pretty standard, one checks that the map is well defined, linear, and bijective, and the statement follows. To see this in the $k=0$ case note that:

$$
\Omega_{\text {Hor }}^{0}(P, \mathfrak{g})^{\text {Ad }}=\left\{f \in C^{\infty}(P, \mathfrak{g}): f(p \cdot g)=\operatorname{Ad}_{g^{-1}} \circ f(p)\right\}
$$

while:

$$
\Omega^{0}(M, \operatorname{Ad}(P))=\Gamma(\operatorname{Ad}(P))
$$

Looking at the equivalence class:

$$
[p, f(p)]
$$

we see that:

$$
[p \cdot g, f(p \cdot g)]=\left[p \cdot g, \operatorname{Ad}_{g^{-1}} \circ f(p)\right]=[p, f(p)]
$$

so each element in $\Omega_{\text {Hor }}^{0}(P, \mathfrak{g})$ completely determines a global section of $\operatorname{Ad}(P)$ and vice versa. This then implies the following statements:
(i) The set of all connection on P is an affine space over $\Omega^{1}(M, \operatorname{Ad}(P))$
(ii) The curvature F^{A} of a connection A on P can be identified with an element $F_{M}^{A} \in \Omega^{2}(M, \operatorname{Ad}(P))$. So local curvature forms on M, extend globally to 2 -forms on M with values in $\operatorname{Ad}(P)$
both of which are vital for Yang-Mills. Importantly, this implies we can write the Bianchi identity, = as:

$$
d_{A} F_{M}^{A}=0
$$

We notice this by stating the Bianchi Identity:

$$
d F^{A}+\left[A, F^{A}\right]=0
$$

which follows from the properties of the bracket operation on forms, and noting that in a local gauge, for $E=\operatorname{Ad}(P)$ we have that:

$$
\begin{aligned}
d_{A} \omega & =\left(d \omega_{s}\right)+\rho_{*}\left(A_{s}\right) T_{i} \wedge \omega^{i} \\
& =\left(d \omega_{s}\right)+A_{s}^{j} \wedge \omega^{i} \otimes\left[T_{j}, T_{i}\right] \\
& =\left(d \omega_{s}\right)+\left[A_{s}, \omega_{s}\right]
\end{aligned}
$$

So we have that since F_{s} can be extended to F_{M}^{A} :

$$
d F^{A}+\left[A, F^{A}\right]=0 \Rightarrow d F_{M}^{A}+\left[F_{M}^{A}, F_{M}^{A}\right]=d_{A} F_{M}^{A}=0
$$

We are now going to quickly define the other necessary ingredients in the Yang-Mills Lagrangian. Suppose that M has a (pseudo)-Riemannian metric g, and recall that we can raise the indices of k form ω via:

$$
\omega^{i_{1} \cdots i_{k}}=g^{i_{1} j_{1}} \cdots g^{i_{k} j_{k}} \omega_{j_{1} \cdots j_{k}}
$$

Via this operation we define the scalar product of forms by:

$$
\langle\omega, \eta\rangle=\frac{1}{k!} \omega_{i_{1} \cdots i_{k}} \eta^{i_{1} \cdots i_{k}}
$$

For twisted forms, i.e. forms with values in some vector bundle E, if E carries a bundle metric $\langle\cdot, \cdot\rangle_{E}$, we can define a the scalar product of twisted forms by:

$$
\langle\omega, \eta\rangle=\left\langle\omega^{i}, \eta^{j}\right\rangle\left\langle e_{i}, e_{j}\right\rangle_{E}
$$

The L_{2} norm for k-forms is:

$$
\langle\omega, \eta\rangle=\int_{M}\langle\omega, \eta\rangle \mathrm{dvol}_{g}
$$

While the L_{2} product for twisted k-forms is:

$$
\langle\omega, \eta\rangle_{E, L^{2}}=\int_{M}\langle\omega, \eta\rangle_{E} \operatorname{dvol}_{g}
$$

Furthermore, we define the hodge star operator as the unique linear map:

$$
\star: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)
$$

defined by:

$$
\omega \wedge \star \eta=\langle\omega, \eta\rangle \mathrm{dvol}_{g}
$$

In a local oriented orthonormal frame we have that:

$$
\star\left(\alpha^{m_{1}} \wedge \cdots \wedge \alpha^{m_{k}}\right)=g^{m_{1} m_{1}} \cdots g^{m_{k} m_{k}} \epsilon_{m_{1} \cdots m_{k} m_{k+1} \cdots m_{n}} \alpha^{m_{k+1}} \wedge \cdots \wedge \alpha^{m_{n}}
$$

where $\left\{m_{1}, \ldots, m_{k}\right\}$ is complimentary to the set $\left\{m_{k+1}, \ldots, m_{n}\right\}$ and ϵ is totally antisymmetric with:

$$
\epsilon_{123 \cdots n}=1
$$

In particular:

$$
\star \mathrm{dvol}_{g}=(-1)^{t} \quad \text { and } \quad \star 1=\mathrm{dvol}_{g}
$$

The hodge star on twisted forms just ignores the tensored section of E, i.e.:

$$
\star \omega=\left(\star \omega^{i}\right) \otimes e_{i}
$$

We further define the codifferential, $d^{\star}: \Omega^{k}(M) \rightarrow \Omega^{k-1}$ as:

$$
d^{\star}=(-1)^{t+n k+1} \star d \star
$$

and the covariant codifferential as:

$$
d_{A}^{\star}=(-1)^{t+n k} \star d_{A^{\star}}
$$

We can now finally construct the Yang-Mills Lagrangian. We fix the following data:

- an n-dimensional pseudo-Riemannian manifold (M, g)
- a principle G bundle $P \rightarrow M$ with compact structure group G
- an Ad-invariant positive definite scalar product $\langle\cdot, \cdot\rangle_{\mathfrak{g}}$ on \mathfrak{g}.

The Ad invariant scalar product determines a bundle metric on the associated real vector bundle $\operatorname{Ad}(P)$ that we denote by $\langle\cdot, \cdot\rangle_{\operatorname{Ad}(P)}$ via:

$$
\langle[p, v],[p, w]\rangle_{\mathrm{Ad}}(p)=\langle v, w\rangle_{\mathfrak{g}}
$$

The Yang-Mills Lagrangian is then given by:

$$
\mathscr{L}_{Y M}[A]=-\frac{1}{2}\left\langle F_{M}^{A}, F_{M}^{A}\right\rangle_{\operatorname{Ad}(P)}
$$

Note that this Lagrangian is gauge invariant, as:

$$
F^{f * A}=f^{*} F^{A}
$$

for some global bundle automorphism f. We can rewrite this as:

$$
f^{*} F^{A}=R_{\sigma_{f}}^{*} F^{A}=\operatorname{Ad}_{\sigma_{f}^{-1}} \circ F^{A}
$$

Hence, with our previous definition of the action of a global bundle automorphism on an associated vector bundle, we have that:

$$
F_{M}^{f^{*} A}=f^{-1} \cdot F_{M}^{A}
$$

F_{M}^{A} takes values in $\operatorname{Ad}(P)$, so we have that f^{-1} acts on F_{M}^{A} via the adjoint action, and since the scalar product on $\operatorname{Ad}(P)$ is Ad invariant, we have that:

$$
\left\langle F_{M}^{A}, F_{M}^{A}\right\rangle_{\mathrm{Ad}(P)}=\left\langle f^{-1} \cdot F_{M}^{A}, f^{-1} \cdot F_{M}^{A}\right\rangle_{\mathrm{Ad}(P)}
$$

hence:

$$
\mathscr{L}_{Y M}\left[f^{*} A\right]=\mathscr{L}_{Y M}[A]
$$

so the Lagrangian is gauge invariant as desired. The Yang-Mills action is given by:

$$
\mathscr{S}_{Y M}[A]=-\frac{1}{2} \int_{M}\left\langle F_{M}^{A}, F_{M}^{A}\right\rangle_{\operatorname{Ad}(P)} \operatorname{dvol}_{g}
$$

A connection A is a critical point of the Yang-Mills action if for all $\alpha \in \Omega_{\text {Hor }}^{1}(P, \mathfrak{g})^{\text {Ad }}$:

$$
\left.\frac{d}{d t}\right|_{t=0} \mathscr{S}_{Y M}[A+t \alpha]=0
$$

We will now calculate the critical points of $\mathscr{S}_{Y M}$ as follows. First note that:

$$
\begin{aligned}
F^{A+t \alpha} & =d A+\frac{1}{2}[A, A]+t d \alpha+t[A, \alpha]+t^{2}[\alpha, \alpha] \\
& =F^{A}+t d \alpha+t[A, \alpha]+t^{2}[\alpha, \alpha]
\end{aligned}
$$

Both F and α have representatives in $\Omega^{k}(M, \operatorname{Ad}(P))$, so, by our earlier work with the Bianchi identity we have:

$$
F_{M}^{A+t \alpha_{M}}=F_{M}^{A}+t d_{A} \alpha_{M}+t^{2}\left[\alpha_{M}, \alpha_{M}\right]
$$

So:

$$
\left\langle F_{M}^{A+t \alpha_{M}}, F_{M}^{A+t \alpha_{M}}\right\rangle_{\operatorname{Ad}(P)}=\left\langle F_{M}^{A}, F_{M}^{A}\right\rangle_{\operatorname{Ad}(P)}+2 t\left\langle d_{A} \alpha_{M}, F_{M}^{A}\right\rangle_{\operatorname{Ad}(P)}+\mathscr{O}\left(t^{2}\right)
$$

Hence:

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \mathscr{S}_{Y M}[A+t \alpha] & =2\left\langle d_{A} \alpha_{M}, F_{M}^{A}\right\rangle_{\operatorname{Ad}(P), L^{2}} \\
& =2\left\langle\alpha_{M}, d^{\star} F_{M}^{A}\right\rangle_{\operatorname{Ad}(P), L^{2}}
\end{aligned}
$$

Since this needs to hold for all α_{M}, and since the L^{2} norm is nondegenerate, we obtain the Yang-Mills equation:

$$
d_{A}^{\star} F=0 \Rightarrow d_{A} \star F=0
$$

The Yang-Mills equation, combined with the Bianchi-Identity are Maxwell's equations in a vacuum. Let us briefly see this, Recall that:

$$
F_{x t}=E_{x} d x \wedge d t \Rightarrow \star F_{x t}=E_{x} d y \wedge d z
$$

Note that d_{A} reduces to d as the representation of $U(1)$ on $\operatorname{Ad}(P)$ is trivial, or more concretely, since we have identified $\mathfrak{u}(1)$ with \mathbb{R}, and since $\operatorname{Ad}(P)$ of is trivial, we can think of F as a regular 2 form on $\mathbb{R}^{1,3}$. So we obtain:

$$
d \star F_{x t}=\frac{\partial E_{x}}{\partial x} d x \wedge d y \wedge d z
$$

Similarly, the purely spacial components the other components of are \mathbf{E} :

$$
\begin{aligned}
& d \star F_{y t}=\frac{\partial E_{y}}{\partial y} d x \wedge d y \wedge d z \\
& d \star F_{z t}=\frac{\partial E_{z}}{\partial z} d x \wedge d y \wedge d z
\end{aligned}
$$

Hence we see that:

$$
\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=0 \Rightarrow \nabla \cdot \mathbf{E}=0
$$

We have recovered one of Maxwell's equations!
We now turn to some complex geometry; let Σ be a Riemann surface. In particular this implies that Σ is orientable, has a complex structure, and carries a Reimannian metric. The Hodge star operator then sends one forms to one forms, and satisfies:

$$
\star^{2}=-1
$$

Importantly, via the musical isomorphism $T^{*} \Sigma \leftrightarrow T \Sigma$ it turns out that any orientable 2 manifold carries an almost complex structure, and any 2 manifold with an almost complex structure is orientable. The hodge star on Σ determines a splitting:

$$
\Omega^{1}(\Sigma) \otimes \mathbb{C} \cong \Omega^{(1,0)}(\Sigma) \oplus \Omega^{(0,1)}(\Sigma)
$$

corresponding to the eigenvalues i and $-i$ of \star. We then have that the deRham differential splits into:

$$
d=\partial+\bar{\partial}
$$

where:

$$
\begin{aligned}
& \partial: \Omega^{(k, 0)} \rightarrow \Omega^{(k+1,0)} \\
& \bar{\partial}: \Omega^{(0, k)} \rightarrow \Omega^{(0, k+1)}
\end{aligned}
$$

Thought, this does not hold in general, it is true for silly dimensional reason that:

$$
\bar{\partial}^{2}=0
$$

because $\Omega^{(0,2)}(\Sigma)=\Omega^{(2,0)}(\Sigma)=0$. If P is a principal bundle over Σ, and we have a connection A, then we have a similar splitting of the exterior covariant derivative on $\operatorname{Ad}(P)$ i.e.:

$$
d_{A}=\left(\partial+A_{s}^{(1,0)}\right)+\left(\bar{\partial}+A_{s}^{(0,1)}\right)=\partial_{A}+\bar{\partial}_{A}
$$

We note that $\operatorname{Ad}(P)$ is a holomorphic as:

$$
\bar{\partial}_{A}^{2}=0
$$

for the same dimension reasons as before, and that holomorphic sections of $\operatorname{Ad}(P)$ are ones such that:

$$
\bar{\partial} X=0
$$

The Yang-Mills equations then states that:

$$
d_{A} \star F=\partial_{A} \star F+\bar{\partial}_{A} \star F=0
$$

We need both do be zero, as they are independent sections of $\Omega^{1}(\Sigma)$, hence we see that the Yang-Mills equations reduces to the statement:
$\star F$ is a holomorphic section of $\operatorname{Ad}(P)$ that is covariant constant

