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By popular request our motivating example throughout this talk will be classical elec-
tromagnetism in a vacuum, so we first begin with a quick refresher on the Maxwell-Field
equations. From the physicists point of view, classical electromagnetism boils down to
studying the following set of partial differential equations, known as the Maxwell-Field
equations:

0B
E=—— E=
V x 5 \Y 0 (1)
OE
B-_— .B =
V x 5 \Y 0 (2)

With these equations, it can be shown that E and B can be described by a scalar function
V : R 5 R, and a vector field M : R — R3 in the following way:
oM
E=-VV - —
ot
B=VxM

One then finds that the E and B are invariant under the following transformation in the
potentials:

)
V=V - =

ot
M’ =M + VA

for any function X : RM — R. This transformation can be better encoded by defining
the four potential on R3:

A’Lal = (V7 an My7 Mz)
We then obtain the following one form under the musical isomorphism:

Adx' = —Vdt + M;dz’



Then the transformation is given by:
A= A+dX

In physics, this is called a gauge transformation, and it was the goal of the original Yang-
Mills paper to extend this invariance to the strong force. In so doing, they, perhaps by
happenstance, implicitly used geometry and the theory of connections to develop the
Yang-Mills equations.

We now turn to developing the ingredients behind this theory. Recall from the last talk,
that given a principal G bundle P over some base manifold M, we can prescribe the
principal bundle with a connection A that determines the horizontal subspace of T P.
We can view A as a Lie algebra value one form on P satisfying:

Xeg itX,eV,

A(X,) =
(%) {0 if X, € H,

we call A a vertical one form on P. Furthermore, recall that the curvature of such a
connection is given by:

F =7*dA

where 7 is the projection P — M. One can check by direct verification that this is
equivalent to the structure equation:

F:dAJr%[A,A]

where for Lie algebra valued k and [ forms:
(W] =D 0" Aw! ® (T3, Ty
i,j=0
after choosing a basis {T;} for g. For one forms this reduces to the formula:
[777 W] (X7 Y) :[U(X)a W(Y)] - [U(Y)a W(X)]

Recall that in a local trivialization of P, corresponding to local section s : U — P, we
have that:

As=s"A

which is then a Lie algebra valued on form on the base manifold M. Furthermore, we
have that Fs; = s*F', satisfies a similar structure equation:

F.—dA, + %[AS,AS}



Now let U; X G and U; X G be two local trivializations of P corresponding to sections
s; and s; such that U; N U; # (. Then, we have that on the overlap :

S5 = Si " Gij

for some g;; : U; N U; — G, which we call a local gauge transformation. Then under a
local gauge transformation we have that:

A; =Ad —10A; *.0
J gz‘jl o + g?,]
where 0 is the Maurer-Cartan form:
0(v) = DyLy1(v)

The above can be verified quite easily by direct calculation with pushforwards, and using
the fact that for:

P MXG—M
H(z,9)— g
we have for (X,Y) € T, M & T,G:
D(Zﬁg)q)(X’Y) =D;Ry(X) + Dy (Y)

where ¢, is the orbit map through the point x. In a similar vein, if A is the global
connection one form on P, and f is a global bundle automorphism, then we can write
that:

f(p) =p-osp)
for some oy : P — G satisfying:

o(p-g) =g 'os(p)g

Then A transforms as:
ffA = Ada;1 oA+ait
Furthermore, Fj, transforms as:

st = Adg—1 OFsi

ij
We then see that similarly:
ffF=Ad,~10F

Turning back to the physics for a moment, we make the assumption that classical elec-
tromagnetism corresponds to a U(1) gauge theory over the base manifold, then:

P=RY¥xU(Q)



so there exists a global section of P. We can then view A as a global connection one
form on the base with values in u(1) = R, and set:

Ay, = =Vdt + Mydz + Mydy + M.dz

A(

then under a the change of section g;; = M) we have:

As; =Ady1 0 Ay, + g;7'dgiy
—A, + efi)\(:(;)dei)\(x)
=A,, +dX

thus we obtain the gauge transformation for the four potential discussed earlier. Fur-
thermore, as U(1) is abelian we have that:

F,, = dA,

and while I won’t do the full calculation out, I will examine an easy term:

19% oM,
Fpy=— — _
+ axdm/\dt 5 dxr A dt

=FE,.dx N\dt

so the curvature form is given in matrix notation as:

0 -E, —E, —E.
E, 0 —-B. B,
E, B. 0 —B,
E. -B, B, 0

F:

so the curvature form contains the information for both the electric and the magnetic
fields. As U(1) is abelian, we have that Ad -1 is the identity, so F}, and as a consequence
the physical fields, are invariant under a gauge transformation.

Recall that a vector bundle E associated to P, with fibre V| and a representation p is

defined as:
E=Px,V
which is the quotient of P X V under the equivalence relation:
[p, 0] ~ [p-g,p(9)"" - p]
In particular, this implies that:

p-g.v]~[(p-9) 9" plg)v] ~ [p, p(g)v]



If the representation is trivial we have that FE is trivial, hence:
E=MXxYV
A local section @ of the bundle is then the equivalence class:
& = [s(x), ¢(a)]

where ¢ : U C M — V,and s: U — P. If f is a global bundle automorphism, we have
that the action of f on an associated vector bundle is given by:

f . [p7'U] - [f(p)av] = [p : O'f(p),’l)]
The connection one form induces a a covariant derivative on E:

VA T(E) — QY(M, E)
D — [p,do + pu(As)¢)]

We can also define the covariant exterior derivative:
dy: QF(M,E) — QY M, E)
In a local frame {e;} of E we see that w € Q¥(M, E) can be written as:
w=uw® €e;
for w* € QF(M), then:
daw = dw' ® e; + (—1)kw ® VA3e;

In a local gauge s : U — P, we choose a basis for vq,...,v, for V, then determine a
local frame e, ... e, for E via:

ei = [s,vi
Then:
Wg = W' X v;
we can then write that:
(dw)s =dws + ps(As)v; A wf; ' dws + Ay A wg
An associated vector bundle of particular interest is Ad(P):

Ad(P) =P Xaag

Why is this vector bundle important? Recall that F' is horizontal, that is, it sends
every vertical vector field to zero. We denote general k£ forms with values in g, which



transform like the curvature form, and are horizontal by Qﬁor(P, g)Ad. Note that every
Fisin Q% (P,g)A4, and that given a connection A € Q(P,g), any other connection can
be written as:

A=A+w

for an w € Q. (P,g)*. Tt turns out that the vector space Q¥ (P, g) is canonically
isomorphic to the vector space QF(M, Ad(P)), via the map:

A+ Qfior (P, g) — QF(M, Ad(P))
defined by:
AW)(X1,- -+, Xp) =[pw(Vi, ..., Yi)] € Ad(P),
where:
m(p) =x and m(Y;) = X;

Verification of the above statement is overall pretty standard, one checks that the map
is well defined, linear, and bijective, and the statement follows. To see this in the k =0
case note that:

Lior (P.0) = {f € C¥(P.g) : f(p-9) = Adgr 0 f(p)}
while:
QY(M, Ad(P)) = T(Ad(P))
Looking at the equivalence class:

[, f(p)]

we see that:

p-9,f(p-9)] =[p-g,Adg-10 f(p)] = [p, f(P)]

so each element in Q% (P, g) completely determines a global section of Ad(P) and vice
versa. This then implies the following statements:

(i) The set of all connection on P is an affine space over Q!(M, Ad(P))
(i) The curvature F4 of a connection A on P can be identified with an element

F{ € Q2(M,Ad(P)). So local curvature forms on M, extend globally to 2-forms
on M with values in Ad(P)



both of which are vital for Yang-Mills. Importantly, this implies we can write the Bianchi
identity, = as:

daF{ =0
We notice this by stating the Bianchi Identity:
dFY +[A, FAY =0

which follows from the properties of the bracket operation on forms, and noting that in
a local gauge, for E = Ad(P) we have that:

daw =(dws) + pu(As)Ti A '
(dws) + AL A W' ® [T}, T}
=(dws) + [As, ws]

So we have that since Fs can be extended to F]f/‘[:
dFA +[A, FA) = 0 = dFiy + [Fi}, Fiy] = daFi{y =0

We are now going to quickly define the other necessary ingredients in the Yang-Mills
Lagrangian. Suppose that M has a (pseudo)-Riemannian metric g, and recall that we
can raise the indices of k£ form w via:

i :gi1j1 .. .gikjkwjl__jk
Via this operation we define the scalar product of forms by:

P1eeig

1
<UJ, 77> :Hwil"-ikn

For twisted forms, i.e. forms with values in some vector bundle F, if F carries a bundle
metric (-, ) g, we can define a the scalar product of twisted forms by:

(w,m) = (W' 07 ) ei ej) B
The Ly norm for k-forms is:
<w777> = / <W77I>dV01g
M
While the Lo product for twisted k-forms is:
<w777>E,L2 :/ (w,n) pdvoly
M

Furthermore, we define the hodge star operator as the unique linear map:

*: QF (M) — Q k(M)



defined by:
w A *n = (w,n)dvol,
In a local oriented orthonormal frame we have that:
*(@™EN AN Q) =g g R g ma @ PE A AT

where {my, ..., my} is complimentary to the set {mgi1,...,m,} and € is totally anti-
symmetric with:

€193..n, = 1
In particular:
*dvol, = (—1)* and * 1 = dvoly
The hodge star on twisted forms just ignores the tensored section of F, i.e.:
*W :(*wi) ® e;

We further define the codifferential, d* : Q% (M) — QF ! as:

d* = (—1)HFR+L o g
and the covariant codifferential as:

dy = (=1 s d gk

We can now finally construct the Yang-Mills Lagrangian. We fix the following data:
- an n-dimensional pseudo-Riemannian manifold (M, g)
« a principle G bundle P — M with compact structure group G
- an Ad-invariant positive definite scalar product (-,-)4 on g.

The Ad invariant scalar product determines a bundle metric on the associated real vector
bundle Ad(P) that we denote by (-,) aq(p) Vvia:

([p, 0], [p, wh)aa(p) = (v, w)q

The Yang-Mills Lagrangian is then given by:

oA pa
'ZYM[A]__§ <FM’FM>Ad(P)

Note that this Lagrangian is gauge invariant, as:



for some global bundle automorphism f. We can rewrite this as:
fPFA =Ry F* = Ad 10 F4
f

Hence, with our previous definition of the action of a global bundle automorphism on
an associated vector bundle, we have that:

* A _
Fyt =" Fiy

F} takes values in Ad(P), so we have that f~! acts on F{} via the adjoint action, and
since the scalar product on Ad(P) is Ad invariant, we have that:

(FibFi) gy = 7 FiL 7 FiE)

Ad( Ad(P)

hence:
Ly uf*A] = Ly ulA]

so the Lagrangian is gauge invariant as desired. The Yang-Mills action is given by:

_ 1 A pA
FyulA] =~ /M (Fil, FM>Ad(P) dvol,
A connection A is a critical point of the Yang-Mills action if for all a € Qk, (P, g)A%:

d

A+ta) =
7 Fym[A+ta] =0

t=0

We will now calculate the critical points of %) as follows. First note that:
1
FATte —gA 4 514 Al + tda + t[A, o] + e, o
=F4 + tda + t[A, o] + t*[a, o]

Both F and o have representatives in Q¥ (M, Ad(P)), so, by our earlier work with the
Bianchi identity we have:

FJ\,L/X[+ta]\/1 :F]\é[ + tdAOéM + t2[OéM7 OéM]

So:
A-+tans A-+taps _ A A A 2
(Fitten, Fy) >Ad(P) - <FM,FM>Ad(P) +ot <dAaM,FM>Ad(P) + O(t2)
Hence:
a4 52 [A+ta]:2<d o' FA>
dt| yM ASMEM /) pq(py, 12

=2 <aM’ d*FAé[>Ad(P),L2



Since this needs to hold for all aps, and since the L? norm is nondegenerate, we obtain
the Yang-Mills equation:

NF=0=dsxF=0

The Yang-Mills equation, combined with the Bianchi-Identity are Maxwell’s equations
in a vacuum. Let us briefly see this, Recall that:

F,y = E, dx Ndt = xF,, = E,dy Ndz

Note that d4 reduces to d as the representation of U(1) on Ad(P) is trivial, or more
concretely, since we have identified u(1) with R, and since Ad(P) of is trivial, we can
think of I as a regular 2 form on R"3. So we obtain:

E,
dx Fyy zaadx Ady A dz
Xr

Similarly, the purely spacial components the other components of are E :

OF

dx Fy =—Yde Ndy Ndz
Ay
E,

dxF :8 dx Ndy Ndz
0z

Hence we see that:

0E, OE, OE,
= -E:
o + oy + 92 0=V 0

We have recovered one of Maxwell’s equations!

We now turn to some complex geometry; let > be a Riemann surface. In particular this
implies that 3 is orientable, has a complex structure, and carries a Reimannian metric.
The Hodge star operator then sends one forms to one forms, and satisfies:

x=-1

Importantly, via the musical isomorphism 7% <> TY it turns out that any orientable
2 manifold carries an almost complex structure, and any 2 manifold with an almost
complex structure is orientable. The hodge star on ¥ determines a splitting:

ol(z) e Cc=tY)E) e aob(n)

corresponding to the eigenvalues ¢ and —i of x. We then have that the deRham differ-
ential splits into:

d=0+0

10



where:

o :Q(k,O) N Q(k+1,0)
5.0k _y 0k+1)

Thought, this does not hold in general, it is true for silly dimensional reason that:
9*=0

because Q02 (%) = Q2O(X) = 0. If P is a principal bundle over 3, and we have a
connection A, then we have a similar splitting of the exterior covariant derivative on
Ad(P) i.e.:

da = (3 + A§1’0)> + (5 + AS*”) =04+ 04
We note that Ad(P) is a holomorphic as:
94 =0

for the same dimension reasons as before, and that holomorphic sections of Ad(P) are
ones such that:

0X =0
The Yang-Mills equations then states that:
daxF=0s*F +04xF =0

We need both do be zero, as they are independent sections of Q!(X), hence we see that
the Yang-Mills equations reduces to the statement:

*F' is a holomorphic section of Ad(P) that is covariant constant

11



