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1 Chern-Simons theory

Our first goal is to formulate the flatness equation for a connection of Ad(g) bundle over
R3 in terms of pertrubative field theory.

In order to do this we fix a f connection ∇0 and consider other connections as a
pertrubation as ∇0 + A with A ∈ Ω1(R3, g). Now we want to write down a local action
functional S(A) =

∫
L(A, dA) such that the equations of motion following form it are

precisely:
dA+ A ∧ A = 0 ,

note that 2A ∧ A = [A,A].
Fix a basis in g – ta. We can write down A = Aat

a From variang the action with
respect to we can see that δS =

∫
δAa ∧ δL

δAa
+ δdAa ∧ δL

δ(dAa)
=
∫
δAa ∧ ( δL

δAa
+ d( δL

δdAa
)),

since δA is arbitrary 1-form, and
∫

gives a non-degenerate pairing Ω1 × Ω3 → R it
follows that δL

δAa
+ d( δL

δdAa
) = 0. Now since our equation is under the conjugation by

elements of G it follows that L should also be invariant under it, so it should contain
only invariant functions of ta. The most natural choice for this would be taking the
Killing form, which we will denote by Trg since we can think about it as taking trace in
a certain representation. So our ansatz for L becomes L = Trg(L′), thus we can rewrite
δS =

∫
Trg(δA ∧ ( δL

′

δA
+ d( δL

′

δdA
)) = 0, and now since Trg is also non-degenerate pairing it

follows that δL′
δA

+ d( δL
′

δdA
) = 0.

Now the term A ∧A can only appear from δL′/δA, so L’ contains a term A ∧A ∧A.
The term dA can appear from both places, from the first summand it can appear as
δ(A ∧ dA)/δA and from the second as d(δ(dA ∧A)/δdA). But these terms are the same,
hence our L′ is equal to:

cs(A) = A ∧ dA+
2

3
A ∧ A ∧ A .

Also note that we can act on the connection by a local symmetry A 7→ gAg−1 + gdg−1.
In the terms of Lie algebra we have A 7→ A + dX + [X,A], for X ∈ Ω0(R3, g). Let’s see
what this does with our theory. Since we already calculated δS/δA lets use this:

δS = 2

∫
Trg((dX + [X,A]) ∧ (dA+ A ∧ A)) =

= 2

∫
Trg(d(X ∧ dA) + d(X · A ∧ A) +X · A ∧ A ∧ A−X · A ∧ A ∧ A) = 0 ,

So action functional is invariant under all such transformation.

2 4d theory on C× R2

Now the idea is to find a 4d perturbative field theory which would describe for us partially
flat pertrubations:

dz ∧ F (A) = 0 .

The most obvious idea to take L′ = dz ∧ cs(A) works and we get the following definition:
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Definition 1. The four-dimensional Yangian theory on C×R2 is given by the following
data: the space of fields is A ∈ Ω1(C×R2)⊗ g such that i∂zA = 0 and the action is given
by:

S(A) =

∫
dz∧CS(A) =

∫
dz∧

〈
A, dA+

1

3
[A,A]

〉
g

=

∫
dz∧Trg

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
.

Remark 1. We will sometimes use the notation Trg instead of <,>g for invariant form on
g. This makes complete sense for g – reductive, since the invariant form can be given as
a trace of certain representation.

Remark 2. Note that the same action can be written for A ∈ Ω1(C2) ⊗ g without any
additional constraint, but this would lead to a theory invariant under a gauge transfor-
mation A 7→ A + fdz, so we will work the theory above which is obtained by fixing the
gauge to be Az = 0.

Now we can derive the equations of motion for this theory:

δS =

∫
dz∧Trg (δA ∧ dA+ A ∧ dδA+ 2δA ∧ A ∧ A) =

∫
dz∧Trg (2δA ∧ [dA+ A ∧ A]) = 0 ,

since we have
∫
dz∧Trg(A∧dδA) = −

∫
Trg(d(dz∧A)∧δA) =

∫
dz∧Trg(δA∧dA) .Thus

we get
∫
dz ∧ Trg(δA ∧ F (A)) = 0, since the form is non-degenerate, this leads to three

equations:

dz ∧ dz̄ ∧ F (A) = 0 , dz ∧ dw ∧ F (A) = 0 , dz ∧ dw̄ ∧ F (A) = 0 ,

which are explicitly given by:

∂wAw̄ − ∂w̄Aw + [Aw, Aw̄] = 0

∂z̄Aw̄ − ∂w̄Az̄ + [Az̄, Aw̄] = 0

∂wAz̄ − ∂z̄Aw + [Aw, Az̄] = 0

The first equation means that A defines a flat connection over any {pt} × C. Second
and third equation mean that then we go along the antiholomorphic direction in the first
coordinate everything that happens is a gauge transformation of 2d connection with gauge
function Az̄. So the connection varies holomorphically in the first coordinate. Dually one
can think about holomorphic connection on C×{pt} given by dz̄Az̄ which varies in a flat
way in the second coordinate since going in any direction produces a gauge transformation
by linear combination of Aw and Aw̄.

Now we would like to understand what are the gauge symmetries of S(A). In order
to understand this let’s rewrite the action in the following form:

−
∫
zTrg(F (A)∧F (A)) = −

∫
zTrg(dA∧dA+dA∧A∧A+A∧A∧dA+A∧A∧A∧A) =

= −
∫
zTrg

(
dA ∧ dA+

2

3
d(A ∧ A ∧ A)

)
= S(A) .

Here we’ve used the fact that A∧4 = 0. From this form of action it follows that gauge
transformations should leave F (A) invariant. Hence they are given by X ∈ Ω0(C2) ⊗ g,
acting by:

A 7→ A+ [X,A] + dX .

Remark 3. Note that since we fixed Az = 0 we need to follow the above gauge transfor-
mation with another one sending Az → Az − ∂zX.
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For the next generalization of our theory we would like to reformulate it in the following
terms:

Definition 2. The Yangian deformation of holomorphic BF theory on C × R2 is the
theory whose fields are A ∈ Ω0,1(C×R)⊗ g and B ∈ Ω2,0(C×R2)⊗ g and the action is:

S(A,B) =

∫
Trg

(
B ∧ F (A) +

λ

2
dz ∧ A ∧ ∂A

)
,

where λ is coupling constant. Note that A ∧ ∂A = A ∧ dA.

Remark 4. This theory for λ = 0 turns into a holomorphic BF theory which we might
discuss later. Here A describes pertrubations of holomorphic connections. These theory is
a ”cotangent” theory since field A and B can be thought as a dual pair in dgla Ω0,∗(C2, g)
and Ω∗,0(C2, g) there the second one describes a shifted cotangent bundle to the moduli
space of holomorphic connections. This statements will become clearer in the next talks.

We can easily show that if we write B = B0dzdw and we take B = λ−1B0dw and
A = B +A we get the action of the original theory. Indeed:

S(A, B) = λ

∫
Trg(dz ∧B ∧ dA+ dz ∧B ∧ A ∧A+ 1/2A ∧ dA) =

=
λ

2

∫
dz ∧ Trg(B ∧ dA+A ∧ dB +A ∧ dA+ 2B ∧ A ∧A) =

=
λ

2

∫
dz ∧ Trg((A+B) ∧ d(A+B) + 2/3(A+B)∧3) =

λ

2
S(A) ,

since dB ∧B = B ∧B = 0 and A∧3 = 0.
We can rewrite the gauge transformations as follows:

A 7→ A+ ∂̄X + [X,A] , B 7→ B + λdz ∧ ∂X .

3 Theory on complex surface

We can generalize the previous construction in the following way. Suppose X is a complex
surface, D is a reduced divisor, ω is nowhere vanishing element of KX(2D), and V is a
holomorphic vector field preserving D and LV (ω) = 0. We also fix a lift of V ∈ TX to
At(P ) = TP/G which we denote by ∇V .

More precisely we consider an exact sequence of bundles: 0 → g(P ) → TP/G =
At(P ) → V ect(X), there V ect(X) is the bundle of holomorphic vector fields. The
splitting of this sequence gives us a holomorphic connection, so we can think about
lifting a single holomorphic vector field to be a partial connection. But we also need
to consider the modified short exact sequence g(P )(−D) → At(P,D) → V ect(X,D),
there we restricted ourselves to field parallel to D. We can further restrict ourselves to
g(P )(−D)→ At(P,D)div → V ectdiv(X,D), there we restrict ourselves to fields which fix
ω. So ∇V is a lift of V in the latter sequence.

Definition 3. The Yangian deformation of holomorphic BF theory is a theory where
fields are α ∈ Ω0,1(X, gP (−D)) and β ∈ Ω0,0(X, gP (−D)), where gP is a Lie algebra
bundle associated with P and gP (−D) = gP ⊗O(−D). The action is given by:

S(α, β) =

∫
X

ω ∧ Trg
(
−α ∧ ∂̄β +

λ

2
α ∧∇V α + β · α ∧ α

)
.
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First, it is easy to see that if X = C2, D = 0, ω = dz ∧ dw, V = ∂w and the bundle is
trivial with trivial connection we get our previous theory under the identification α = A
and ωβ = B. The first and the thrid terms give us:∫

X

ω ∧ Trg (−α ∧ dβ + β · α ∧ α) =

∫
Trg(B ∧ [dA+A ∧A]) .

And the middle term is:∫
X

ω ∧ Trg(α ∧ iV dα) =

∫
iV (ω) ∧ Trg(α ∧ dα) =

∫
dzTrg(A ∧ ∂A) ,

so the sum is indeed S(A,B).
Now we can derive the equations of motions. First using

∫
ωTrg(α∧∂β) =

∫
ωTrg(β∧

dα) we have from variation with respect to β:

F 0,2(α) = 0 ,

next using:∫
ωTrg(α ∧∇V δα) =

∫
ω ∧ (αa ∧ δαbTrg(ta∇V (tb)) + αa ∧ LV (αb)Trg(t

atb)) =

=

∫
ω ∧ (δαb ∧ αaTrg(tb∇V (ta)) + αb ∧ LV (αa)Trg(t

bta)) =

∫
ω ∧ Trg(δα ∧∇V (α))

we have:

δS =

∫
ω ∧ Trg(δα ∧ [−∂̄β + λ∇V (α) + [α, β]]) = 0 ,

so λ∇V (α)− ∂̄β + [α, β] = 0.
We know what in a special case of this theory the gauge transformations are given by

Ω0,0(X, gP (−D)), so the good idea is to try acting on α as on usual connection form and
to extend this action to some action on β in a such a way that the action is preserved.

So suppose δα = ∂̄c+ [c, α], then:

δS =

∫
ω ∧ Trg(δβ ∧ F (α) + (∂̄c+ [c, α]) ∧ (−∂̄β + λ∇V (α) + [α, β])) .

Let’s work on the second summand term by term, we have:∫
ω ∧ Trg(dc ∧ dβ) =

∫
d(ω ∧ Trg(cdβ)) = 0 ,

∫
ω∧Trg(dc∧[α, β]−[c, α]∧dβ) =

∫
ω∧(dci∧αjβk−ciαj∧dβk)Trg(ti[tj, tk]) = −

∫
ω∧Trg(dα[c, β])∫

ω∧Trg([c, α]∧[α, β]) = −
∫
ω∧Trg(α∧[[c, α], β]+α∧[α, [c, β]]) =

∫
ω∧Trg([α, β]∧[c, α]+[α, α]∧[c, β]) ,

so: ∫
ω ∧ Trg([c, α] ∧ [α, β]) = −1

2

∫
ω ∧ Trg([c, β] ∧ [α, α]) .

The next term:∫
ω ∧ Trg(∂̄c ∧∇V α) =

∫
ω ∧ Trg(c∇V ∂̄α) = −

∫
ω ∧ Trg(∇V c ∧ dα) .

∫
ω∧Trg([c, α]∧∇V α) =

∫
ω∧Trg([∇V c, α]∧α+[c,∇V α]∧α) =

∫
ω∧Trg([c, α]∧∇V α−∇V c[α, α]) .
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So we get:

δS = δS =

∫
ω ∧ Trg((δβ − λ∇V c− [c, β]) ∧ F (α)) = 0 ,

hence the formula for gauge transformation of β is:

β 7→ β + λ∇V c+ [c, β] .

Suppose X is a direct product.
So we can take X = Σ×C, there C and Σ are complex curve. Then we can consider a

divisor D is just a divisor on C times Σ, ω is ω′ on C times dw and V = ∂w. This theory
can be then reformulated in the spirit of original Yangian theory as

∫
ω′ ∧ cs(A), and

we can suppose that Σ is an arbitrary 2-dimensional manifold. In this case the theory is
connected with the following classes of quantum groups:

C = C , ω = dz , double pole at ∞ , (rational)

C = C× , ω =
dz

z
, poles at ∞ and 0 , (trigonometric)

C = E , ω = dz , no poles , (elliptic)

3.1 Theory on E × S1 × R
We can restrict ourselves to E × C, with a divisor D given by D′ × C, ω = ω′ ∧ dw ,
where ω′ ∈ K(2D′) and vector field by ∂w. In this case we can also rewrite the theory
in the form

∫
ω′ ∧ CS(A), with A ∈ Ω1(E × C, g). So we can compactify this theory on

E×S1×R, if we now restrict ourselves to the connections constant in R direction we get
the following equations of motion:

∂z̄Ax − ∂xAz̄ + [Az̄, Ax] = 0 ,

this equations as before describe a flat family of holomorphic vector bundles on E. But
now the can have a non-trivial holonomy, indeed by exponentiation the equation along x
we get an isomorphism of holomorphic vector bundles. So we can think about solutions
as pairs A, φ, there A is an (0, 1) form and φ is a bundle automorphism which preserves
it.

Once you account for gauge transformations, the moduli space of pairs (A,ϕ) modulo
gauge is known as the moduli space of “multiplicative Higgs” bundles.

Notice that the space of classical solutions admit a symplectic form:

ω(A,A′) =

∫
ω ∧ Trg(A ∧ A′) .

4 N = 1 SUSY theory

Here the sketch the way to derive the Yangian theory from the N=1 supersymmetric
theory. Roughly the procedure consist of the following steps: writing down the action
for the thorny, rewriting it in holomorphic terms, twisting it to get rid of supersymmetry
(here the obtain the BF theory) and then deforming it (alternatively we can deform it
before twisting).

So we start with a theory with a following action functional:∫
Trg(F (A)+ ∧B + cB ∧B + ψ+/∂Aψ−) ,
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with A ∈ Ω1(R4, g), B ∈ Ω2(R4, g)+ – the space of self-dual forms, Ψ± ∈ Ω0(R4, g ⊗ S±)
with S± being the images of the projection by 1±ω

2
(ω = γ1γ2γ3γ4 – in the Clifford algebra)

and finally /∂A = σµ(∂µ + Aµ).
The equation of motion of this theory ensure that B is proportional to self dual part

of F (A), that both spinors satisfy the Weyl equation, and the following equation:

−dB + [A,B] + ∗(ψ+σµdx
µψ−) = 0 .

It can be easily seen that the action is invariant under the gauge transformation by
X ∈ Ω0(R4, g) by A 7→ A + dX + [X,A], B 7→ B + [X,B] , ψ± 7→ ψ± + [X,ψ±], indeed
this action comes from the group action which acts on all F (A), B, ψ+ and /∂Aψ− by
conjugation, and so leaves the action invariant.

This theory can be rewritten in terms of holomorphic geometry in the following way.
We choose a complex structure such that S− ⊗Ω0 = Ω1,0, then Ω2

+ = Ω2,0 ⊕ ω ·Ω0 ⊕Ω0,2

and S+ ⊗ Ω0 = Ω0 · ω ⊕ Ω2,0. In this terms dirac operator /∂A : S− ⊗ Ω0 → (S+)′ ⊗ Ω0

becomes:
/∂A : Ω1,0 ⊗ g

ddR+[A,−]−−−−−−→ Ω2 ⊗ g
π−→ Ω2,0 ⊗ g⊕ ω · Ω0 ⊗ g .

And the action is now equal to:∫
Trg(B ∧ F (A) + ψ+ ∧ dAψ− + cB ∧B) .

In this terms it is easy to introduce the supercharge Q acting as follows: it maps S−
into Ω1 and Ω2

+ into S+ by the natural maps.
Now if we do something called ”twisting” to this theory we will gett BF theory,

which we should later deform to get Yangian theory. Alternatively we can deform theory
befory twisting, deform the charge and get Yangian theory after twisting without further
deformation.

5 Physical introduction to ghosts and BRST

Let’s consider a 4D Pure Yang Mills theory which is specifed by the action:

S(A) = −
∫
Trg(F (A) ∧ ∗F (A)) ,

the equation of motion following from this action is d ∗ F (A) + [A, ∗F (A)] = 0 . This
action is obviously invariant under transformation A 7→ A+ dX + [X,A]. So g⊗ Ω0 is a
gauge algebra.

Now one of the main physical instruments in QFT is a functional integral, which is
roughly: ∫

DA exp [iS(A)]f(A) ,

where A is some local gauge-invariant functional polynomial in A and it’s derivatives.
The problem with this integral is that it is constant along gauge directions, so we get

an infinity we don’t know how to control. In order to make more sense out of it we would
like to somehow integrate over the transversal to the gauge orbits and take out from the
integral ”the volume” of gauge group.

More concretely we would like to fix some gauge G(A) = 0, and use the following
identity: ∫

DX δ(G(AX)) det(
δG(AX)

δX
) = 1 ,
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here AX = A+dX+[X,A]. This identity ”holds” as an generalization of finite-dimensional
identity (

∏∫
dxi)

∏
δ(gi(x)) det(∂gi/∂xj) .

If we now insert this identity in the functional integral:∫
DA DX exp[iS(AX)]f(AX)δ(G(AX)) det(

δG(AX)

δX
) =

= (

∫
DX )

∫
DAδ(G(A))f(A) exp[iS(A)] det(

δG(AX)

δX
) ,

since we are interested in ratios of functional integrals we may throw out infinite integral∫
DX .

The next trick is to notice that this works for every G(A) − ω(x). So up to infinite
constant our integral is:∫

Dωexp[i

∫
d4x

ω2

2ξ
]

∫
DAδ(G(A)− ω)f(A) exp[iS(A)] det(

δG(AX)

δX
) =

=

∫
DAf(A) exp[iS(A) + i

∫
d4x

G(A)

2ξ
] det(

δG(AX)

δX
) .

We can rewrite it further introducting a new field:∫
DA DB f(A) exp[iS(A)− i

∫
d4x

B2 − 2BG(A)

2ξ
] det(

δG(AX)

δX
) .

Now the ghosts appear then we want to rewrite the determinant as a functional integral
of some other theory. The idea behind the next step is that the Gaussian integral over
anti-commuting variables (

∏∫
dξi) exp((ξ, ξ)A) is proportional to the determinant of A.

Here we need to make a choice for G. The most natural one is G = div(A) = ∂µA
µ.

Then the operator of which we want to calculate determinant is δG(AX)/δX can be
computed as follows:

G(AX) = ∂µA
µ + ∂µ∂

µX + ∂µ[X,Aµ] ,

if we denote ∂µ− [Aµ,−] = Dµ, then δG(AX)/δX = ∂µD
µ . Let’s denote this operator

by DA, then we can write:∫
Dc̄Dc exp[

∫
d4x− c̄DAc] = det(δG(AX)/δX) .

Thus as a result of our calculation we found that instead of working with the original
action we can take the action:

S(A,B, c̄, c) =

∫
Trg(F (A) ∧ F (A) + d4x{−B

2

2ξ
+
Bdiv(A)

ξ
− c̄Dc} .

It turns out that there is a new symmetry acting on this theory, which is called BRST-
symmetry and which sends:

δAµ = dc− [A, c] , δc = −1

2
[c, c] , δc̄ = B, δB = 0 .

This symmetry also turns out to be nilpotent.
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